
Abstract

Mattos, Leonardo Serra. The EvBot II: An Enhanced Evolutionary Robotics Platform
Equipped with Integrated Sensing for Control. (Under the direction of Edward Grant.)

The research presented in this thesis describes the design and development of

the EvBot II, a small, computationally powerful, and robust evolutionary robotics

platform equipped with an acoustic array system. The EvBot II represents the next

generation of autonomous robots for distributed robot-colony research, and its design

has expanded the sensing capabilities and the overall performance of the EvBot

robots by the incorporation of two microcontroller units, shaft encoders and a

complete acoustic array system for tracking and navigation purposes. The design,

development and test of this new robot is described in detail throughout this thesis,

including the design of an USB data acquisition system capable of simultaneously

sampling eight audio channels as required for the realization of the added acoustic

array system. Experiments designed to evaluate the performance of this new robot

and its components are also described in this thesis, as well as experimental results

showing that it is a well-suited platform for the study of evolutionary robotics,

distributed robot-colonies and sensors technologies.

THE EVBOT II
AN ENHANCED EVOLUTIONARY ROBOTICS PLATFORM
EQUIPPED WITH INTEGRATED SENSING FOR CONTROL

by
LEONARDO SERRA MATTOS

A thesis submitted to the Graduate Faculty of the
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

ELECTRICAL AND COMPUTER ENGINEERING

Raleigh

April 2003

APPROVED BY:

 ii

Biography

Leonardo Serra de Mattos was born December 17, 1974 in Red Bank, New

Jersey, and shortly after moved to Brazil with his family. From education received

there he earned his Technical degree in Electronics from the State University of

Campinas (UNICAMP) in 1992, and a Bachelor of Science degree in Electrical

Engineering from the University of São Paulo (USP) in 1998. Once again living in

the United States, he received his Master of Science degree in Electrical Engineering

from the North Carolina State University in 2003. Leonardo is a member of the IEEE

society.

 iii

Acknowledgments

I wish to thank my wife Daniela and my parents José Carlos and Theresinha

for their love, long support and patience. Together with my brothers and sisters and

the rest of my family, they are the ones that give me the strength to grow and always

try to do my best.

I also would like to thank my advisor, Dr. Edward Grant, for accepting me

into the Center for Robotics and Intelligent Machines and for his confidence,

enthusiasm and provided assistance. His guidance and friendship are much

appreciated. I am also grateful to Dr. John Muth for his assistance, and to my other

committee members, Dr. Troy Nagle and Dr. Mark White for their support and

patience.

I also wish to express my gratefulness to Andrew Nelson and Greg Barlow for

their help with almost everything related to the EvBots, Kyle Luthy and Chris Braly

for their help with acoustic arrays, and all of the members of the CRIM for their

friendship.

 iv

Table of Contents

List of Figures...vi
List of Tables ..ix
List of Abbreviations...x
Chapter 1 – Introduction ...1

Section 1.1 – Thesis Outline ...3
Section 1.2 – Thesis Goals ...4

Chapter 2 – Literature Review ..5
Chapter 3 – The EvBot II Platform..10

Section 3.1 – The EvBot II Base ...11
Section 3.2 - The Encoder Circuitry ..13
Section 3.3 - The Motor Driver Circuitry ..16
Section 3.4 – Design of the Utility Printed Circuit Board18
Section 3.6 - The PC/104 Stack ..22
Section 3.7 – Calibration of the Motion System ..23

Chapter 4 – Acoustic Array Sensor ...24
Section 4.1 – Quick Background...25

Section 4.1.1 – Background on Sound... 25
Section 4.1.2 – Background on Beamforming.. 27
Section 4.1.3 – Background on Triangulation .. 28

Section 4.1.3.1 – Triangulation by Solving Simultaneous Equations 29
Section 4.1.3.2 – Triangulation by the Voting Method... 31

Section 4.2 – Acoustic Array Software ..33
Section 4.2.1 – Creating a Representation of the Array Geometry................................ 34
Section 4.2.2 – Simulating the Directional Sound Intensity Sensed by an Acoustic Array
.. 36
Section 4.2.3 – Simulating Beamforming ... 38
Section 4.2.4 – Passive Sonar Simulation and Waterfall Plot.. 40
Section 4.2.5 – Simulating Triangulation – Error Plots... 41
Section 4.2.6 – Testing the EvBot’s Tracking Sonar.. 44

Section 4.3 – The EvBot’s Acoustic Array Configuration46
Chapter 5 – The USB-DAQ8 Data Acquisition System48

Section 5.1 – Commercially Available Data Acquisition Systems50
Section 5.2 – USB-DAQ8 Overview ..52
Section 5.3 – USB-DAQ8’s Amplifier Circuit ...54
Section 5.4 – USB-DAQ8’s Low-Pass Filter..56
Section 5.5 – USB-DAQ8’s Analog-to-digital Converter..59
Section 5.6 – USB Interface and Controller ..61
Section 5.7 – The USB-DAQ8’s Timing and Control Circuit..................................62
Section 5.8 – USB-DAQ8’s Circuit Board..66
Section 5.9 – Design Fault and Solution ...68

Chapter 6 – Experimentation and Results...70
Section 6.1 – Experiments with the EvBot II Platform ...70

Section 6.1.1 – Calibration of the Open Loop Speed Control .. 71
Section 6.1.2 – Calibration of the Closed Loop Speed Control...................................... 74
Section 6.1.3 – EvBot II in Action... 76

 v

Section 6.2 – Experiments with the Data Acquisition System80
Section 6.2.1 – Test of the Low Pass Filter Frequency Response 80
Section 6.2.2 – Test of the ADC Linearity and Frequency Distortion............................. 81
Section 6.2.3 – Test of the Data Transfer Speed... 84
Section 6.2.4 – Acquiring Data with the USB-DAQ8.. 88

Section 6.3 – Experiments with the Acoustic Array...92
Section 6.3.1 – Beamforming by Different Array Configurations 92
Section 6.3.2 – Evaluation of the EvBot’s Acoustic Array System................................. 96
Section 6.3.3 –Using the Acoustic Array as a Tracking Sonar 98

Section 6.4 – EvBot’s Navigation by Sound ..101
Chapter 7 – Conclusion and Future Research ..102

Section 7.1 – Concluding Remarks ...102
Section 7.2 – Future Research..104

References ...105
Appendix 1 – Experimental Data ..110

Section A1.1 – Calibration of the Open Loop Control System110
Section A1.2 – EvBot II Speed Control Experiments ..112
Section A1.3 – Low-Pass Filter Characterization ..120
Section A1.4 – ADC Linearity and Frequency Distortion.....................................120
Section A1.5 – USB-DAQ8 Data Transfer Rate Test ..122

Appendix 2 – Commands for the BasicX MCU’s.....................................124
Appendix 3 – Datasheets ..134

A3.1 – MZ104 computer..135
A3.2 – DiskOnChip 2000...136
A3.3 – PCM-3115B PCMCIA Module..138
A3.4 – PCMCIA Wireless Card ...139
A3.5 – BasicX24 Microcontroller ...141
A3.6 – ENS-1J-B28 Rotary Optical Encoder...142
A3.7 – HCTL-2016 Quadrature Decoder...144
A3.8 – HS-300BB Servo Motor ...146
A3.9 – L298 Dual Full-Bridge Driver..148
A3.10 – UC3610 Dual Schottky Diode Bridge...150
A3.11 – 74HC165 Parallel-in / Serial-out Shift Register......................................152
A3.12 – MIC29501 Voltage Regulator...154
A3.13 – USB MOD2 ..156
A3.14 – ADC8161 Analog to Digital Converter ...158
A3.15 – LMX324 Quad Operational Amplifiers ...160
A3.16 – LTC 1563-3 Active Lowpass Filter ...162
A3.17 – WM-52B Omnidirectional Electret Microphone164
A3.18 – 74VHC112 J-K Flip-Flop..165
A3.19 – 74AC74 D-Type Flip-Flop ..167
A3.20 – 74VHC393 Dual 4-Bit Binary Counter..169
A3.21 – 74AC32 Quad 2-Input OR Gate...171
A3.22 – 74AC138 1-of-8 Decoder ...173
A3.23 – 74HC30 8-input NAND Gate..175
A3.24 – 74AC04 Hex Inverter ...177
A3.25 – TU–400E USB HUB ..179

 vi

List of Figures

Figure 3.1: The Bedlam, used as the EvBot II base.. 11
Figure 3.2: Encoders installed on the EvBot II base using a custom designed bracket.

... 12
Figure 3.3: Motor-Encoder Assemblage... 13
Figure 3.4: Encoder circuitry in the utility board. .. 15
Figure 3.5: Motor driver circuit in the utility board.. 17
Figure 3.6: Top layer of the utility board.. 19
Figure 3.7: Bottom layer of the utility board. ... 19
Figure 3.8: The manufactured utility board. ... 20
Figure 3.9: The EvBot II completely assembled, showing the utility board and the

PC/104 stack mounted on the top the threaded base... 22
Figure 4.1: Sound waves in air (reproduced from [38]). .. 26
Figure 4.2: Constructive and destructive interference (reproduced from [38]). 27
Figure 4.3: Setup for formulation of the triangulation problem (reproduced from

[18])... 29
Figure 4.4: Setup for formulation of the triangulation problem. 31
Figure 4.5: (A) MATLAB running the program CreateAcArray.m and (B) created

array. ... 35
Figure 4.6: Example of simulated acoustic signals. (A) Signal at the sound source.

(B) Delayed signals arriving at the microphones. (C) Resulting signal showing
destructive interference cause by linear combination of the sensors’ signals. ... 37

Figure 4.7: Example of directional gain plots generated by the ArrayPolarPlot
program. .. 38

Figure 4.8: Simulated image of a beam that was formed for a look-angle of 45°
azimuth and 0° elevation... 39

Figure 4.9: Graphics generated by the program TrackingSonar................................. 41
Figure 4.10: Simulated Error plots from the use of the EvBot’s acoustic array to

estimate the direction of a sound source. (A) Matrix method. (B) Voting method.
... 43

Figure 4.11: Directional sound magnitude as viewed by the EvBot. The green line
marks the azimuth of maximum magnitude. The plot’s title displays the
generated movement command. ... 45

Figure 4.12: Graphics generated by the program EvBot_TrackingSonar when a
helicopter’s sound was being reproduced near the robot.................................... 45

Figure 4.13: Acoustic array configuration for the EvBot II.. 46
Figure 4.14: Simulation of the directional sound magnitude sensed by the EvBot’s

acoustic array due to a 1 KHz sound source at azimuth 45°............................... 47
Figure 4.15: The EvBot II equipped with its acoustic array and data acquisition board.

... 47
Figure 5.1: The USB-DAQ8 block diagram. .. 53
Figure 5.2: Amplifier circuits on the USB-DAQ8’s printed circuit board 55

 vii

Figure 5.3: Waveforms at the input (Ch 1) and output (Ch 2) of the amplifier circuit.
... 56

Figure 5.4: Gain and phase frequency response of the USB-DAQ8’s active filter. ... 58
Figure 5.5: A single low-pass filter seen on a section of the USB-DAQ8 printed

circuit board. ... 58
Figure 5.6: Analog-to-digital converter on a section of the USB-DAQ8 board......... 60
Figure 5.7: The USBMOD2.. 61
Figure 5.8: USB-DAQ8’s functional block diagram .. 64
Figure 5.9: Timing diagram for the USB-DAQ8 data acquisition system. 65
Figure 5.10: Logic circuit for timing and control on the USB-DAQ8 board. 66
Figure 5.11: CirCAD drawing of the USB-DAQ8’s top layer. 67
Figure 5.12: CirCAD drawing of the USB-DAQ8’s bottom layer. 67
Figure 5.13: The USB-DAQ8’s printed circuit board. ... 68
Figure 6.1: Open loop calibration points for linear motion. Error bars show ±5% error

at each calibrated speed. ... 72
Figure 6.2: Open loop calibration points for clockwise rotations. The y axis represents

the product of PMW values and active time of the rotation commands. The error
bars show ±5% error at each calibrated point. .. 73

Figure 6.3: Open loop calibration points for counter clockwise rotations. The y axis
represents the product of PMW values and active time of the rotation commands.
The error bars show ±5% error at each calibrated point. 73

Figure 6.4: Distance traveled by the EvBot II for different speed commands when
using closed-loop speed control.. 75

Figure 6.5: Response of the speed control system to different commanded speeds
obtained from experimental data. ... 76

Figure 6.6: EvBot II traveling through the maze in search of the red goal (two trials).
... 78

Figure 6.7: Two generations of EvBots playing together. .. 79
Figure 6.8: Simulated world with simulated EvBots running the same neural network

controllers as the one used by the real robots (courtesy of Andrew Nelson,
CRIM). .. 79

Figure 6.9: Frequency response USB-DAQ8’s low-pass filter. 81
Figure 6.10: Results from the linearity test performed on the IC ADC08161C. 82
Figure 6.11: Results from the linearity test performed on the IC ADC08161C. The

expected error reflects the ±0.02V resolution (5V / 256 levels)......................... 82
Figure 6.12: Results from the frequency distortion test performed on the IC

ADC08161C and data acquisition system. ... 83
Figure 6.13: Errors measured during the frequency distortion test performed on the IC

ADC08161C and data acquisition system. ... 84
Figure 6.14: Total number of bytes transferred as a function of sampling time......... 86
Figure 6.15: Transfer rate in bytes per second as a function of the sampling time. ... 86
Figure 6.16: Total number of bytes transferred as a function of sampling time......... 87
Figure 6.17: Transfer rate in bytes per second as a function of the sampling time. ... 87
Figure 6.18: USB-DAQ8 acquiring a 202 Hz signal. ... 89

 viii

Figure 6.19: USB-DAQ8 acquiring a 4.53 KHz signal. ... 90
Figure 6.20: The program USBscope displaying data simultaneously sampled from all

eight input channels of the USB-DAQ8. .. 91
Figure 6.21: Beamforming simulation for a frequency of 1 KHz using a planar array

that would fit on the top of the PC/104 stack.. 93
Figure 6.22: Beamforming simulation for a frequency of 1 KHz using a 3-D array

configuration that could fit on the EvBot II body... 94
Figure 6.23: Beamforming simulation for a frequency of 1 KHz using the final array

configuration selected for the EvBot II... 95
Figure 6.24: Comparisons between beam patterns obtained from real data (right) and

simulated data (left) for the following sound frequencies: (A) 200 Hz. (B) 500
Hz. (C) 1000 Hz.. 97

Figure 6.25: Comparisons between beam patterns obtained from real data (right) and
simulated data (left) for the following sound frequencies: (A) 1200 Hz. (B) 1500
Hz.. 98

Figure 6.26: Acoustic array system being used to track the sound of truck reproduced
by a nearby moving speaker. .. 99

Figure 6.27: Acoustic array system being used to track a single-tone sound source.100
Figure 6.28: Path taken by the EvBot II to find the sound source. 101
Figure A1.1: Measured distance traveled versus time for a commanded speed of one

inch/second. .. 114
Figure A1.2: Plot of velocity versus time for a commanded speed of one inch/second.

