
Precision Localization in Monte Carlo Sensor
Networks

Thomas C. Henderson
School of Computing

University of Utah
Salt Lake City, UT, USA
Email: tch@cs.utah.edu

Edward Grant, Kyle Luthy,
Leonardo Mattos, and Matt Craver
Electrical and Computer Engineering

North Carolina State University
Raleigh, NC, USA

Email:egrant@eos.ncsu.edu

Abstract— We have proposed Monte Carlo Sensor
Networks as a method to solve certain sensor queries
in the presence of noise and partial information. In that
work we used very coarse position estimates for enemy
agents. Here we propose methods to (1) improve the
posterior probability estimates by using a more precise
analysis of the sensor range geometry, and (2) help
select advantageous locations to place the sensor nodes.

I. INTRODUCTION

Biswas et al. [1] introduced a probabilistic ap-
proach to inference with limited information in sensor
networks. They represented the sensor network as a
Bayesian network and performed approximate infer-
ence using Markov Chain Monte Carlo (MCMC). The
goal is to robustly answer queries even under noisy
or partial information scenarios. We have proposed
an alternative method based on simple Monte Carlo
(MC) estimation[2]; our method allows a distributed
algorithm and pre-computation of probabilities. In
this paper, we examine the improvement gained by
doing more precise analysis of the geometry in enemy
location assignment as well as determining advanta-
geous locations to put sensor nodes.

Many advances have been made in sensor network
technology and algorithms in the last few years. See
[3] for an overview of the state of the art. Work has
been done on: architecture [4], systems and security
[5], [6], [7], and applications [8]. Our own work has
focused on the creation of an information field useful
to mobile agents, human or machine, that accomplish
tasks based on the information provided by the sensor
network [9], [10], [11], [12], [13].

Some drawbacks of sensor networks include the
need to conserve power and not run all the nodes
all the time (partial data), and sensors are noisy
(sometimes return the wrong value). This motivates a
statistical approach to decision making. Biswas et al.
[1] introduced an interesting problem in the context of

sensor networks, as well as an MCMC solution. We
present improvements to our Monte Carlo method.

A. The Problem

Suppose there is a 2D area of interest (we’ll
consider the unit square), and a friendly agent located
at a fixed position, LF , in the area. In addition, there
are m sensor nodes located throughout the area (these
sensor nodes report the presence or absence of enemy
agents within some fixed range). Finally, n enemy
agents are placed in the area; each enemy agent’s
coordinates are chosen by independently sampling a
uniform distribution for x and y (see Figure 1 for an
example).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LE 0

LE 1

LS 41

LS 36

LS 37

LF

LE 2

LS 68

LE 3

LS 2
LS 56

LE 4

Fig. 1. Example Layout of friendly agent (+), enemy agents,
LE (◦) and sensors, LS (∗) (from Biswas et al.)

Query: Given a set of sensor responses, Ri (each
declares there is or is not an enemy within its range),
and a set of probabilities of the correctness of the
responses, what is the probability, P (S | Ri), that
the friendly agent is surrounded by the enemy agents



(surrounded means that it is within the convex hull
of the enemy locations).

See Biswas et al.[1] and Henderson et al.[2] for
details on the problem and methods to solve it. Both
use approximation techniques since the combinatorial
complexity is very high for the exact solution.

II. MONTE CARLO SENSOR NETWORKS

A. Sensor Model

Let the ground truth be defined as:

d̂i =

{

0 if there’s no enemy in range of sensor i
1 otherwise.

Then, let:

di =

{

d̂i with probability ρ

¬d̂i with probability 1 − ρ

B. m-Sensor Case

There are 2m terms in the probability calculation.
Let d = [d1, d1, . . . , dm] be the set of sensor node
assertions about the presence of enemies. We must
consider all combinations of these being true or false.
This is characterized by a vector b = [b1, b1, . . . , bm],
where bi = 1 means that di is true, else false. and the
contribution of each to the total probability of being
surrounded:

Prob(S | R) =
∑

b∈P({0,1}m)

Prob(b)Prob(S | b)

For example, if we assume that all the sensor nodes
report that there is an enemy present, and the first
m − 1 sensor responses are correct but that sensor
node m is wrong, then we compute that term in the
above summation as:

ρm−1(1 − ρ)Prob(S|Positions)

where Positions indicates that Monte Carlo is run
assuming enemies in positions indicated by the di’s.

III. PRECISION LOCALIZATION

There are a couple of issues we address in this
paper: (1) enemy placement for posterior probability
of being surrounded calculation, and (2) sensor node
placement to increase the probability of making a
correct assessment. First, if a sensor reports an enemy
in its range, the enemy is assumed to be at the sensor
location in order to make the Monte Carlo simulation;
more generally, if multiple sensors with non-empty
common overlapping range report an enemy, one
location in that intersection area is used. We propose
to refine that by sampling from the entire intersection
area.