... 114
Figure A1.3: Measured distance traveled versus time for a commanded speed of two

inches/second. ... 115
Figure A1.4: Plot of velocity versus time for a commanded speed of two

inches/second. ... 115
Figure A1.5: Measured distance traveled versus time for a commanded speed of three

inches/second. ... 116
Figure A1.6: Plot of velocity versus time for a commanded speed of three

inches/second. ... 116
Figure A1.7: Measured distance traveled versus time for a commanded speed of four

inches/second. ... 117
Figure A1.8: Plot of velocity versus time for a commanded speed of four

inches/second. ... 117
Figure A1.9: Measured distance traveled versus time for a commanded speed of five

inches/second. ... 118
Figure A1.10: Plot of velocity versus time for a commanded speed of five

inches/second. ... 118
Figure A1.11: Measured distance traveled versus time for a commanded speed of six

inches/second. ... 119
Figure A1.12: Plot of velocity versus time for a commanded speed of six

inches/second. ... 119

 ix

List of Tables

Table 3.1: Control signals for the motor driver L298. .. 17
Table A1.1: Calibration values obtained for linear motion. 110
Table A1.2: Calibration values obtained for rotations.. 111
Table A1.3: Measured speed versus time for different commanded speeds............. 112
Table A1.4: Measured distance traveled versus time for different commanded speeds

... 113
Table A1.5: Measured values for gain and phase as a function of frequency. 120
Table A1.6: Values obtained during the linearity test performed on the IC

ADC08161C. .. 121
Table A1.7: Values obtained during the frequency distortion test performed on the IC

ADC08161C. .. 122
Table A1.8: Results from data transfer tests performed while using a sampling

frequency of 78.125 KHz. The values in the table represent and average of 100
trials performed for each acquisition time. ... 123

Table A1.9: Results from data transfer tests performed while using a sampling
frequency of 9600 Hz. The values in the table represent and average of 100 trials
performed for each acquisition time. .. 123

 x

List of Abbreviations

ADC = Analog to Digital Converter

AI = Artificial Intelligence

ATA = Advanced Technology bus Attachment

CRIM = Center for Robotics and Intelligent Machines

DIP = Dual Inline Package

DOC = DiskOnChip

GPS = Global Positioning System

GUI = Graphical User Interface

I/O = Input/Output

IEEE = Institute of Electrical and Electronics Engineers

MCU = Microprocessor Control Unit / microcontroller

NCSU = North Carolina State University / NC State

PCB = Printed Circuit Board

PCMCIA = Personal Computer Memory Card International Association

PnP = Plug-and-Play

PWM = Pulse Width Modulation

RF = Radio Frequency

RSTA = Reconnaissance, Surveillance and Target Acquisition

SAR = Search and Rescue

SDRAM = Synchronous Dynamic Random Access Memory

SONAR = Sound Navigation and Ranging

UGS = Unattended Ground Sensors

USB = Universal Serial Bus

 1

Chapter 1 – Introduction

Researchers in the areas of distributed and evolvable robotics have recently

started to use physical platforms to validate concepts developed in simulation, but one

of the problems that they have been facing is to overcome limitations imposed by

unsuited robotic systems. We believe that the current need in this area is for robot

platforms that are small enough to be used within research laboratories, yet robust and

computationally power enough to implement complex machine-learned controllers in

the real world. The EvBot robots were developed to bridge the gap that exists

between cumbersome commercial platforms featuring powerful central processing

units (CPUs) and extensive sensing capabilities, and small inexpensive robots with

limited capabilities. The original EvBot measures only eight inches in diameter and

is an autonomous system equipped with a Pentium class microcomputer system. This

robot has proven to be an extremely useful platform for advanced experimentation in

robot colony behaviors and evolutionary robotics, but experimentation also indicated

that the original EvBot platform still needed additional sensor capabilities to improve

position and velocity control. The research reported upon in this thesis concentrates

on specifying the design of, and the implementation of, an improved and flexible

hardware architecture for hosting and integrating data from a variety of sensor types,

such as vision, sound and position. The end result is the EvBot II robot, a platform

with the improved position and velocity accuracy that is required for interacting

 2

robots acting as part of a colony. To support this effort, circuitry was designed to

enable the incorporation of shaft encoders and the closed loop control of up to three

motors. A USB hub was also introduced to allow uncomplicated incorporation of

extra sensors if and when such sensors are required. The USB hub allows “plug and

play” sensor addition, and was used for the integration of an acoustic array system

specially developed for this robot. The development of the mentioned acoustic array

system was the second major focus of the research described in this thesis, and it

involved the design of a custom data acquisition system (the USB-DAQ8) and several

associated software programs. The EvBot II autonomous robot that emerged from this

research work extends the possible application areas of EvBots, e.g., evolutionary and

distributed robotics to undertake surveillance, reconnaissance and security

applications. Experimentation with the EvBot II robotic platform demonstrated that,

in addition to be completely compatible with the original EvBot, it is able to make

successful use of the shaft encoders to control its traveling speed. Experiments also

confirmed that the developed data acquisition system can effectively perform the

simultaneous sampling of eight audio channels at a rate of 9600 samples per second

per channel, thus successfully enabling the use of the acoustic array system for

tracking and navigation purposes.

 3

Section 1.1 – Thesis Outline

The design and development of the EvBot II platform and its custom acoustic

array system are described in this thesis. Chapter 2 presents a review of the literature,

including a summary of autonomous robots currently in use in the areas of distributed

and evolutionary robotics, and an overview of past and current research focused on

the use of acoustics by mobile robots. The development of the new hardware and

software for the EvBot II, including the design of the encoder systems and the new

circuitry to drive the motor, is presented in Chapter 3. The following chapter presents

an introduction to acoustic arrays and describes software developed for simulation

and use on such systems. Chapter 5 provides an in depth description of the data

acquisition system USB-DAQ8, which was developed to realize the acoustic array.

The experimental results from tests of the robot platform and acoustic array system

are presented in Chapter 6. Lastly, Chapter 7 presents some ideas for further

improvements of the EvBot platform, as well as ideas for future experiments with the

robot.

 4

Section 1.2 – Thesis Goals

The objectives of this thesis are to describe the:

• Design and construction of the EvBot II, a small but computationally

powerful autonomous robot created as an enhanced version of the original

EvBot.

• Development of the software used to design and make use of the

acoustic array system implemented on the EvBot II.

• Design of the USB-DAQ8, a data acquisition system custom

developed to realize the EvBot’s acoustic array system.

• Demonstration of the robot’s enhanced performance and use of the

acoustic array system for tracking and navigation.

 5

Chapter 2 – Literature Review

The concept of robots is a very old one in our society and has always been

related to automatic machines that can perform tasks in the manner of a human.

Although their history is frequently said to have started around 270 BC with the water

clocks and organs made by the Greek engineer Ctesibus, it was only in the early

1920’s that term “robot” appeared. It was introduced by the Czech writer Karel

Capek, who derived the term from the Czechoslovakian word for slave (robotnik) and

used it in the play “Rossum’s Universal Robots”.

From the beginnings, one of the main functions of robots in our society has

been to free humans from repetitive, difficult or harmful tasks. Industrial robots were

the first ones to appear in large scale and, since their first demonstration in 1959 by

the M.I.T. Servomechanisms Lab, they have been improving the quality of life of

humans across the globe. In recent times mobile robots have also started to be

designed to help humans in a diverse quantity of tasks, from household work to

exploration of hazardous environments. However, unlike industrial robots, mobile

robots are required to have intelligence, the capability to adapt to different

environments or tasks, and are also often required to be autonomous. Several

examples of such robots can be found in the recent literature and the main uses

include reconnaissance, surveillance and target acquisition (RSTA) for military forces

 6

[4] [8], security monitoring [24] [27] [32] and search and rescue (SAR) in disaster

areas [6] [23].

The first autonomous robots appeared in the research community in the early

1950’s when the neurophysiologist W. Grey Walter [29] introduced his “Machina

Speculatrix”, which was a three wheeled vehicle equipped with a two vacuum tube

analog computer. This robot had the tendency to wonder around exploring the

environment and this was the first proof that intelligent and autonomous robots can

evolve and develop practical functions. Though it was only it the late 1980s that

researchers would expand that idea to groups of robots that evolve together,

originating in what is now known as distributed robotics [10] [2] [1] [30]. About that

same time the artificial intelligence (A.I.) research community was introduced to the

subsumption architecture proposed by Rodney Brooks [3] and started using its

essence to build physical platforms to realize and test intelligent systems that

previously had only existed in simulations.

From the early work up to recent days, many of the physical autonomous

robots developed to test evolvable and distributed systems were unsophisticated and

carried little onboard processing, such as the common Kephera robot [35], which has

been used by innumerous research groups as mentioned in [21]. Even though these

robots proved to be very useful for research, their lack of processing power imposes

limitations, so they often rely on an external computer for high-level processing when

the implementation of complex controllers are desired [9] [15].

 7

Recently autonomous robots with large processing capabilities have appeared

in the distributed robotics literature, such as the Urban II and the ATRV-2 developed

by iRobot Corporation and used by Hogg et al. [12] and Budulas et al. [4]. These

robots use powerful hand-held computers for processing of sensor data and control,

but are relatively large, heavy and expensive. Another example of a powerful robot is

the RATLER, which is a medium-sized all-electric vehicle containing a PC104 stack

for computation, control and sensing. The RATLER was originally developed at the

Sandia National Laboratories as a prototype vehicle for lunar missions, and some of

these robots are currently in distributed robotics research [8] [16].

Other research groups are experimenting with evolvable and distributed

systems using small and inexpensive robots, like the GROWBOT from Parallax [39],

which was used in the Idaho National Engineering and Environmental Laboratory

(INEEL) by a research group working on large-scale micro-robotic forces [7]. Even

with the limited processing power and limited sensorial capabilities provided by

GROWBOT’s Basic Stamp 2 microcontroller, the researchers were able to

demonstrate evolution and interaction between robots.

The robot EvBot developed in the Center for Robotics and Intelligent

Machines (CRIM) at the NC State University [11] fits well into the mid-range of

autonomous robots being used for the study of evolvable systems. Although it has

compatible processing power as most of the newest robots found in the literature, the

CRIM’s EvBot has the advantage of reduced size (twelve by ten inches) and low

price (about $1400.00 for parts per unit). Similar to the RATLER and to the Koala

 8

robots [35], the EvBot uses a PC104 stack equipped with a Pentium class processor,

and it also features low power consumption, being able to continuously operate for

more than two hours on a single 7.2V/3000mAh Ni-MH battery.

In general, it is seen that the research community in the area of distributed and

evolvable robotics requires robotic platforms that allow the implementation of

computationally complex controllers from a wealth of data. This is especially true

when the robots are designed to leave the research laboratories and undertake “real-

world” tasks. In the “real-world” the usefulness of such robots is usually directly

proportional to the diversity of their onboard sensors, i.e. the larger the variety of

sensors one robot has, the higher is the number of possible tasks it can perform, or the

higher is the precision of the tasks it can perform. For that reason, this research area

needs robot platforms whose architecture is open and expandable, thus providing a

capability for the addition of new sensors as needed. Robots being developed for

military applications, such as urban warfare, are very good examples of systems with

these needs [16] [19]. They are usually required to have video camera, radar, GPS,

RF transceivers and other specialized sensors, like chemical detectors or acoustic

sensors.

Recently the researchers in the area of robotic RSTA started to revisit the

acoustic field and the use of sound as tactical information has been regaining

importance. This field started to become very popular by the end of the World War I,

when the first sonar devices were developed to detect submarines. Since them the

sonar technology has been greatly developed and along came the development of

 9

acoustic arrays and related technologies, such as systems that perform spatial filtering

by beamforming [28], target localization and classification [13] and estimation of

sound source location [5] [18]. Acoustic array research is still active and producing

knowledge, especially in the area of sensor array data processing [14] [25].

Recent trends in security and in RSTA are also bringing the attention back to

passive acoustic array systems due to the fact that such systems can provide important

strategic information without being easily detected. For that reason, acoustic array

systems are being studied as part of RSTA robots [31] and as unattended ground

sensors (UGS) [17].

In conclusion, it is seen that the research in the area of autonomous mobile

robotics is growing substantially and strengthening in the area of distributed robotics.

This is particularly the case where a team of robots may contribute cooperatively and

overperform an individual robot. As a result, small and sophisticated robot platforms

capable of carrying multiple sensors, implement complex controllers, and provide a

wealth of data are being needed to support experimental tests.

 10

Chapter 3 – The EvBot II Platform

 The original Evolutionary Robots (EvBots) [11] have always performed well,

but they needed more on-board sensors to increase their perception and control. For

example, they needed the addition of shaft encoders to ensure closed-loop speed

control. Without encoders it is not possible for the robot to perform precise

movements, or move at a constant speed, or realize that it is not moving at all.

Without shaft encoders each EvBot has to go through a difficult and time-consuming

calibration process to ensure the robot controller makes precise decisions related to

desired actions, e.g., turning a desired amount or moving at a desired speed.

 So, the addition of shaft encoders became the first priority in the design of the

new EvBot robot platform, the EvBot II. The encoders along with their associated

circuitry were the first major design change initiated for expanding the robot colony.

Because the EvBot II colony was to be based on the Radio Shack Bedlam product

(see Figure 3.1), a certain amount of redesign was needed to its hardware, e.g.,

replacement of the driving motors and the removal of the extra gears. Only then

could the new circuit design required for motor control and enhanced sensing be

specified. To expand the connectivity of the original EvBot systems, a USB hub was

also included on the EvBot II robot platform. Doing this ensured that the new system

could implement a diverse number of commercially available or custom designed

sensor systems, e.g., an acoustic array system that will be discussed later.

 11

 The specification and the design of all hardware and software for the new

generation of EvBots will be fully described in the remaining sections of this chapter.

Section 3.1 – The EvBot II Base

 The base used for the EvBot II came from the radio-controlled car Bedlam,

from Radio Shack. Driving the car showed that it operated at high speeds, using its

tank-like traction system for forward and backward motion, and spins. However, this

vehicle also includes a third axis that can provide transverse motion, which makes an

interesting platform for studying the use of biologically inspired actions, subsumption

architectures, and evolutionary robotics.

Figure 3.1: The Bedlam, used as the EvBot II base.

To create the new robot, the Bedlam platform was first striped of all

unnecessary parts. It was reduced to its drive system, the motors and gear systems,

 12

which were kept as the basis of the EvBot II platform. The shaft encoders were then

installed in the base using a custom designed support (Figure 3.2) and the motor wire

loom were extended to ensure that they would be able to connect to the newly

designed driver board.

Figure 3.2: Encoders installed on the EvBot II base using a custom designed bracket.

 After the changes to the mechanical drive system were made to the Bedlam

vehicle, it now became the basis of the EvBot II robot platform. Speed control tests

carried out with the Bedlam drive system showed that the original motors operated

too fast for all practical purposes. It therefore became necessary to reduce the speed

of the drive system, which the tests showed could not be solely achieved by simply

reducing the motor’s voltage. Because the radio-controlled car was design to move at

high speed, the gearing does not provide a sufficient enough reduction to keep the

motor in its operating range, particularly when the robot is required to move slowly.

New motors having built-in reduction gears were specified to overcome this problem.

The selected motor was the HS-300BB made by Hitec (Appendix A3.8). Once these

were sourced and delivered, they were installed in the EvBot II platform. However,

 13

they could not be installed without another design alteration being made to the

Bedlam body. The final design of the bracket supported the drive motors and the

encoders, and is shown in Figure 3.3.

Figure 3.3: Motor-Encoder Assemblage.

Section 3.2 - The Encoder Circuitry

 The addition of shaft encoders to each of the robot’s motors required the

development of dedicated hardware and software capable of handling the data from

these two sensors. To achieve this, encoder circuitry was specially designed, tested

and implemented on the new generation of EvBots. The design specification of the

encoder circuitry is descried in this section.

 14

The encoder circuit is based on the integrated circuit HCTL-2016 from

Agilent, see the data sheet in Appendix A3.7. This integrated circuit (IC) is a

quadrature decoder/counter set up to be directly controlled by a microcontroller chip,

which in this case is the BasicX24. The data sheet of the HCTL-2016 shows that the

chip outputs a 16-bit word to an 8-bit parallel bus. This is achieved by breaking the

16-bit word into two 8-bit bytes, i.e., a high byte and a low byte. The output byte is

selected by control lines of the microcontroller, but due to the limited number of I/O

pins on the BasicX a parallel to serial converter had to be employed to get the

appropriate data control action. A shift register, IC MM74HC165, was selected for

this task. Adopting this design means that only one control line is now required from

the BasicX microcontroller.

 The encoders selected for this application are the optical encoder ENS-1J-B28

from Bourn, see Appendix A3.6. This encoder provides a 2-bit gray code as output

and its the maximum shaft speed is 3000 RPM. After the encoders, the only other

required component for the new circuitry is a clock oscillator. This needs to be

connected to the decoder and it should be fast enough to allow proper functioning of

the system at the maximum desired speed. Given the maximum operating speed of

the encoder, the selected clock oscillator was an ECS100AC, which is a 1.22MHz

oscillator from ECS International Inc.

The BasicX microcontroller is equipped with internal timers and circuitry that

is capable of driving two simultaneous pulse width modulation (PWM) outputs.

However, two quadrature decoders are also needed to get feedback data from the two

 15

shaft encoders on the EvBot platform. The final circuit design for the shaft encoders,

see Figure 3.4, has the two shaft encoder systems working in parallel to ensure

maximum operating efficiency.

Figure 3.4: Encoder circuitry in the utility board.

Clock
Oscillator

Decoders

Shift
Registers

Microcontrollers

 16

Section 3.3 - The Motor Driver Circuitry

 This part of the EvBot II system design deals with the speed control of a DC

motor using pulse width modulation (PWM). The PWM signals, which are a train of

square waves where the aspect ratio can be altered, are generated in the EvBot II by

the BasicX microcontroller and are used to control the speed of the DC motors. By

introducing an H-Bridge driver into the circuit for power amplification, power can be

supplied to drive the DC motors and the control of forward/reverse direction of

rotation of the motor is easily implemented.

To make use of the BasicX microcomputer’s capability of producing two

simultaneous PWM outputs, the Dual Full Bridge Driver L298 was selected. This is a

compact but powerful IC capable of driving two DC motors with current up to 4A,

see Appendix A3.9. Each of the two halves of the L298 driver has an enable pin and

two input pins that can accept the TTL level signals produced by the BasicX. The

input pins are used to select the direction of rotation and the enable pin receives the

PWM pulses to determine the speed of rotation. The control sequence is shown in

Table 3.1.

 17

Table 3.1: Control signals for the motor driver L298.

Input 1 Input 2 Enable A Motor

X X Low Free running
High Low High Turn clockwise
Low High High Turn counter-clockwise
Low Low
High High

Illegal / Not Possible

To ensure that the signal on the Input 2 pin is always the inverted signal of the

Input 1 pin, the inverter IC 7404 was used. DC motor back-EMF protection was also

included in the circuit through the addition of the small signal Schottky diodes

encapsulated on the IC UC3610 chip from Texas Instruments, see Appendix A3.10.

Figure 3.5: Motor driver circuit in the utility board.

Microcontrollers

Motor Drivers
(L298)

Schottky
diodes

 18

Section 3.4 – Design of the Utility Printed Circuit Board

The utility board in the EvBot II integrates several functions. First, it is

responsible for powering the PC/104 stack, which contains the central processing unit

(CPU). Second, it is responsible for all interface connections, such as the mouse,

keyboard, speaker, reset button and a USB port access to the CPU. Other than these

utility functions, the board design also incorporates two BasicX microcontrollers and

all the necessary circuitry for driving the DC motors and interfacing to the shaft

encoders.

The utility board was designed to conform to the geometry of the Bedlam

vehicle’s base, to the extent that it uses the pre-existing holes in the vehicle for

attachment. The board has two wiring layers and was drawn using the software

CirCAD. Images of the CAD design of top and bottom layers of the utility board are

shown in Figure 3.6 and Figure 3.7 respectively. Images of the top and bottom of the

manufactured utility board are shown in Figure 3.8.

 19

Figure 3.6: Top layer of the utility board.

Figure 3.7: Bottom layer of the utility board.

 20

Figure 3.8: The manufactured utility board.

Section 3.5 –CPU to Microcontroller Communication System

As in the original EvBot design, all communications between the CPU

(PC/104-based) and the microcontrollers (BasicX-based) in the EvBot II design are

made using the RS232 communications standard. The main difference between the

communications system design between the original and the new systems is that there

are now two microcontrollers on-board instead of one. However, to ensure economy

 21

of design it was decided to use only one of the serial ports in the CPU for data

transfers. To solve this problem a communications chain was developed.

The communications system starts on the serial port 1 of the PC/104 stack.

That port is directly connected to the first BasicX microprocessor, which is called the

Master BasicX. The second link is made using the BasicX chip to support and handle

extra serial ports. A second RS232 port is thus defined in the Master BasicX and I/O

pins are allocated to communicate serially to the second microcontroller, called the

Slave BasicX.

All the commands in this communication system originate in the CPU and are

sent to the Master BasicX. This microcontroller is responsible for determining if

received commands should be executed locally or if they should be forwarded to the

Slave BasicX for execution. All system commands are one-byte in length, which can

be extended to include arguments if necessary (see Appendix 2). All system

commands produce a return value, which is a command byte followed by the return

argument, again if necessary. Exceptions are error bytes, which are returned to the

CPU when the last command has not been successfully executed.

 22

Section 3.6 - The PC/104 Stack

The PC/104 stack contains the MZ104, the central processing unity (CPU) of

all EvBot’s. It is based on the integrated circuit ZFx86, a Pentium-class processors

whose main features include: 32 bit CPU core with 100 MHz operation; Full desktop

AT compatibility; 64 MB of SDRAM; Fail-safe boot ROM; Dual watchdog timer;

Two serial ports; One parallel port; One USB port; Drive interfaces and support for a

solid state flash memory device (DiskOnChip).

The second component in the PC/104 stack is a PC/104 interface module with

two built-in PCMCIA card slots. It is used to hold additional memory (128 MB in a

flash card) and a wireless network card.

Figure 3.9: The EvBot II completely assembled, showing the utility board and the

PC/104 stack mounted on the top the threaded base.

 23

A detailed description of the hardware and custom software developed for the

PC/104 system for the EvBots’s can be found in [11]. That work also presents the

configuration of the network environment were the EvBot’s operate and the Infinity

Atom Linux, the custom operational system developed for the EvBot platform.

 The only improvements on the PC/104 system implemented in the EvBot II

were the expansion of memory size. The flash memory card was upgraded from

96MB to 128MB and the DiskOnChip size was increased from 8MB to 32MB. The

remainder of the PC/104 system was kept as specified for the original EvBot’s

platform.

Section 3.7 – Calibration of the Motion System

Although the EvBot II incorporates shaft encoders, calibrations of the motion

system were necessary to guarantee a reliable performance of the robot. The

calibrations were performed for the open-loop and closed-loop control modes and

will be detailed in Chapter 6 along with other experimentations involving the EvBot

II platform.

 24

Chapter 4 – Acoustic Array Sensor

Acoustic arrays are passive sensor systems that can have several uses with a

robot platform [4] [13]. They are composed by a group of acoustic sensors placed in

known geometrical locations that can, in connection with a processing unit, perform a

number of audio related functions. Just like our ears, acoustic arrays can be used for

communications, for navigation purposes, or as passive sonar for monitoring,

tracking, object identification and triangulation.

One of the advantages of acoustic arrays is that they offer increased acoustical

sensitivity when compared to single sensor systems, but the main reason to use such

an array of sensors is the possibility to perform beamforming and triangulation with

the acquired audio data. Both of these functions are based on phase differences

between the multiple audio signals. Beamforming provides a way to implement

spatial filtering and directional listening, while triangulation can be used to pinpoint

the coordinates of a sound source with respect to the sensors array. Both functions

will be detailed later in this chapter.

Acoustic arrays started to gain importance when the first sonar devices were

developed by the end of the World War I. Since then they have been widely used in

the field of surveillance and target acquisition. Recently the use of acoustic arrays

started to be extended to autonomous mobile robots being designed for applications in

urban warfare and other complex battlefields, and researchers are trying to show their

 25

usefulness for target detection and situation awareness, such as location of snipers or

detection of door slam [31].

The goal of the development of an acoustic array for the EvBot II is to expand

its sensorial capabilities and to enable the investigation of the uses of sound as

another source of information about the robot’s surrounding world. With this

objective, a small area acoustic array with eight microphones was designed in

simulation and later implemented as a shield that can be attached to the robot body.

This chapter briefly presents the background theory involved in acoustic array

systems, and presents simulation programs developed to help the understanding and

design of such arrays. The programs include software to analyze acoustic array

configurations for beamforming and triangulation purposes, and programs developed

to use and analyze real acoustic arrays. As a group the developed programs provide

the means to validate simulation data and to demonstrate the usefulness of an acoustic

array system to the EvBot II.

Section 4.1 – Quick Background

Section 4.1.1 – Background on Sound

The word “sound” usually means sound which can be perceived by the human

ear, i.e., it is used as a synonym for pressure waves with frequency between 20 Hz

and 20,000 Hz.

 26

Sound propagates through air as a longitudinal wave, which is characterized

by the medium being displaced in parallel to the propagation of the wave. As an

example, “a single-frequency sound wave traveling through air will cause a sinusoidal

pressure variation in the air. The air motion which accompanies the passage of the

sound wave will be back and forth in the direction of the propagation of the sound”

[38].

Figure 4.1: Sound waves in air (reproduced from [38]).

The propagation speed of sound is determined by the properties of the

medium and, as most other types of waves, follows the relationship v = f λ, where v is

the propagation velocity, f is the wave frequency and λ is the wavelength. In the case

of dry air, the speed of sound can be approximated by T0.6331.4+≈soundv m/s,

where T is the Celsius temperature. As an example, for dry air at 21°C the sound

speed is 344 m/s and the audible sound waves have wavelengths from 0.0172 meters

to 17.2 meters.

 27

Section 4.1.2 – Background on Beamforming

Beamforming is a method used to implement spatial filtering of signals in an

array of sensors. It is realized by beamformer systems that collect spatially

propagating waves and exploit the principle of interference in order to receive a

signal radiating from a specific location and attenuate signals from other locations.

Interference is a phenomenon that can occur between waves propagating in

the same medium, and may be constructive or destructive. Constructive interference

occurs when the interfering waves are “in phase” and their amplitudes add. If the

waves are “out of phase” and the amplitudes subtract the interference is called

destructive.

Figure 4.2: Constructive and destructive interference (reproduced from [38]).

Beamformers make use of interference by adding delays and linearly

combining the signals collected from the sensors in the array. Such delays cause the

signals coming from the listening direction to interfere constructively, and cause the

 28

signals coming from other directions to interference destructively. This effectively

amplifies the signals coming from the listening direction and attenuates signals from

other directions.

Typically a beamformer is a digital processing system that contains a data

acquisition system to translate the analog input data into digital information by means

of a sampling process. In such a beamformer the sampled time series obtained from

each sensor is shifted and linearly combined to generate a single output time series,

which is taken as the signal coming from the specific listening direction.

Section 4.1.3 – Background on Triangulation

Triangulation is a term used to indicate the calculation of the coordinates of a

signal source based on multiple sensors’ data (or the coordinates of the receiver based

on multiple sources’ signals). In the case of acoustic arrays, the coordinates of the

sound source can be calculated based on the coordinates of each sensor in the array

and on the time delays between the signals received by each sensor. Different

algorithms can be used to perform such calculation, and they usually provide different

precisions and number of singular points. Two triangulation methods will be

presented in the following subsections.

 29

Section 4.1.3.1 – Triangulation by Solving Simultaneous Equations

 The triangulation method described in this section was called “Matrix

Method” and its formulation is relatively simple. As described in [18], the solution

can be developed from the case where there is one signal transmitter and four

receivers (sensors):

Figure 4.3: Setup for formulation of the triangulation problem (reproduced from [18]).

To start the formulation, consider that the position of the sound source (u,v) is

unknown, but the coordinates of the sensors are known and have the values R1 (x1,y1),

R2 (x2,y2), R3 (x3,y3) and R4 (x4,y4). Also consider that we can measure time delays

between the received signals and assume sensor number 1 as the reference. So the

time delays are given by ∆T12, ∆T13 and ∆T14. Now, considering that the sound

travels in circular waves from the transmitter, four concentric circles can be draw as

in Figure 4.3: one with radius d through R1 and the others with radius (d + c∆T12), (d

 30

+ c∆T13) and (d + c∆T14), where c is the speed of the sound. At this point we already

have a set of equation, which is:

(x1 – u)2 + (y1 – v)2 = d2

(x2 – u)2 + (y2 – v)2 = (d + c∆T12)2

(x3 – u)2 + (y3 – v)2 = (d + c∆T13)2

(x4 – u)2 + (y4 – v)2 = (d + c∆T14)2

Now, by solving the first equation for d2 and performing some substitutions,

the final set of equations can be written:

















−−++∆
−−++∆
−−++∆

=















∗
















∆−−−
∆−−−
∆−−−

2
4

2
4

2
1

2
1

2
12

2

2
3

2
3

2
1

2
1

2
13

2

2
2

2
2

2
1

2
1

2
12

2

144141

133131

122121

22222
22222
22222

yxyxTc
yxyxTc
yxyxTc

d
v
u

Tcyyxx
Tcyyxx
Tcyyxx

These simultaneous equations can be solved for the sound source coordinates

(u,v) and for the distance d between the transmitter and the sensor number 1 provided

that we know the velocity of the sound. If that velocity also needs to be calculated,

the addition of a fifth sensor can provide an extra equation and a new set of equations

can be found and solved. This formulation can also be extended to three-dimensional

arrangements (see [18] for details).