Second, in the original work, sensor placement was
given as part of the statement of the problem. Here,
we propose to compare sensor placement using two
techniques: random, and sensor placement that puts
sensor nodes in the highest impact region first.

A. Enemy Placement

The Monte Carlo simulation incorporates the sen-
sor reports by assigning a location to a reported
enemy. We propose two methods to determine this
location:

1) Find the mean point of a certain polygon in the
intersection of the circles.

2) Randomly sample (uniformly) locations in the
intersection of the sensor clique reporting the
enemy. This is important because some re-
gions of the intersection area may not result
in surrounding the friendly agent while others
do. A large enough sample should capture this
effect, not only for individual cliques, but for
all combinations of them.

A point in the intersection of a set sensor ranges is
found as follows (see Figure 2). First, each sensor’s

P1

P3

P2

Fig. 2. Geometry of Sensor Range Intersection.

range is represented by a circle of radius r. We as-
sume that all sensors have the same range. Cliques of
circles are found where each clique is a maximal set
of circles with non-empty intersection. Next, the set
of intersection points of all the circles taken pairwise
is determined (smaller empty and filled circles). Any
point farther than r from any circle center in the
clique is then deleted (smaller empty circles). The
remaining set of points (P1, P2, P3) are formed into



a convex polygon (e.g., using convhull in Matlab!);
this polygon lies within the intersection area of the
circles. The mean of the points (PM ) on the polygon
lies in the interior of the polygon and is used as the
representative point.

The other alternative is to randomly generate points
until one falls within distance r of all the circles in the
clique. This adds to the complexity, but gives better
results since the deterministic method may produce
a point that always contributes to surrounding the
friendly agent, or which never does.

Another interesting measure to have is the area of
the intersection of the circle clique. This may be used
to determine various likelihoods; e.g., if this region
is small enough, then the computed polygon vertex
mean will do as the enemy location.

This area is computed by adding the area of the
polygon to the areas of all the regions lying between
the polygon edges and the circumscribing circle of
that edge (see Figure 3). This is found by subtracting

C

P1

P2

R

θ

d e
M

Fig. 3. Area of Circles’ Intersection.

the area of the triangle formed by the center of the
circle and the two polygon vertexes arising from that
circle from the area of that circle’s wedge, i.e., (θ/2)∗
r2−e∗d where θ is the angle made from point 1, P1,
to point 2, P2, on the circle’s circumference, C is the
center of the circle, and M is the midpoint between
P1 and P2.

B. Optimal Sensor Placement

In this problem, we are given a sensor budget,
and allowed to place them as we see fit. What is
the best placement strategy to improve the posterior

probability calculation? We compare two strategies
for sensor placement: (1) random placement (uniform
distribution), and (2) highest impact region first.

1) Random Sensor Placement: The experimental
layout is as follows: a friendly agent is placed at
0.75,0.25 in the unit square. We assume five enemy
agents, and two scenarios are explored: the friendly
agent is surrounded (S), and it is not surrounded
(NS). Figures 4 and 5 show the locations of the
enemies used in the simulations for cases, S, and NS,
respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Axis

Y
 A

xi
s

Fig. 4. Layout for NS (non-surrounded case).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Axis

Y
 A

xi
s

Fig. 5. Layout for NS (non-surrounded case).

For each of S and NS, 10 random sensor locations
(for m sensors) are selected. Then, the MCSN method
is used to determine a probability that the friendly
agent is surrounded.

2) Highest Impact Region First: This approach
divides the unit square into four regions with respect



to the friendly agent: up and left (UL), up and right
(UR), down and left (DL), and down and right (DR).
We select sensor placement locations by choosing in
each region (1−area(region)

3 percent of the time. For
example, if LF = [0.75; 0.25], then area(UL) = 9

16 ,
area(UR) = area(DL) = 3

16 , and area(DR) =
1
16 . Therefore, the sensor locations are selected with
probabilities: prob(UL) = 0.1458, prob(UR) =
prob(DL) = 0.2708, and prob(DR) = 0.3125.

The simulation is performed as follows: a friendly
agent is placed at 0.75,0.25 in the unit square. We
assume five enemy agents, and two scenarios are
explored: the friendly agent is surrounded (S), and
it is not surrounded (NS). For each of S and NS
cases, 10 sensor locations (for m sensors) are selected
as described by the probability of selecting in each
region. Then, the MCSN method is used to determine
a probability that the friendly agent is surrounded.