This algorithm was tested in simulation and it was found that it is sensitive to

errors in the sensors coordinates and in the time delays measurements. It also presents

many singular points for planar arrays, so a new algorithm was developed to try to

solve these problems by using a voting scheme.

 31

Section 4.1.3.2 – Triangulation by the Voting Method

This algorithm was developed to approximately determine the azimuth angle

of an emitting sound source and can be applied to arrays of arbitrary number of

sensors and arbitrary configurations. The formulation of the triangulation problem for

this method can be better understood by analyzing an acoustic array composed of 3

microphones positioned on the same plane:

Figure 4.4: Setup for formulation of the triangulation problem.

For the development of the equations, consider the reference microphone to be

the mic 1, the microphone with the smallest measured time delay. Now, remembering

that we know the distances between the reference and the other microphones (d2,1 and

d3,1m

d3m

d2,1

d2,m

θss,3

θ3,1

mic 1
(x1,y1)

t1

α

β

mic 3
(x3,y3)

t3

mic 2
(x2,y2)

t2

Y

X

d3,1 = distance between mic 3 and
 reference mic

θ3,1 = azimuth of the vector from mic 3 to
 reference mic

d3,m = calculated distance based on time
 delay between mic 3 and reference
 mic.

θss,3 = bearing of the sound source from
 mic 3

 32

d3,1), as well as the azimuth of the vectors from each microphone to the reference (θ3,1

and θ2,1), relative time delay measurements can be used to calculate the distances d2,m

and d3,m. The formula for these calculations are based on the speed of the sound and

given by:

)(12,2 ttVd soundm −∗=

)(13,3 ttVd soundm −∗=

If we consider that the acoustic array is in the far field of the sound source, square

angles can be assumed as shown in Figure 4.4, and using geometrical relations we can

get to the following equations:

2

13
2

131,3)()(yyxxd −+−= 2
12

2
121,2)()(yyxxd −+−=











= −

1,3

,31cos
d
d mα 










= −

1,2

,21cos
d
d mβ









−
−

= −

31

311
1,3 tan

xx
yyθ 








−
−

= −

21

211
1,2 tan

xx
yyθ

αθθ ±= 1,33,ss βθθ ±= 1,22,ss

The above equations can be used to solve for the azimuth of the sound source

as viewed from each microphone, but ambiguities arise. The approach taken by this

algorithm to solve this problem is to implement a voting scheme where each

microphone “votes” for two possible sound source azimuths. This means that, if the

 33

array has n microphones, the total number of votes will be 2*(n-1), from which (n-1)

votes will go to angles that are close to the correct bearing of the sound source. At he

end of the voting process, the algorithm selects the angle with more votes as the most

probable azimuth of the sound source.

This algorithm was tested in simulation and proved to work well, see Section

4.2.5. Although it does not provide the precise resolution obtained by the solution of

simultaneous equations, it does not generate singularities and provide a reliable

estimate of the sound source bearing by using data from all sensors available.

Section 4.2 – Acoustic Array Software

The beamforming processing in acoustic arrays is realized in the digital world,

using digital signal processing techniques. Therefore one of the main parts of acoustic

array systems is the processing computer and the code running on it.

The use of software code for simulation is also very important for acoustic

arrays analysis. Simulations can help in the design of array geometry by providing an

easy way to change parameters and test new configurations. It also provides graphical

representations that can help us understand better the intricate characteristic of such

systems.

 34

During the research performed in this area simulation and application

programs were developed. The main characteristic of these programs is that they are

general in respect to the acoustic array geometry, enabling any two-dimensional or

three-dimensional array configurations to be analyzed. Each of the developed

software is a MATLAB program and will be presented in the following sections.

Section 4.2.1 – Creating a Representation of the Array Geometry

The program CreateAcArray.m was developed to gather geometrical

information about a new acoustic array configuration and create a file containing the

configuration data of that array. The main objective is the generation of a

computational representation of the desired acoustic array to be used for simulation

and data analysis.

CreateAcArray.m was developed to accommodate for 2-D and 3-D array

configurations and accepts parameters in inches, feet or meters. The program gathers

the necessary information by questioning the user, starting with the number of sensors

in the array. From there, the geometrical coordinates of each microphone relative to a

user-defined origin of a cartesian coordinate system are requested.

When CreateAcArray.m finishes the information gathering, it plots a

representation of each microphone in a 2-D or 3-D figure so the user can easily

confirm the correctness of the array configuration. The program also creates a

 35

configuration text file with the sensors coordinates, saving the entered information so

other programs can use it.

A view of the MATLAB window running the CreateAcArray.m program is

shown in Figure 4.5(A) and an example of plot generated is shown in Figure 4.5(B).

Figure 4.5: (A) MATLAB running the program CreateAcArray.m and (B) created array.

(A)

(B)

 36

Section 4.2.2 – Simulating the Directional Sound Intensity Sensed by

an Acoustic Array

After the geometrical configuration of an acoustic array is created, one of the

main questions that arise is: How well does it work in terms of beamforming? The

MATLAB program ArrayPolarPlot.m was created to answer this question through

simulation.

The ArrayPolarPlot.m program simulates the directional sound intensity

sensed by a general acoustic array for a specific sound source location and frequency,

which are user defined. To perform that task, the program uses the azimuth and

elevation angles of the sound source to generate simulated sound signals with

appropriate delays at the microphones and then calculates the directional sound

intensity for every look-angle.

In the ArrayPolarPlot.m program the look-angles consist of a combination of

azimuth and elevation angles having a pre-specified resolution of one degree. For

every look-angle, ideal delays that would put signals coming from that direction in

phase are calculated and added to the sound signals at the microphones. Those signals

are then added together and, due to the included delays, constructive or destructive

interference occurs. The result is a signal whose RMS value is proportional to the

magnitude of the sound sensed as coming from that direction.

 37

Figure 4.6: Example of simulated acoustic signals. (A) Signal at the sound source.
(B) Delayed signals arriving at the microphones. (C) Resulting signal showing
destructive interference cause by linear combination of the sensors’ signals.

The output of this simulation program is a figure with two plots, each

representing the RMS value of the sum-signal at the look-angles. The values are

normalized and understood as gains, so the plots are described as directional gain

plots for the acoustic array.

The first plot in the created figure is a surface plot representing the gain of the

acoustic array in a 3-D space. The second plot is a polar plot that shows the gain data

only for the zero-elevation angles. An example of the generated plots is shown next.

 38

Figure 4.7: Example of directional gain plots generated by the ArrayPolarPlot program.

This program also outputs the azimuth and elevation angles of the direction

that corresponds to the maximum RMS value of the sum-signal, offering an easy way

to check that the maximum value corresponds to the direction of the sound source.

Section 4.2.3 – Simulating Beamforming

A simulation program was created as a variation of the ArrayPolarPlot.m

program with the objective of generating of similar plots by maintaining the look-

 39

angle fixed and varying the position of the simulated sound source. This program was

called ArrayBeamformer.m and it allows the user to define the sound source

frequency and the acoustic array’s look-angle. An example of the plots generated by

the ArrayBeamformer.m is shown on Figure 4.8.

Figure 4.8: Simulated image of a beam that was formed for a look-angle of 45° azimuth
and 0° elevation.

 40

Section 4.2.4 – Passive Sonar Simulation and Waterfall Plot

With the objective of implementing more sophisticated and realistic

simulations, a program that simulates the use of acoustic arrays as sonar devices was

developed. The program was called TrackingSonar.m and was developed by

extending the program ArrayPolarPlot.m to introduce of a moving simulated sound

source. A waterfall plot of the directional sound intensities and a waterfall plot of the

signal’s frequency components were also included in this program.

The TrackingSonar.m lets the user specify the sound source frequency and

them it rotates the source around the array. For each position of the sound source, the

program scans all azimuth angles and calculates the sensed directional sound

intensities, using the data to produce two plots: (1) A polar plot as described in the

previous sections, and (2) a flat surface plot of the sound intensities versus azimuth

angle versus time, which is called waterfall plot. In this plot different colors are used

to represent the various intensity levels and the time is implicit in the scan cycle

index.

The same idea is used to create a waterfall plot of the frequency components

of the sound signals received by the array. In this case, the plot is a flat surface of

frequency components magnitude versus frequency versus time. The main use of a

plot like this includes object identification by analysis of the frequency signatures, but

it can also provide complimentary information about the movement of the sound

source by measurements of the Doppler effect.

 41

The TrackingSonar.m program also creates a movie of each simulation,

making it easy to store the analysis and simulation results for different combinations

of acoustic array configuration and sound frequency. An example of the generated

output is show in Figure 4.9.

Figure 4.9: Graphics generated by the program TrackingSonar.

Section 4.2.5 – Simulating Triangulation – Error Plots

The simulations of the triangulation methods presented in Section 4.1.3 were

performed by the programs Triang_Matrix.m and Triang_Voting.m. Both programs

 42

allow the user to specify the sampling rate of a simulated data acquisition system, and

both implement a moving sound source in order to generate plots of the errors in

position estimation.

The error plots were used to compare the performance of the triangulation

algorithms and it was found that the precision of the time delay measurements is the

key factor for obtaining correct estimates. This is especially noticeable in the case of

the matrix method, where lower-resolution time measurements cause the appearance

of larger errors in the position estimations. Examples of the error plots are shown in

Figures 4.10. The poor simulation performance of both algorithms at the sampling

frequency used by the EvBot’s data acquisition system (9600 Hz) discouraged

further developments of triangulation software, so no actual implementation of the

triangulation methods was realized.

 43

Figure 4.10: Simulated Error plots from the use of the EvBot’s acoustic array to
estimate the direction of a sound source. (A) Matrix method. (B) Voting method.

(A)

(B)

 44

Section 4.2.6 – Testing the EvBot’s Tracking Sonar

The program EvBot_TrackingSonar.m was developed to test the acoustic array

installed on the EvBot II by commanding the robot to turn and move towards a sound

source. It works like the TrackingSonar.m, but instead of simulating the sound signals

it gathers real data from the microphones in the array. The data is then processed and

after the direction with maximum magnitude is found, the program sends commands

to move the robot. This program was tested successfully and some results from

experimentation can be found in Chapter 6.

With the objective of better testing the acoustic array system, a second version

of the program EvBot_TrackingSonar.m was developed to generated graphics of what

the robot was actually seeing. Due to the fact that the EvBot doesn’t have a display,

the control of the robot was transferred to a desktop computer programmed to act as

its CPU, thus enabling the generation of plots from real data gathered from the array.

The figures created by this new version of EvBot_TrackingSonar.m are comparable to

the simulation plots generated by the programs ArrayPolarPlot.m and

TrackingSonar.m. Examples are shown in Figures 4.11 and 4.12.

 45

Figure 4.11: Directional sound magnitude as viewed by the EvBot. The green line

marks the azimuth of maximum magnitude. The plot’s title displays the generated
movement command.

Figure 4.12: Graphics generated by the program EvBot_TrackingSonar when a

helicopter’s sound was being reproduced near the robot.

 46

Section 4.3 – The EvBot’s Acoustic Array Configuration

The design of the acoustic array configuration for the EvBot II was mostly

empirical and based on the developed simulation programs described in the previous

section. During this design process a decision was made to install the microphone on

the robot’s shield (see Figure 4.15), so some constraints were imposed by the size of

the robot body and the shield itself. The use of simulation programs enabled the

analysis of beamforming characteristics for different array configurations, resulting in

the decision to implement a 3-D arrangement of the sensors. The selected array

configuration is shown in Figure 4.13 and the expected beam formed for a sound

frequency of 1 KHz is shown in Figure 4.14. A comparison of the simulated

performance obtained for this array configuration along with its measured

performance will be later considered and is presented in Chapter 6.

Figure 4.13: Acoustic array configuration for the EvBot II.

 47

Figure 4.14: Simulation of the directional sound magnitude sensed by the EvBot’s

acoustic array due to a 1 KHz sound source at azimuth 45°.

Figure 4.15: The EvBot II equipped with its acoustic array and data acquisition board.

 48

Chapter 5 – The USB-DAQ8 Data Acquisition System

A data acquisition system is the equipment responsible for collecting data

from the exterior world sensors, translating that data into a structure, and linking it to

a computer where digital processing turns it into useful information. To perform

sensor data capture and data organization tasks, a data acquisition system is

commonly designed to accommodate the type of data coming from external world

and to accomplish specific requirements of the data collection process. It is an

important link in the intelligent connection of perception to action. The manner of

the connection to the processing computer and the communications parameters are

two very important design characteristics of any data acquisition system because they

must accommodate for hardware limitations and guarantee mutual understanding.

The need for the development of a data acquisition system for the EvBot II

came from the necessity to collect audio signals from an acoustic array of

microphones, which is included on the new robot as part of an enhanced sensory

capability, so that processing and analysis could be performed. Possible benefits seen

from including an acoustic array of sensors are: increased sensor sensitivity,

beamforming and triangulation capabilities, and frequency-time analysis. Increasing

the sensor count would not be possible without a data acquisition system capable of

acquiring and linking all the microphones’ acoustic data to the processing unit. In the

 49

long-term an increased sensory capability was intended to give the EvBot II better

localization and control capabilities.

The designed data acquisition system was named USB-DAQ8 and it is

capable of receiving the analog signals coming from the eight audio microphones to

be mounted on the EvBot II. The USB-DAQ8 can simultaneously sample those eight

audio channels, what is very important to preserve inter-channel phase relationships.

The necessary connection to the CPU is made via a USB link, because of its plug-

and-play capabilities and the physical availability of a USB communication’s port.

USB was chosen over the RS232C serial ports for this task based solely on

communication speed requirements.

So, the circuitry developed for acoustic array data acquisition consisted of

eight input channels equipped with signal amplifiers and anti-aliasing low-pass filters.

Each input channel has its own track-and-hold (T/H) and analog-to-digital converter

(ADC) circuit, which are activated simultaneously, thus providing simultaneous

sampling of all eight channels. The sampling frequency selected for the task was

78.125 KHz, resulting in 5 million bits of data being sent to the CPU every second (5

Mb/s). Knowing that the EvBot II would generate a large amount of data from its

enhanced sensory capability a USB link became a natural choice, after all it is

designed to handle such large volume of data with relative ease.

 50

Section 5.1 – Commercially Available Data Acquisition Systems

Data acquisition systems are a huge market and out-of-the-self systems can be

easily found for any type of application one might think of. The only problem is that

those systems tend to be expensive and most of the times require to be connected to a

desktop computer as the CPU host. Most of the systems on the market are also too

large and consume too much power to be useful for the EvBot II application. A study

of commercially available data acquisition systems indicated that not a single one had

the required size, capability, e.g., eight channels with simultaneous sampling, and

Linux operating system (OS) compatibility to comply with the EvBot II specification.

A review of the literature indicated that the data acquisition systems that

would be most suited to the EvBot II specification are manufactured by National

Instruments, Quatech, and MicroDAQ. National Instruments has the SCXI-1140

module that has eight simultaneously sampled input channels, and it is easily

programmed and controlled by LabView programs. Although this system has been

used by other research groups working in the area of acoustic arrays [22], it is not

applicable to the EvBot II project because: the price of the system is prohibitive, and

it has large dimensions and large power consumption. A fully functioning system

based on SCXI-1140 would cost in excess of US$ 2,000.00, and this was considered

excessive for the EvBot II.

The second company mentioned above, Quatech, produces compact PCMCIA

data acquisition cards with good specifications, like the DAQP-208. However, this

device was discounted for the intended application because it did not offer

 51

simultaneous sampling nor did it support the Linux operating system, two key design

requirements for all EvBot robot platforms.

The third company mentioned above, MicroDAQ, produces a data acquisition

systems that uses a USB connection, and this attracted attention to the product during

the search phase. The USB-30 model was considered first of all, but once again there

was a problem with a lack of: support for the Linux OS, simultaneous sampling, and

economic price (US$ 570.00/unit). Lastly, it’s power requirements were also a factor

in the decision to discount this device, since they consume typically 1A at 9 VDC.

After the search of the commercially available data acquisition systems was

completed, and found to be unsuccessful, the obvious conclusion was that it would be

necessary to design a customized data acquisition system for the EvBot II. It is this

design specification that will be discussed in the following sections of this chapter.

 52

Section 5.2 – USB-DAQ8 Overview

As briefly mentioned earlier, the data acquisition system specification to be

used for data collection of the acoustic array of sensors includes:

• The amplification of sensors signals

• A low-pass filter, to allow audio signals only to be processed and to serve

as an anti-aliasing filter

• The simultaneous track-and-hold of eight channels

• Fast analog-to-digital conversions, to enable ideally 40K samples per

second per channel

• An ADC resolution of at least 8 bits per sample

• A USB link to the data processing CPU

• Low power consumption

The developed USB-DAQ8 system accomplishes the requirements above by

having eight complete analog-to-digital converter circuits working in parallel and

consuming only 1 Watt (200mA at 5V). Unlike typical multi-channel ADC’s that use

an input multiplexer and convert one input channel at a time, the designed system

implements multiple ADC’s and performs parallel conversions on all the channels

simultaneously. This design specification that was selected due to the fact that no

single component was found to offer both a reasonable price and the capability to

simultaneously sample 8 channels at the minimum required speed.

 53

A block diagram showing the functionality of the USB-DAQ8 system as

specified is shown in Figure 5.1.

Figure 5.1: The USB-DAQ8 block diagram.

The amplifiers implemented on the USB-DAQ8 provide adjustable gain

settings with a minimum gain of 46dB and low-pass filters that have a cut-off

frequency set to 20 KHz, which is typically the maximum frequency in the audible

range. The sampling speed of the system is 78.125 KHz and it uses 8-bit resolution

over the range of 0 to 5 volts. These values translate into a precision of ±0.02 volts

and the generation of 5 million bits of data every second (5 Mb/s).

The sampling process in the USB-DAQ8 is controlled by a timing and control

digital circuit specifically developed to sequentially read the data from the ADC’s and

USB

-

-

+

+

D
at

a
B

us

WR

RD

WR

RD

LPF

LPF

In
pu

t -
 C

ha
nn

el
 1

Amp

8-bit A/D

500 ns

Ti
m

in
g

an
d

 C
on

tro
l C

irc
ui

try

In
pu

t -
 C

ha
nn

el
 8

Amp

8-bit A/D

500 ns

U
SB

 C
on

tro
lle

r

●

●

●

●

●

●

●

●

●

●

●

●

 54

transfer it directly to the USB controller. From there, the generated digital data is

transferred to the processing CPU via a USB link that is capable of transmitting data

at a maximum data rate of 8 Mb/s.

Section 5.3 – USB-DAQ8’s Amplifier Circuit

The amplifier circuits designed for the USB-DAQ8 are used to couple the

electrical signals coming from the sensing microphones into the data acquisition

system. They were designed to provide the required gain on the input signals’ power

and to add a DC level to those signals, enforcing an output signal ranging from 0 to 5

volts.

The amplifier circuits on the USB-DAQ8 are basically AC coupled non-

inverting amplifiers that are based on the LMX324 series of operational amplifiers

from Maxim Integrated Products (Appendix A3.15). This integrated circuit contains

four operational amplifiers, each featuring rail-to-rail output and single supply

voltage range, thereby eliminating the need for a (non-available) negative voltage

power supply and increasing the swing range of the amplified audio signals. The

designed amplifier circuit also provides a variable gain capability, which can be

adjusted through an incorporated potentiometer. The minimum gain setting possible

is 46dB but usually larger gain values are necessary with the EvBot II acoustic array

because of the very low power characteristic of the microphone’s signals. This

 55

variable gain setting feature is also useful to accommodate for any slight differences

in microphone sensitivity and to set the proper gain value necessary in specific

experiments.

An image showing three amplifier circuits on a section of the manufactured

and populated USB-DAQ8’s printed circuit board is presented in Figure 5.2. Each of

the eight input channels of the USB-DAQ8 uses an amplifier circuit like the one

described here, always remembering that the gain settings are independent for each

channel.

Figure 5.2: Amplifier circuits on the USB-DAQ8’s printed circuit board

The Figure 5.3 below shows typical waveforms seen at the input and output of

the amplifier circuit. The input signal is a typical audio signal generated from speech

and it was measured directly from a microphone’s terminals.

 56

Figure 5.3: Waveforms at the input (Ch 1) and output (Ch 2) of the amplifier circuit.

Section 5.4 – USB-DAQ8’s Low-Pass Filter

Frequency filters are used in electronic circuits to select the frequencies of

interest or to reject undesired frequency components. In the case of data acquisition

systems, filters are a fundamental requirement to prevent any aliasing problems that

may arise during the sampling process [26].

The developed data acquisition system uses filters for two tasks, to

simultaneously: act as low-pass filters to reject frequency components of noise above

20 KHz; thus selecting only the frequencies in the audible range, and, to act as anti-

aliasing filters. The audible frequency range for humans is typically from 20 Hz to 20

 57

KHz, but the band-pass of the filters also include frequency components between 0

and 20 Hz. These very low frequencies (especially DC) are later filtered out using

software techniques.

The implementation of the filters for the EvBot II are based on the integrated

circuit LTC1563-3 from Linear Technologies, see Appendix A3.16. This device

implements a 4th order active RC low-pass filter that approximates a Bessel response.

It also features rail-to-rail operation and an internal architecture that enables the

selection of any desired cutoff frequency using a single resistor value. The formula

used to calculate the value of the resistor for a unit gain filter configuration is given

by:

)/256(10 cfkHzkR =

where, fc is the desired cutoff frequency.

 The equation above was used to calculate the desired cutoff frequency of the

USB-DAQ8’s filters, which was previously selected to be 20 KHz. The calculated

resistor value was 128 KΩ, which was approximated to 130 KΩ due to the preferred

numbers of available resistors. The filter circuit was tested successfully after its

construction and provided a cutoff frequency of 20.07 KHz. Typical frequency

response plots for the filters are shown on Figure 5.4, where both the gain (db) and

phase (degrees) characteristics of the filter are seen plotted against a base of

frequency (Hz).

 58

Figure 5.4: Gain and phase frequency response of the USB-DAQ8’s active filter.

Figure 5.5 below shows an image of a section of the USB-DAQ8 board that

contains one of the filters.

Figure 5.5: A single low-pass filter seen on a section of the USB-DAQ8 printed circuit
board.

 59

Section 5.5 – USB-DAQ8’s Analog-to-Digital Converter

The analog-to-digital (ADC) converter modules on the USB-DAQ8 are the

most important components of the data acquisition system. The ADC’s are

responsible for converting the continuous time electrical signals generated by the

acoustic array sensor microphones into sequences of zeros and ones that can be

interpreted and used by the processing CPU. Like data acquisition systems, ADC’s

can be found for virtually any type of application. The large number of ADC

integrated circuits available commercially creates a large variety of specifications,

including resolution, speed, approximation techniques, number of input channels and

price options.

As usual, the selection of an adequate ADC for the USB-DAQ8 started by a

comprehensive search based on the desired characteristics of performance. Certain

potential candidate ADC’s where easily excluded from consideration due to price,

eventually leaving only two components to decide from: Maxim’s MAX155, and,

National Semiconductor’s ADC08161. Now, although the MAX155 offers an 8-

Channel ADC with simultaneous track-and-hold, it does not support the minimum

sampling frequency of 40 KHZ required by the USB-DAQ8. So, the final choice was

made in favor of the very fast National Semiconductor ADC08161 (Appendix

A3.14).

 60

The National Semiconductor ADC08161 is an 8-bit ADC with internal

sample-and-hold and conversion time of only 500ηs. It also features a convenient

2.5V reference output and supports sample rates up to 300 KHz. These features,

added to the low price of $3.47 per unit, made this IC the perfect choice for our

EvBot II data acquisition system. Because the selected IC is a single channel analog-

to-digital converter, eight ADC08161 are required to be used in the USB-DAQ8.

Simultaneous sampling is achieved by starting the conversion process at the same

time in all eight ADC’s, and this is guaranteed by hardwiring a parallel connection to

all eight ADC08161 WR pins.

The interfacing of the ADC’s to the USB controller was also made easy due to

the fact that the selected IC had a parallel data bus featuring tri-state buffers and

control lines. This feature made possible to connect all ADC’s to the same parallel

data bus and to design a relatively simple logic circuit for timing and data control.

Figure 5.6 is an image of a section of the designed printed circuit board showing one

of the installed analog-to-digital converters (ADC’s).

Figure 5.6: Analog-to-digital converter on a section of the USB-DAQ8 board.

 61

Section 5.6 – USB Interface and Controller

From the design requirements, all data generated by the USB-DAQ8 needs to

be uploaded to the processing CPU via a USB link. This was accomplished on the

USB-DAQ8 by the incorporation of the USBMOD2, a low-cost integrated module for

transferring data between an 8-bit parallel bus and a USB channel. The USBMOD2

(Appendix A3.13) is based on the FTDI FT8U245 USB FIFO – Fast Parallel Data

Transfer IC, which can transfer data at speeds up to 8 Megabits per second. This

technology makes the USB connection very easy by having flag pins for data

received and busy, and a control pin to send data. A picture of the USBMOD2 is

shown in Figure 5.7.

Figure 5.7: The USBMOD2.

 62

The USBMOD2 is viewed by the processing CPU as a standard COM port

when FTDI’s virtual COM port drivers are used. This was done in the design of the

EvBot II so that the data gathering by the processing CPU follows similar procedures

as a regular RS232 communications system. Once the required drivers are installed,

the USBMOD2 becomes plug-and-play and hot swappable, making it easy for the

complete data acquisition system to be connected and disconnected from the EvBot II

as required.

Section 5.7 – The USB-DAQ8’s Timing and Control Circuit

To ensure the proper functioning of the developed data acquisition system for

the EvBot II platform, the components and modules described on the Sections 5.3 to

5.6 had to be connected together using a timing and control circuit. The design and

operation of this circuit is described in this section.

The main tasks undertaken by the timing and control circuit include: starting

and stopping the simultaneous sampling process in all eight channels, the control of a

sequential reading of the ADCs’ values, and the transfer of data from the ADC’s to

the processing CPU. A logic circuit was designed for this purpose, thereby

eliminating the need for a local microcontroller system dedicated for this task in the

USB-DAQ8.

 63

A general overview of how the timing and control circuit works and interacts

with the other components in the USB-DAQ8 can be better understood after the

analysis of the functional block diagram presented in Figure 5.8. On the USB-DAQ8,

the sampling process is started when it receives any one data byte from the CPU.

When that occurs, the USBMOD2 automatically flags the presence of data available

for reading by pulling the pin RXF low. This is the signal to start the analog-to-

digital conversions and the ADC’s are all simultaneously triggered. A demultiplexer

controlled by a main counter selects the channel to be read and the system waits for

the end of the analog-to-digital conversions. When the selected ADC pulls the pin

INT low to flag that data is ready, the logical control circuit enables the parallel bus

and the data is loaded to the USBMOD2, which automatically uploads the data to the

CPU. At this point, the main counter is incremented and another channel is read

following the same process as just described. The system is reset and restarted at the

end of reading of the eighth analog-to-digital converter data, provided it did not

receive a stop byte from the CPU.

 64

Figure 5.8: USB-DAQ8’s functional block diagram

A simplified timing diagram showing the sequences of operations that occur

on the data acquisition system is presented in Figure 5.9. Note in the diagram that

most of the operations require a minimum processing time.

 65

Figure 5.9: Timing diagram for the USB-DAQ8 data acquisition system.

The timing circuitry incorporated into the logic control circuit guarantees a

constant sampling frequency of 78.125 KHz for all eight channels for as long as it is

required to gather data. It also provides a sufficient amount of time necessary for

each signal, and it accommodates for maximum possible delays to guarantee the

correct operation of the system. The implementation of the timing and control circuit

on the printed circuit board designed for the USB-DAQ8 is shown in Figure 5.10.

USB /RXF

ADC /WR

USB /RD

ADC /INT

USB /WR

ADC /RD

ADC DATA

USB /TXE

CLK /CP

50ηs (min)

100ηs (min)

25ηs

690ηs (min)

60ηs (min)

60ηs (min)

55ηs 30ηs

50ηs

25ηs
50ηs (min)

Enable data output

Write to USB

 66

Figure 5.10: Logic circuit for timing and control on the USB-DAQ8 board.

Section 5.8 – USB-DAQ8’s Circuit Board

The circuit board created for the USB-DAQ8 was designed to fit the PC104

stack, enabling an easy attachment to any EvBot robot platform. The circuit board has

two wiring layers and was created using the software CirCAD. Images of the top and

bottom layers are shown in Figures 5.11 and 5.12, along with pictures of the

populated circuit board, Figure 5.13.

 67

Figure 5.11: CirCAD drawing of the USB-DAQ8’s top layer.

Figure 5.12: CirCAD drawing of the USB-DAQ8’s bottom layer.

 68

Figure 5.13: The USB-DAQ8’s printed circuit board.