Table 1 gives the mean posterior found for the S
case random sensor placement and two versions of
HIRF (all variances are less than 10−4; in one, sensors
are placed randomly in the selected areas, while in the
other, sensors are placed so as to maximize the area
covered in the rectangle where they are placed.

m Random HIRF, random HIRF, max
0 0.27 same same
1 0.25 0.48 0.51
2 0.31 0.51 0.50
3 0.30 0.53 0.52
4 0.33 0.58 0.67
5 0.22 0.68 0.70

Table 1. Random vs. HIRF Placement
Surrounded Case

Table 2 gives the mean posterior found for the NS
case random sensor placement and two versions of
HIRF (all variances are less than 10−4); in one, sen-
sors are placed randomly in the selected areas, while
in the other, sensors are placed so as to maximize the
area covered in the rectangle where they are placed.

m Random HIRF, random HIRF, max
0 0.27 same same
1 0.27 0.36 0.39
2 0.28 0.40 0.39
3 0.22 0.39 0.38
4 0.26 0.57 0.54
5 0.26 0.58 0.50

Table 2. Random vs. HIRF Placement
Not Surrounded Case

IV. PHYSICAL EXPERIMENTS

The original set of Monte Carlo network experi-
ments was carried out to better understand the physi-
cal nature of acoustic detection systems, and to derive
metrics related to their probability; i.e., could they
produce a correct report of enemy presence[2]. That
set of experiments concluded that the correctness
probability was approximately 70%. The physical
experimentation indicated that there is uncertainty at
the range boundary of acoustic sensors. Since range
is directly related to a set sound level threshold,
variations are due to sensor and emitter circuitry.
However, these inconsistencies were found useful to
test prediction in the presence of noise in the systems.

Physical testing was carried out in the autonomous
mobile robot test-bed in the Center for Robotics and
Intelligent Machines (CRIM) at North Carolina State
University [14]. The autonomous mobile robot used,
the EvBots, are a generic platform, one that is used
widely for evolutionary algorithm and distributed sen-
sor experimentation. To test the Monte Carlo sensor
network at the heart of this paper a new microphone
circuit was constructed. This new acoustic sensor;
provides data for hit or miss decision making within a
specified range. For this set of Monte Carlo network
experiments the EvBots served as stationary sensor
nodes. The enemies in this case are PC speakers that
emit a 1 KHz tone.

The physical experiments were carried out to verify
the simulated sensor placement strategy described
earlier in this paper, by scaling the environment to the
unit square. The enemy nodes were initially placed as
shown in Figure 5 (NS) and then later as shown in
Figure 4 (S). For each placement the 4 sensors were
incrementally placed within the regions detailed in the
simulation (e.g., 1 sensor in DR, then 1 in DR and 1
in UR, etc.). This was done for both the case where
the sensor was centered in the region, and later for
the case where the sensor was placed randomly within
the region being tested. This is shown for the centered
case in Figure 6 with the physical setup shown in
Figure 7.

In a similar manner to that of the simulation, the
range of the sensors was set to a radius of 0.2, which
translates into an expected 70% correctness factor.
From this, a fringe threshold of 320 was empirically
derived from the sensor’s measured analog to digital
values. Upon performing the experiment with 5 ene-
mies and 4 sensors it was found that out of the 400
measurements recorded, only 4 fell below the 320
level, indicating that no enemy was present; when in



Fig. 6. Regionally Centered Sensor Nodes (friendly located at
intersection of axes).

fact there was. These results imply that the friendly
was always surrounded.

These preliminary Monte Carlo network tests high-
light issues relating to moving between simulated
worlds and real worlds, i.e., determining how to
accurately set a sensor’s range. The range can be set
in one of three ways, although each presents its own
problem.

1) Setting the sensor threshold given a sound
source of a pre-determined intensity level. This
was the technique used in these preliminary ex-
periments. However, the derived sensor thresh-
old does not prevent the sound from propa-
gating past the desired range. Where multiple
enemies are present there is an increase in the
perceived sound level at a given point, due to
the additive effects of noise.

2) Adjusting the gain on the sensor’s amplifier. In-
creasing the gain of the amplifier also amplified
ambient noise which, if high enough, resulted
in false readings. Filtering was carried out to
reduce these effects.

3) Adjusting the sound level emitted by the enemy.
This adjustment was analogous to adjusting the
sensor gain, but performed on the enemy rather
than the sensor. Neither of these methods (2)
or (3) adequately addressed the additive effects
produced by multiple enemy agents.

In order to establish a base line for noise levels
within the test-bed sound levels were sampled using
varying numbers of enemies, see Figure 8. Sound
samples were recorded using a B&K sound level
meter, with the sound level from a single enemy being
measured at 63.9dBC (ambient noise is 57.1dBC).