Section 5.9 – Design Fault and Solution

After the completion of the USB-DAQ8 implementation several tests were

conducted to evaluate its performance, and one of the tests pointed to a design fault

related to the data transfer rate on the USB connection. The experiment, which is

 69

described in detail in Chapter 6, made clear that the assumption of an 8 MBps

connection was a mistake. It was found that the EvBot’s USB port only supports low-

speed USB, which works at a maximum 1.5 MBps. Therefore, even though the USB-

DAQ8 works fine at higher speeds, it had to be modified to accommodate this

parameter change. This problem was addressed by reducing the sampling frequency

of the USB-DAQ8 to 9600 samples per second per channel, thus reducing the total

amount of data generated from 625 KBps to 76.8 KBps. After this modification

experiments were performed and proved that this new sampling rate results in a

reliable communication speed.

The consequence of this design change was, as mentioned, a reduced

sampling frequency used by the USB-DAQ8 and this reflected on the maximum

sound frequency that the system is able to sample, reducing it from 39 KHz to 4.8

KHz. This change was initially thought to be bad, but experimentation proved that

this sampling speed is reasonable to the desired application and can provide good

results.

 70

Chapter 6 – Experimentation and Results

In this chapter some of the experiments performed during the research are

described. These experiments were designed to test the functionality of the individual

parts of the new EvBot II architecture, to calibrate them, and to test them in

application. The calibration and performance measurements of the EvBot II platform

are explained first, followed by descriptions of experimentation involving the USB-

DAQ8 data acquisition system. The third section in this chapter presents the

experiments performed with the acoustic array system, mainly comparing real results

and simulations to evaluate the system. Lastly, an experiment demonstrating the

EvBot use of the acoustic array sensor to navigate towards a sound source is

presented.

Section 6.1 – Experiments with the EvBot II Platform

The most significant experiments performed on the EvBot II’s platform were

related to testing of the modules of the new architecture and calibration of the

locomotion system. Experiments were also conduct to evaluate the compatibility

between the two generations of EvBots. These experiments are described in the next

subsections.

 71

Section 6.1.1 – Calibration of the Open Loop Speed Control

Although the EvBot II incorporates shaft encoders, it is required to have a

motor control system capable of operation in an open-loop configuration to maintain

full compatibility with the existing EvBot’s. This means that each robot must

perform within a pre-specified error margin when commanded to move or turn. To

reach this goal a precise calibration was necessary.

The calibration procedure consisted of adjustments of the PWM duty cycles

so the motors turn at the desired speed. To reach such goals, measurements were

taken for commands with an active time of one second, what facilitated the

calibration process by allowing the measurement of the average speeds by measuring

the distance travelled. The entire range of speeds supported by the EvBot II was

tested and the PWM values were adjusted to reduce the measured errors to less than

±5%. This process generated the specific PWM values necessary for speed values

ranging from zero to 8.5 inches/second, the maximum linear speed of the robot. Such

information was used to generate the plot seen in Figure 6.1, from which the linear

relationship between the PWM values and the linear speed was calculated.

 72

Open Loop Calibration
Linear Motion

y = 22.538x + 60

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Speed (inches/second)

PM
W

 v
al

ue
 .

Figure 6.1: Open loop calibration points for linear motion. Error bars show ±5% error at

each calibrated speed.

A similar procedure was followed to calibrate the robot rotation. In this case

angular displacements were measured and compared to a desired value. The PWM

duty cycles and the active time of the commands were then adjusted to generate the

desired rotation. This process of calibration was performed for rotation angles ranging

from -180° to +180°, and the resulting values are shown in the next figures as the

product of the two parameters varied during calibration.

 73

Open Loop Calibration
Clockwise Rotation

y = 1.3619x + 7.2826

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

Rotation (degrees)

PW
M

 v
al

ue
 (%

) x
 A

ct
io

n
du

ra
tio

n
(s

ec
)

Figure 6.2: Open loop calibration points for clockwise rotations. The y axis represents
the product of PMW values and active time of the rotation commands. The error bars

show ±5% error at each calibrated point.

Open Loop Calibration
Counter Clockwise Rotation

y = 1.2879x + 7.3682

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

Rotation (degrees)

PW
M

 v
al

ue
 (%

) x
 A

ct
io

n
du

ra
tio

n
(s

ec
)

Figure 6.3: Open loop calibration points for counter clockwise rotations. The y axis

represents the product of PMW values and active time of the rotation commands. The
error bars show ±5% error at each calibrated point.

 74

From the plots above a linear relationship between the rotation angles and the

product PMW-Time can be observed and is made explicit by the formulas shown.

Such formulas will be implemented in the EvBot II’s software and are used to

produce the correct commands when rotations are desired.

Section 6.1.2 – Calibration of the Closed Loop Speed Control

The closed-loop speed control system developed for the EvBot II was

implemented using PID controllers running on the BasicX microcontroller. Each

motor has its own control system, which receives speed commands generated at the

EvBot’s CPU and feedback signals from optical shaft encoders. The microcontroller

is responsible for evaluating the data from the encoders and measuring the motor

angular velocities, obtaining values in encoders-counts per second. It also translates

the unit of the received commands from inches/second to encoder-counts/second, and

imposes a limit of 2550 encoder-counts/second. This limit translates to a maximum

linear speed of approximately 6.5 inches/second.

The calibration procedure for the closed-loop speed control systems consisted

of basically two phases: Initially the PID controllers were experimentally calibrated

to provide relatively fast rise-time and low oscillation on the steady-state phase; later

the scaling factors for the speed commands were calibrated to provide compensation

for slight differences between the two driving motors. The calibrations of the PID

 75

controllers were very qualitative but the results show a good performance of the

system, as can be noticed from Figure 6.5.

The calibrations of the scaling factors for the commanded speeds were

necessary to make the EvBot II move on a straight line when the same speed value is

commanded for both driving motors. These factors are basically the maximum speed

of the robot’s treads and are used for normalization of the speed commands. As a

consequence, the calibrations were performed experimentally by measuring the robot

motion in a straight line.

 After the calibrations were performed, experiments were conducted to

evaluate the quality of the speed control system. Satisfactory results were obtained

and are summarized by the following plots. The data collected during the experiments

can be found in Appendix A1.2.

EvBot II - Travel Distance

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11

Time (seconds)

Di
st

an
ce

 (i
nc

he
s)

1 in/s
2 in/s
3 in/s
4 in/s
5 in/s
6 in/s

Figure 6.4: Distance traveled by the EvBot II for different speed commands when using

closed-loop speed control.

 76

EvBot II - Speed Control

0
1
2
3
4
5
6
7
8

0 2 4 6 8 10

Time (seconds)

Ve
lo

ci
ty

 (i
nc

he
s/

se
c)

1 in/s
2 in/s
3 in/s
4 in/s
5 in/s
6 in/s
6 in/s (avg)
5 in/s (avg)
4 in/s (avg)
3 in/s (avg)
2 in/s (avg)
1 in/s (avg)

Figure 6.5: Response of the speed control system to different commanded speeds

obtained from experimental data.

Section 6.1.3 – EvBot II in Action

The EvBot II platform was developed to be completely compatible with the

original EvBot, so a major indicator of how well the EvBot II performed was

obtained by testing it against the EvBot. To test compatibility the EvBot II was given

the same neural network controller as used by other EvBots, then tested in a maze

environment. The results obtained showed that the EvBot II operates in a similar

matter to the original EvBots and also to the simulated EvBots under similar

conditions. This performance can be seen in Figure 6.6, which shows two images of

 77

the tracks followed by the EvBot II while searching for the red goal in the maze

environment.

A performance comparison of the two generation of EvBots during one of the

experimental runs is shown in Figure 6.7, and an image of simulated EvBots in the

simulated world used to evolve the neural networks controllers is shown in Figure

6.8. By observing those two figures we can see that both generations perform closely

to that obtained in simulations. Furthermore it is clear that when the two generations

of EvBots operate in the real world they avoid colliding with walls, in a similar

fashion to their simulated counterparts.

 78

Figure 6.6: EvBot II traveling through the maze in search of the red goal (two trials).

 79

Figure 6.7: Two generations of EvBots playing together.

Figure 6.8: Simulated world with simulated EvBots running the same neural network
controllers as the one used by the real robots (courtesy of Andrew Nelson, CRIM).

 80

Section 6.2 – Experiments with the Data Acquisition System

In this section experiments designed to detect faults and to evaluate the

performance and capabilities of the USB-DAQ8 data acquisition system were carried

out. The first two experiments described here deal with the evaluation of subsystems

and components used in the USB-DAQ8 board. First, the frequency response

measurement of the implemented low-pass filters is presented. Second, a description

of experimentation to test the quality of the analog to digital converter IC is given.

Thirdly, experiments that test the data acquisition system as a whole are described,

starting from the evaluation of achievable data transfer rates and ending with the

demonstration of the capabilities and possible uses of the USB-DAQ8 system.

Section 6.2.1 – Test of the Low Pass Filter Frequency Response

The frequency response of the low-pass filters embedded in the USB-DAQ8

were measured experimentally to verify the designed cutoff frequency of 20 KHz.

The obtained data validated design calculations and the quality of the integrated

circuit LTC1563-3 by showing that the actual cutoff frequency is 20.07 KHz. This

experimental data is summarized in the Figure 6.9 and can be found in Appendix

A1.3.

 81

Figure 6.9: Frequency response USB-DAQ8’s low-pass filter.

Section 6.2.2 – Test of the ADC Linearity and Frequency Distortion

As a way of testing the quality and reliability of the USB-DAQ8, tests were

performed to analyze the main component in that system: the analog to digital

converter integrated circuit. This was done by performing experiments designed to

measure its linearity and frequency distortion. For the linearity tests, known input

voltages were applied to the ADC’s and the outputted digital values were recorded.

The performance of the ADC08161C was good and the measured errors remained

close to the specified resolution (±0.02V). The results obtained during this

experiment are shown in Figure 6.10 and Figure 6.11.

 82

ADC Test

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Input DC Voltage (V)

M
ea

su
re

d
Vo

lta
ge

 (V
)

Figure 6.10: Results from the linearity test performed on the IC ADC08161C.

ADC Test - Conversion Error

-0.02

0.03

0.08

0.13

0 1 2 3 4 5 6
Input DC Voltage (V)

Er
ro

r (
%

)

Expected Max Error

Measured Error (Avg.)

Figure 6.11: Results from the linearity test performed on the IC ADC08161C. The

expected error reflects the ±0.02V resolution (5V / 256 levels).

 83

The frequency distortion test performed on the ADC08161C consisted of the

application of signals of known frequency to the IC’s input, followed by the sampling

process and later calculation of the signal’s frequency components based on the

Fourier transform of the obtained series. The obtained results are shown on the next

figures and are positive, exhibiting a maximum measured frequency distortion of 1%.

Frequency Test

10.0

100.0

1000.0

10000.0

10.0 100.0 1000.0 10000.0
Input Frequency (Hz)

Fr
eq

 fr
om

 F
FT

 o
f t

he

 D
ig

ita
l S

ig
na

l (
H

z)

Figure 6.12: Results from the frequency distortion test performed on the IC
ADC08161C and data acquisition system.

 84

Error in Frequency

-0.6000
-0.4000
-0.2000
0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000

10.0 100.0 1000.0 10000.0
Frequency (Hz)

Er
ro

r (
%

)

Measured Error (Average)

Figure 6.13: Errors measured during the frequency distortion test performed on the IC

ADC08161C and data acquisition system.

Even though the tests were not performed using high-accuracy nor recently

calibrated instruments, the obtained results were very consistent and demonstrated

that the integrated circuit ADC08161C is a reliable component.

Section 6.2.3 – Test of the Data Transfer Speed

The sampling speed of the data acquisition system was originally designed to

be 78.125 KHz per channel and use a resolution of 8 bits per sample. This

corresponds to a data transfer speed greater than of 5 million bits per second (5 Mb/s)

when control bits are considered, which was assumed to be feasible based on

 85

datasheets information [A3.13]. After completion of the USB-DAQ8 implementation

that assumption was put to a test and a design fault was found. The experiment

described in this section showed that, although the USB-DAQ8 is capable of

managing such baud rates, the computer’s USB port used for the experiment is not.

The problem is that the EvBot’s USB port is also limited and can only support low-

speed USB (1.5 Mbps from USB Rev. 1.1 specifications). This design problem was

addressed by reducing the sampling frequency of the USB-DAQ8 to 9600 samples

per seconds per channel, requiring 614.4 Kbps for the data bits only. Experiments

proved that this new sampling rate results in a reliable communication speed.

The data obtained from the experiments performed to measure data transfer

speed between the USB-DAQ8 and a host computer are summarized in the next plots.

Figure 6.14 and Figure 6.15 present the data obtained for the original sampling rate of

78.125 KHz per channel, and respectively show plots of the total number of bytes

transferred and average transfer rate of data bytes as a function of the sampling time.

The figures 6.16 and 6.17 present corresponding data for a sampling rate of 9600 Hz

per channel. Each data point obtained from these experiments is an average of 100

trials.

 86

USB-DAQ8 Data Transfer Test
fs = 78.125 Bps / channel

y = 126697x + 20352

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2

Acquisition Time (seconds)

N
um

be
r o

f B
yt

es
 T

ra
ns

fe
re

d

Figure 6.14: Total number of bytes transferred as a function of sampling time.

USB-DAQ8 Data Transfer Test
fs = 78.125 Bps / channel

0.0

50000.0

100000.0

150000.0

200000.0

250000.0

300000.0

350000.0

0 0.5 1 1.5 2

Acquisition Time (seconds)

Tr
an

sf
er

 R
at

e
(B

ps
)

Figure 6.15: Transfer rate in bytes per second as a function of the sampling time.

 87

USB-DAQ8 Data Transfer Test
fs = 9600 Bps / channel

y = 73571x + 9821.9

0

20000

40000

60000

80000

100000

120000

0 0.5 1 1.5

Acquisition Time (seconds)

N
um

be
r o

f B
yt

es
 T

ra
ns

fe
re

d

Figure 6.16: Total number of bytes transferred as a function of sampling time.

USB-DAQ8 Data Transfer Test
fs = 9600 Bps / channel

65000
67000
69000
71000
73000
75000
77000
79000
81000

0 0.5 1 1.5

Acquisition Time (Seconds)

Tr
an

sf
er

 R
at

e
(B

ps
)

Figure 6.17: Transfer rate in bytes per second as a function of the sampling time.

 88

Section 6.2.4 – Acquiring Data with the USB-DAQ8

After finalizing the assembly of the USB-DAQ8, its overall performance and

functioning had to be tested, so software code was developed for this purpose. The

created programs enabled the communications between the data acquisition system

and a desktop computer, allowing for on/off control, data logging and data analysis.

Innumerous experiments were performed and three of them were selected to be

shown as examples in this section. The first two experiments consisted of sampling

analog sine waves with known frequencies, followed by analysis of the collected data

in the digital domain. In the first experiment a 202 Hz sine wave with 4.08 Vpp was

sample using the USB-DAQ8, and in the second experiment the sine wave frequency

was changed to 4.53 KHz. The obtained results, as well as a screen shot of the analog

waves obtained from an oscilloscope, are shown in Figures 6.18 and 6.19. Note that

the sampling frequency used by the USB-DAQ8 during these experiments was set to

9600 samples/sec/channel.

 89

Figure 6.18: USB-DAQ8 acquiring a 202 Hz signal.

 90

Figure 6.19: USB-DAQ8 acquiring a 4.53 KHz signal.

 91

From the results presented in the above figures we can see that the data

acquisition system works as expected, introducing little noise and frequency

distortion.

The third experiment mentioned earlier consisted of simultaneously sampling

and displaying the signals from all eight input channels of the USB-DAQ8. This

function was implemented by a program developed to continuously gather and

display data from the channels in eight separate plots, creating a quasi eight-channel

digital oscilloscope. The program was called USBscope and a screen shot of it is

shown in Figure 6.20.

 Figure 6.20: The program USBscope displaying data simultaneously sampled from all

eight input channels of the USB-DAQ8.

 92

Section 6.3 – Experiments with the Acoustic Array

The experimentation carried out on the acoustic array area consisted of

systems simulations and analysis of the implemented array. The simulations were

initially performed as a mean to select the desired acoustic array configuration for the

EvBot, and later used to evaluate its performance through comparisons between

obtained and expected results. Initially the experimentation with different

configurations of acoustic arrays is presented. This is followed by the performance

analysis of the implemented system. Finally experiments demonstrating the use of the

acoustic array as a tracking sonar system are presented.

Section 6.3.1 – Beamforming by Different Array Configurations

The final design of the EvBot’s acoustic array configuration was empirically

performed by the use of the simulation software described in Chapter 4. During this

process several configurations were analyzed, from which two were selected to be

presented here as representative examples. Similar plots for the final acoustic array

configuration have already been presented in Chapter 4 but are reproduced here for

comparisons purposes.

 93

One of the acoustic array configurations considered for the EvBot II consisted

of a planar configuration that would fit on the top of the PC/104 stack. It was called

Planar10x10 in reference to its dimension of 10 cm2, and the beam pattern obtained

from that array is presented in Figure 6.21.

Figure 6.21: Beamforming simulation for a frequency of 1 KHz using a planar array that
would fit on the top of the PC/104 stack.

The second simulated array configuration presented here consists of a three

dimensional configuration resembling a pyramid. For that reason it was called

PyramidArray and it was also designed to fit the EvBot II body. The obtained beam

pattern from this array configuration for a sound frequency of 1 KHz is presented in

Figure 6.22.

 94

Figure 6.22: Beamforming simulation for a frequency of 1 KHz using a 3-D array
configuration that could fit on the EvBot II body.

From the figures above it can be seen that the larger size of the PyramidArray

improved the directional resolution for the selected frequency, presenting a narrower

beam when compared to the one produced by the Planar10x10 array. This

phenomenon shows the proportional relationship that exists between the sound

wavelength and the ideal distances among sensors when beamforming is desired, i.e.,

the longer the sound wavelength, the larger the distances between the microphones

should be to produce an effective interference pattern. This will be further noticed by

examination of the beamforming characteristics of the EvBotArray, which is an even

larger array configuration. The EvBotArray is the array configuration selected for

implementation on the EvBot II.

 95

The comparison of the beam pattern plots in Figures 6.21 and 6.22 also shows

that the beam size was reduced as a whole, reflecting on increased resolution for both

azimuth and elevation angles.

The beam pattern generated by the EvBotArray is presented in Figure 6.23 and

shows that a larger array configuration provided further improvements on the

directional resolution of azimuth angles at the 1 KHz frequency range. This array was

designed to fit the EvBot II shield and also uses a 3-D configuration.

The observation of the beam pattern plot for the EvBotArray also shows that

the elevation angle resolution was somewhat decreased from the one obtained by the

use of the PyramidArray. This change is believed to be result of a reduction on the

height of the array but this phenomenon wasn’t deeply studied because the research

focus was on a system capable of good azimuth resolution.

Figure 6.23: Beamforming simulation for a frequency of 1 KHz using the final array
configuration selected for the EvBot II.

 96

Section 6.3.2 – Evaluation of the EvBot’s Acoustic Array System

The experiments realized to evaluate the performance of the implemented

acoustic array system consisted of using real data to perform beamforming. Several

trials were carried out for a diverse number of sound frequencies and sound source

positions, but only a few examples were selected to be presented in this section. In

such examples the sound source was kept on a fixed position and data was collected

for sound frequencies ranging from 200 Hz to 1500 Hz. The acquired data was then

used to generate plots of the directional sound intensities which were compared to

similar plots generated by simulated data.

The plots created during this experiment are displayed in the figures 6.24

through 6.25, and clearly show that the performance of the implemented acoustic

array system is very similar to what was expected from simulations, but only up to

frequencies around 1500 Hz. For higher sound frequencies the actual beam pattern

starts to deviate from the simulated ones, but no conclusion was reach about this

effect, only that further investigation is necessary.

Another interesting note about the plots created during this experimentation is

that they clearly show the changes in the beam pattern formed for different sound

frequencies. From the plots we can see that at low frequencies the beam patterns are

very broad, but as the sound frequency increases the beams get narrower. From these

observations it was noted that the best directionality for the implemented acoustic

 97

array occurs for frequencies around 1200 Hz. In that frequency range the beam

formed is relatively narrow and the secondary beams are relatively small.

Figure 6.24: Comparisons between beam patterns obtained from real data (right) and
simulated data (left) for the following sound frequencies: (A) 200 Hz. (B) 500 Hz.

(C) 1000 Hz.

(A)

(B)

(C)

 98

Figure 6.25: Comparisons between beam patterns obtained from real data (right) and
simulated data (left) for the following sound frequencies: (A) 1200 Hz. (B) 1500 Hz.

Section 6.3.3 –Using the Acoustic Array as a Tracking Sonar

The usefulness of the developed acoustic array as a tracking sonar device was

studied through experiments based on the program EvBot_TrackingSonar.m. As

described in Chapter 4, this program makes use of regularly sampled acoustical data

to generate waterfall plots of the directional sound intensities and frequency

(A)

(B)

 99

components, so the performed experiments consisted of the generation and analyzes

of such plots. Experiments were performed for several real-object sounds, such as

helicopters, trucks and airplanes, which were played back on a speaker. Some single-

tone sounds were also tested by the use of a function generator. A sample of the

obtained plots is shown on the next figures.

Figure 6.26: Acoustic array system being used to track the sound of truck reproduced

by a nearby moving speaker.

 100

Figure 6.27: Acoustic array system being used to track a single-tone sound source.

From the observation of the plots in Figures 6.26 and 6.27 it can be noticed

that the acoustic array system works well as a tracking device. It was able to

successfully track all played-back sounds tested and shows that the waterfall plots are

a fine way to keep a history of surrounding sound events. Furthermore, the

visualization of the frequency components provided by the FFT waterfall plot can be

very useful for object identification and speed estimation through the analysis of the

sound signatures and Doppler effects.

 101

Section 6.4 – EvBot’s Navigation by Sound

The final set of experiments performed during this research consisted of

testing the capabilities the EvBot to use its acoustic array to navigate towards a sound

source. This was performed by the development of a controller program responsible

to gather and process the data from the array of sensors, generating movement

commands as a result. This program is described in Chapter 4 and is the first version

of the EvBot_TrackingSonar.m.

The performed experiments proved that the design of this new sensor system

for the EvBot was successful and able to provide reliable data. A screen shot showing

the track followed by the EvBot II in one of the experiments is displayed in Figure

6.28, and clearly shows that the robot is able to turn and precisely move towards the

sound source by correcting its bearing in the way.

Figure 6.28: Path taken by the EvBot II to find the sound source.

 102

Chapter 7 – Conclusion and Future Research

Section 7.1 – Concluding Remarks

The research work presented in this thesis has resulted in the development of a

small and computationally powerful robotic platform for studying distributed and

evolutionary robotics. Such robots are suited to application areas such as surveillance,

reconnaissance and security. This robot, called EvBot II, was successfully created to

enhance the sensing, mobility and intelligent control capabilities of its predecessor.

The EvBot II’s high level processing was kept with the same configuration as

in the previous generation, a PC/104 computer system which is able to host intelligent

control software developed entirely in a MATLAB environment. On the other hand,

the low level processing system was redesigned to make use of two microcontroller

units serially connected to the CPU. These microcontrollers are able to effectively

handle the closed loop control of up to three motors through the use of custom

designed circuitry, and can also provide the input channels for several additional

sensors if necessary. Sensor integration is seen as an important element of

evolutionary robotics.

The efforts put into the expansion of the EvBot’s sensing capabilities also

resulted in the development and successful implementation of an acoustic array

system. Such system is able to perform beamforming based on data collected from

 103

eight microphones, and can be used by the EvBot on tasks like object identification or

object tracking, as demonstrated by performed experiments. As part of the

development of this acoustic array system a number of simulation and application

software programs were created, generating a very useful resource for the study and

development of other acoustic array configurations.

The successful design and realization of a data acquisition system with

simultaneous sampling of eight audio channels was also part of the development of

the acoustic array system, and created a very versatile plug-and-play device that can

be used on any computer system equipped with an USB port.

In summary, the research presented in this thesis created the next generation

of autonomous mobile robots, one that is small, robust and computationally powerful

enough to provide integrated sensor feedback for intelligent control. In addition,

experimentation demonstrated that all of the hardware and software designs were

successful, and that the EvBot II and its subcomponents function within

specifications.

 104

Section 7.2 – Future Research

There are innumerous experiments in the areas of evolvable robotics, SAR

and RSTA in which the EvBot II could be applied. Its capabilities could be very

useful, for example, to test evolved systems designed to perform two tasks with

different priorities, such as “go to sound source” and “avoid walls”, or to study the

implementation of triangulation systems based on the use of two or more robots. Even

completely different experiments than the ones mentioned in this thesis can be

supported by the EvBot II platform, such as experimentation involving rule based

controllers or remote control functionality.

Although the EvBot II platform has proven to be a remarkable robotic

platform, there are still grounds for enhancements. The odometer system is an

example of an area that still needs some work, so is the speed control system, where

improvements are expected to reduce the inherent delay of the data gathering process,

thus enabling a higher quality control. Modifications to the USB-DAQ8 system are

also foreseen, especially to make it able to sample at higher frequencies while still

transmitting data through slow USB channels.

 105

References

[1] H. Asama, A. Matsumoto and Y. Ishida, “Design of an Autonomous and
 Distributed Robot System: ACTRESS,” Proceedings of the IEEE/RSJ
 International Conference on Intelligent Robots and Systems, pp.283 – 290,
 (Tsukuba, Japan), 1989.

[2] G. Beni, “The Concept of Cellular Robotic System,” Proceedings of the 3rd

IEEE Symposium on Intelligent Control, pp. 57 – 62, (Arlington, VA, USA),
Aug 1988.

[3] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot", IEEE

Journal of Robotics and Automation, Vol. 2, No. 1, pp. 14–23, March 1986;
also MIT AI Memo 864, September 1985.

[4] P. P. Budulas, S.H. Young and P.J. Emmerman, “Battlefield Agent

Collaboration,” Proceedings of the 2001 SPIE Unmanned Ground Vehicle
Technology III, pp. 86 – 96, (Orlando, USA), April 2001.

[5] G. C. Carter, “Time Delay Estimation for Passive Sonar Signal Processing,”

IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-
29, no. 3, pp. 463 – 470, June 1981.

[6] Drenner et al., “Mobile Enhancements to the Scout Robot Platform”,

Procedings of the 2002 IEEE International Conference on Robotics &
Automation, pp. 1069 – 1074, (Washington, USA), May 2002.

[7] D. D. Dudenhoeffer, D. J. Bruemmer, M. O. Anderson and M. D. McKay,

“Development and Implementation of Large-Scale Micro-Robotic Forces
Using Formation Behaviors”, Proceedings of the 2001 SPIE Unmanned
Ground Vehicle Technology III, pp. 159 – 168, (Orlando, USA), April 2001.

[8] J. Feddema and D. Schoenwald, “Decentralized Control of Cooperative

Robotic Vehicles,” Proceedings of the 2001 SPIE Unmanned Ground Vehicle
Technology II, pp. 136 – 146, (Orlando, USA), April 2001.

[9] D. Floreano and F. Mondada, “Evolution of Homing Navigation in a Real

Mobile Robot,” IEEE Transactions on Systems, Man and Cybernetics, Part B,
vol. 26, issue 3, pp. 396 – 407, June 1996.

 106

[10] T. Fukuda and S. Nakagawa, “Dynamically Reconfigurable Robotic System
(Concept of a System and Optimal Configurations),” Proceedings IECON, pp.
588 – 5995, 1987.

[11] J. M. Galeotti, “The EvBot: A Small Autonomous Mobile Robot for the Study

of Evolutionary Algorithms in Distributed Robotics,” Master's Thesis, North
Carolina State University, 2002.

[12] R. W. Hogg, A. L. Rankin, M. C. McHenry, D. M. Helmick, C. F. Bergh, S. I.

Roumeliotis and L. Matthies, “Sensors and Algorithms for Small Robot
Leader/Follower Behavior”, Proceedings of the 2001 SPIE Unmanned Ground
Vehicle Technology III, pp. 72 – 82, (Orlando, USA), April 2001.

[13] L. Kleeman and R. Kuc, “An Optimal Sonar Array for Target Localization

and Classification,” IEEE International Conference on Robotics and
Automation, Vol. 4, pp. 3130 – 3135, 1998.

[14] R. J. Kozick and B. M. Sadler, “Distributed Source Localization with Multiple

Sensor Arrays and Frequency-Selective Spatial Coherence,” Proceedings of
the Tenth IEEE Workshop on Statistical Signal and Array Processing, pp. 419
– 423, 2000.

[15] R. A. Krohling, Y. Zhou, A. M. Tyrrell, “Evolving FPGA-based robot

controllers using an evolutionary algorithm”, Proceedings of the International
Conference on Artificial Immune Systems (ICARIS), pp. 41 – 46,
(Canterbury, UK), September 2002.

[16] C. Lewis, J. Feddema and P. Klarer, “Tasking and Control of a Squad of

Robot Vehicles,” Proceedings of the 2001 SPIE Unmanned Ground Vehicle
Technology III, pp. 147 – 158, (Orlando, USA), April 2001.

[17] K. A. Luthy, L. S. Mattos, J. C. Braly, E. Grant, J. F. Muth, A. Seyam, A.

Dhawan, T. Ghosh, “Developing a Portable Acoustic Array on a Large-Scale
E-Textile Substrate,” Proceedings of the Materials Research Society 2002 Fall
Meeting, Symposium D: “Electronics on Unconventional Substrates,
Electrotextiles and Giant-Area Flexible Circuits”, (Boston, USA), December
2002.