Fig. 7. Test Environment with the friendly wolf, sensor nodes,
and speaker enemies.

Figure 8 shows the sound levels measured throughout
the environment for the NS case. As can be seen from
Figure 8 there are few sites within the test-bed where
the sound level dips below this 63.9dBC.

Fig. 8. Sound Level Mapping in the Test-Bed.

It was apparent when examining the recorded data
that there were distinct variations in readings between
the surrounded and not surrounded cases. A new
threshold can be derived to fit this data, but will serve
as a poor metric as it would only be applicable to this
particular test scenario. Different configurations will



require new thresholds. Once again, this is primarily
a problem with the effective range of the sensors and
the intensity of the sound sources.

For future experimentation, the additive sound level
problem will be addressed. A basic test can be
arranged by placing enemies in a pattern similar to
the experiments conducted here. Lowering the sound
intensity (and thus the range) is akin to placing the
enemies further apart. Doing this will reduce the
additive effects derived from speaker emissions. More
sensors will be required in order to detect enemies.

For more complex cases, where enemies are closer
together, a more complex reasoning strategy will be
required for the sensor(s). The sensor has a set range
based on a single enemy, but it may in fact be hearing
two. In this specific case the sensor’s range can no
longer be assumed static. This condition will lead to
either or both sensors lying outside the defined range,
yet still alerting the sensor to their presence.

V. DISCUSSION AND CONCLUSIONS

We have shown that both precision localization and
sensor placement lead to improved estimates of the
posterior probability of being surrounded.

In future work, we intend to explore these issues
in a 100-node sensor network testbed now under
construction; the EvBots will provide the mobile
agent platforms for use as friendly and enemy agents.
Moreover, we are exploring the application of sensor
networks to snow and avalanche monitoring[15], and
in this case the goal might be to surround (e.g., the
signal of a buried person) with mobile agents or
people – thus, sometimes it may be of interest to
ensure that an object of interest is surrounded.

REFERENCES

[1] R. Biswas, S. Thrun, and L. Guibas, “A probabilistic
approach to inference with limited information in sensor
networks,” in LCSN, (Berkeley, CA), April 2004.

[2] T. C. Henderson, B. Erickson, T. Longoria, E. Grant,
K. Luthy, L. Mattos, and M. Craver, “Monte carlo sensor
networks,” uucs-05-001, University of Utah, January 2005.

[3] F. Zhao and L. Guibas, “Preface,” in Proc of IPSN 2003,
(Palo Alto, CA), pp. v–vi, LNCS, April 2003.

[4] J. Hill and D. Culler, “A wireless embedded sensor archi-
tecture for system-level optimization,” ece, UC Berkeley,
October 2002.

[5] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin,
“Highly resilient, energy efficient multipath routing in wire-
less sensor networks,” Mobile Computing and Communica-
tions Review, vol. 1, no. 2, 2002.

[6] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar,
“SPINS: Security protocols for sensor networks,” Wireless
Networks, vol. 8, pp. 521–534, Sept 2002.

[7] L. Zhang, “Simple protocols, complex behavior,” in Proc.
IPAM Large-Scale Communication Networks Workshop,
March 2002.

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson, “Wireless sensor netwroks for habitat moni-
toring,” in WSNA 2002, (Atlanta, GA), September 2002.

[9] T. C. Henderson, M. Dekhil, S. Morris, Y. Chen, and
W. B. Thompson, “Smart sensor snow,” IEEE Conference
on Intelligent Robots and Intelligent Systems, October 1998.

[10] Y. Chen, “Snets: Smart sensor networks,” Master’s thesis,
University of Utah, Salt Lake City, Utah, December 2000.

[11] Y. Chen and T. C. Henderson, “S-nets: Smart sensor
networks,” in Proc International Symp on Experimental
Robotics, (Hawaii), pp. 85–94, Dec 2000.

[12] T. C. Henderson, “Leadership protocol for s-nets,” in Proc
Multisensor Fusion and Integration, (Baden-Baden, Ger-
many), pp. 289–292, August 2001.

[13] T. C. Henderson, J.-C. Park, N. Smith, and R. Wright,
“From motes to java stamps: Smart sensor network
testbeds,” in Proc of IROS 2003, (Las Vegas, NV), IEEE,
October 2003.

[14] L. Mattos, “The EvBot-II: An enhanced evolutionary
robotics platform equipped with integrated sensing for
control,” Master’s thesis, North Carolina State University,
Raleigh, NC, May 2003.

[15] T. C. Henderson, E. Grant, K. Luthy, and J. Cintron,
“Snow monitoring with sensor networks,” in Proceedings of
EMNETS Workshop, (Tampa, FL), pp. 558–559, November
2004.