[18] A. Mahajan and M. Walworth, “3D Position Sensing Using the Difference in

the Time-of-Flights from a Wave Source to Various Receivers,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 1, February 2001.

 107

[19] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, “A Portable,
Autonomous, Urban Reconnaissance Robot,” International Conference on
Intelligent Autonomous Systems, (Venice, Italy), 1996.

[20] S. McDowell, M. D. Seyer, “USB Explained,” Prentice Hall PTR, 1999.

[21] J. -A. Meyer, “Evolutionary Approaches to Neural Control in Mobile Robots,”

1998 IEEE International Conference on Systems, Man and Cybernetics, Vol.
3, pp. 2418 – 2423, October 1998.

[22] R. L. Moses and L. C. Potter, “An Acoustic Array for Undergraduate
Instruction,” SPE Workshop, October 2000.

[23] R. R. Murphy, “Marsupial and Shape-Shifting Robots for Urban Search and

Rescue,” IEEE Intelligent Systems, vol. 15, no. 2, pp. 14 – 19, 2000.

[24] T. H. Pastore, H.R. Everett and K. Bonner, “Mobile Robots for Outdoor

Security Applications,” American Nuclear Society 8th International Topical
Meeting on Robotics and Remote Systems (ANS'99), (Pittsburgh, PA), April
1999.

[25] T. Pham and B. M. Sadler, “Adaptive Wideband Aeroacoustic Array

Processing,” 8th IEEE Statistical Siganl and Array Processing Workshop, pp.
295 – 298, (Corfu, Greece), June 1996.

[26] J.G. Proakis and D.G. Manolakis, “Digital Signal Processing: Principles,

Algorithms and Applications,” Prentice-Hall, New Jersey, 1996.

[27] M. Toscano, “Department of Joint Robotics Program”, Proceedings of the

2001 SPIE Unmanned Ground Vehicle Technology III, pp. 313 – 322,
(Orlando, USA), April 2001.

[28] B. D. V. Veen and K. M. Buckley, “Beamforming: A Versatile Approach to

Spatial Filtering,” IEEE ASSP Magazine, pp. 4 – 24, April 1988.

[29] W.G. Walter, "The Living Brain," W. W. Norton, New York, 1953.

[30] P. K. C. Wang, “Navigation Strategies for Multiple Autonomous Mobile

Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.486 – 493, (Tsukuba, Japan), 1989.

 108

[31] S. H. Young, M. V. Scanion, “Robotic Vehicle Uses Acoustic Array for
Detection and Localization in Urban Environments,” Proceedings of the 2001
SPIE Unmanned Ground Vehicle Technology III, pp. 147 – 158, (Orlando,
USA), April 2001.

Cited Websites

[32] Cybermotion Inc., www.cybermotion.com, Roanoke, VA, USA.

[33] Future Technology Devices International Ltd., www.ftdichip.com, Glasgow,

Scotland, UK.

[34] iRobot Corporation, www.irobot.com, Burlington, MA, USA.

[35] K-Team SA, www.k-team.com, Switzerland.

[36] MicroDAQ Data Acquisition, www.usbmicrodaq.com, Cape Town, South

Africa.

[37] National Instruments Corporation, www.ni.com, Austin, TX, USA.

[38] R. Nave, Georgia State University, http://hyperphysics.phy-

astr.gsu.edu/hbase/sound/soucon.html

[39] Parallax Inc., www.parallax.com, Rocklin, CA, USA.

[40] Quatech Inc., www.quatech.com, Akron, OH, USA.

[41] Ravar Pty Ltd., www.ravar.net, Gold Coast, Australia.

[42] Windmill Software Ltd., www.windmillsoft.com, Manchester, UK.

 109

APPENDICES

 110

Appendix 1 – Experimental Data

The following sections present tables and figures containing experimental data

collected during the development and testing of the EvBot II platform, the USB-

DAQ8 data acquisition system and the acoustic array system.

Section A1.1 – Calibration of the Open Loop Control System

The following tables contain the experimental data acquired while calibrating

the open loop control of the EvBot II. Each value in the tables is an average of five

trials.

Table A1.1: Calibration values obtained for linear motion.

Distance traveled in
one second (inch) Required PWM value

0.0 0
0.5 80
1.0 90
1.5 100
2.0 105
2.5 120
3.0 125
3.5 130
4.0 135
4.5 160
5.0 165
5.5 180
6.0 185
6.5 200
7.0 225
7.5 240
8.0 250
8.5 255

 111

Table A1.2: Calibration values obtained for rotations.

Rotation
angle

Time step
(seconds)

LEFT PWM
Value

RIGHT PWM
Value

Product
PWM x Time

0 0 0 0 0.00
10 0.3 -180 180 21.18
20 0.5 -190 190 37.25
30 0.6 -200 200 47.06
40 0.7 -220 220 60.39
50 0.8 -240 240 75.29
60 0.9 -250 250 88.24
70 1.1 -240 240 103.53
80 1.1 -250 250 107.84
90 1.3 -245 245 124.90

100 1.4 -250 250 137.25
110 1.5 -250 250 147.06
120 1.6 -250 250 156.86
130 1.7 -250 250 166.67
140 1.8 -255 255 180.00
150 2 -250 250 196.08
160 2.1 -253 253 208.35
170 2.3 -251 251 226.39
180 2.6 -253 253 257.96
-170 2.5 253 -253 248.04
-160 2.3 251 -251 226.39
-150 2 253 -253 198.43
-140 1.9 254 -254 189.25
-130 1.9 248 -248 184.78
-120 1.7 250 -250 166.67
-110 1.6 250 -250 156.86
-100 1.5 250 -250 147.06
-90 1.3 253 -253 128.98
-80 1.2 245 -245 115.29
-70 1.1 242 -242 104.39
-60 1 240 -240 94.12
-50 0.8 244 -244 76.55
-40 0.7 230 -230 63.14
-30 0.6 212 -212 49.88
-20 0.5 195 -195 38.24
-10 0.3 180 -180 21.18

 112

Section A1.2 – EvBot II Speed Control Experiments

The following tables contain experimental data obtained during calibration

and testing of the closed loop speed control system for the EvBot II. Each value in the

tables is an average of five trials.

Table A1.3: Measured speed versus time for different commanded speeds

Commanded
Speed 1 2 3 4 5 6
Time Speed (inches/sec)

0 0 0 0 0 0 0
1 0 0 0.1 0.25 1.25 1.77
2 0 1.25 2.483 4.5 5.1875 5.75
3 0.25 2 3.5 4.25 5.2625 5.77
4 0.75 2.42 3.334 3.917 5.05 7.28
5 1.58 2.205 3.166 4.783 5.31 5.93
6 1.09 2.292 3.667 4 5.13 6.65
7 1.205 1.833 2.833 4.3 5.56 6.47
8 1.125 2 3.247 4.56 5.5 6.63
9 1 2.3125 3.753 4.14 5.5 6.125
10 1.25 2.1875 2.917 4.425 5.375 6.45
11 0.91
15 1.1675 3.325 4.375 6.303
20 2.1583 4.2

 113

Table A1.4: Measured distance traveled versus time for different commanded speeds

Commanded
Speed 1 2 3 4 5 6
Time Distance Traveled (inches)

0 0 0 0 0 0 0
1 0 0 0.1 0.25 1.25 1.77
2 0 1.25 2.583 4.75 6.4375 7.52
3 0.25 3.25 6.083 9 11.7 13.29
4 1 5.67 9.417 12.917 16.75 20.57
5 2.58 7.875 12.583 17.7 22.06 26.5
6 3.67 10.167 16.25 21.7 27.19 33.15
7 4.875 12 19.083 26 32.75 39.62
8 6 14 22.33 30.56 38.25 46.25
9 7 16.3125 26.083 34.7 43.75 52.375
10 8.25 18.5 29 39.125 49.125 58.825
11 9.16
15 13.83 45.625 61 90.34
20 40.083 82

The data shown in the above tables was used to generate plots of the distance

traveled versus time and speed versus time for each speed command value. These

plots are shown in Figures A1.1 to A1.12.

 114

EvBot II - Traveled Distance
Commanded Speed = 1 in/s

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 5 10 15 20
Time (seconds)

D
is

ta
nc

e
(in

ch
es

)

Figure A1.1: Measured distance traveled versus time for a commanded speed of one

inch/second.

Figure A1.2: Plot of velocity versus time for a commanded speed of one inch/second.

EvBot II Speed Control
Commanded Speed = 1 in/s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

Time (seconds)

Sp
ee

d
(in

/s
)

 115

Figure A1.3: Measured distance traveled versus time for a commanded speed of two

inches/second.

Figure A1.4: Plot of velocity versus time for a commanded speed of two

inches/second.

EvBot II - Traveled Distance
Commanded Speed = 2 in/s

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

Time (seconds)

D
is

ta
nc

e
(in

ch
es

)

EvBot II Speed Control
Commanded Speed = 2 in/s

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Time (seconds)

Sp
ee

d
(in

/s
)

 116

EvBot II - Traveled Distance
Commanded Speed = 3 in/s

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

Time (seconds)

D
is

ta
nc

e
(in

ch
es

)

Figure A1.5: Measured distance traveled versus time for a commanded speed of three

inches/second.

Figure A1.6: Plot of velocity versus time for a commanded speed of three

inches/second.

EvBot II Speed Control
Commanded Speed = 3 in/s

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16
Time (seconds)

Sp
ee

d
(in

/s
)

 117

EvBot II - Traveled Distance
Commanded Speed = 4 in/s

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

Time (seconds)

D
is

ta
nc

e
(in

ch
es

)

Figure A1.7: Measured distance traveled versus time for a commanded speed of four

inches/second.

Figure A1.8: Plot of velocity versus time for a commanded speed of four

inches/second.

EvBot II Speed Control
Commanded Speed = 4 in/s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20

Time (seconds)

Sp
ee

d
(in

/s
)

 118

EvBot II - Traveled Distance
Commanded Speed = 5 in/s

0

10

20

30

40

50

60

0 2 4 6 8 10 12
Time (seconds)

D
is

ta
nc

e
(in

ch
es

)
..

Figure A1.9: Measured distance traveled versus time for a commanded speed of five

inches/second.

EvBot II Speed Control
Commanded Speed = 5 in/s

0

1

2

3

4

5

6

0 2 4 6 8 10 12

Time (seconds)

Sp
ee

d
(in

/s
)

Figure A1.10: Plot of velocity versus time for a commanded speed of five

inches/second.

 119

Figure A1.11: Measured distance traveled versus time for a commanded speed of six

inches/second.

EvBot II Speed Control
Commanded Speed = 6 in/s

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Time (seconds)

Sp
ee

d
(in

/s
)

Figure A1.12: Plot of velocity versus time for a commanded speed of six

inches/second.

EvBot II - Traveled Distance
Commanded Speed = 6 in/s

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

Time (seconds)

Di
st

an
ce

 (i
nc

he
s)

 120

Section A1.3 – Low-Pass Filter Characterization

The low-pass filters implemented on the USB-DAQ8 were experimentally

tested and the following data was obtained.

Table A1.5: Measured values for gain and phase as a function of frequency.

Frequency Gain Phase
98 1 0
195 0.9798 0
390 0.9903 0
707 0.9709 0

1000 1 -7.2
4950 0.9533 -28.5
8160 0.9135 -58.75
15120 0.7961 -98
17960 0.7525 -116.38
20090 0.7075 -130.18
22940 0.6321 -148.6
30090 0.4227 -184.2
40000 0.2476 -230.4
60000 0.0947 -261.9

Section A1.4 – ADC Linearity and Frequency Distortion

 The experimental data obtained from experiments with the analog to digital

converter ADC08161C are shown in the next tables. Table A1.6 presents the data

from the linearity tests. Table A1.7 presents data from the frequency distortion tests.

 121

Table A1.6: Values obtained during the linearity test performed on the IC ADC08161C.

Input DC
voltage

Measured DC
voltage Error (%) Expected Error

(from ±0.02V resolution)

0.01 0.01 0.000 2.000
0.20 0.17 0.140 0.100
0.50 0.49 0.030 0.040
0.60 0.57 0.053 0.033
0.70 0.67 0.030 0.029
1.00 0.98 0.023 0.020
1.21 1.16 0.041 0.017
1.38 1.35 0.022 0.014
1.47 1.47 0.003 0.014
1.70 1.71 -0.006 0.012
1.81 1.80 0.006 0.011
2.01 2.02 -0.005 0.010
2.18 2.18 0.000 0.009
2.35 2.34 0.004 0.009
2.42 2.42 0.000 0.008
2.53 2.52 0.004 0.008
2.73 2.72 0.004 0.007
2.82 2.81 0.004 0.007
2.92 2.91 0.003 0.007
3.15 3.14 0.003 0.006
3.25 3.27 -0.006 0.006
3.44 3.44 0.000 0.006
3.55 3.55 0.000 0.006
3.75 3.75 0.000 0.005
3.86 3.86 0.000 0.005
3.93 3.92 0.003 0.005
4.11 4.10 0.002 0.005
4.21 4.22 -0.002 0.005
4.27 4.26 0.002 0.005
4.45 4.44 0.002 0.004
4.56 4.55 0.002 0.004
4.86 4.86 0.000 0.004
4.98 4.98 0.000 0.004
5.04 4.98 0.012 0.004

 122

Table A1.7: Values obtained during the frequency distortion test performed on the IC
ADC08161C.

Analog Signal
 Frequency

Digital Signal
Frequency (from FFT) Error (%)

20.0 20.2 1.0000
30.3 30.4 0.3300
41.1 41.5 0.9732
50.3 50.1 -0.3976
60.4 60.9 0.8278
70.4 70.5 0.0284
80.5 81.0 0.5590
101.4 101.7 0.2465
202.4 202.0 -0.1976
298.1 299.8 0.5703
510.1 509.0 -0.2156
805.9 805.5 -0.0496
997.9 998.2 0.0301

2016.0 2014.8 -0.0620
2998.0 2997.3 -0.0233
3993.0 3992.0 -0.0250
4529.0 4525.5 -0.0773

Section A1.5 – USB-DAQ8 Data Transfer Rate Test

The data collected from performed experiments designed to measure the data

transfer rates between the USB-DAQ8 and a host computer are show next. Table

A1.6 presents data from the USB-DAQ8 trying to sample at 78.125 KHz, and Table

A1.7 presents data for the reduced sampling rate.

 123

Table A1.8: Results from data transfer tests performed while using a sampling
frequency of 78.125 KHz. The values in the table represent and average of 100 trials

performed for each acquisition time.

Sampling frequency = 78.125 KHz
Acquisition Time

(seconds)
Average Number of

Bytes Received
Calculated Rate

(Bps)
0.1 33259 332590.0
0.2 43982 219910.0
0.3 58898 196326.7
0.4 71883 179707.5
0.5 82899 165798.0
0.6 96305 160508.3
0.8 122683 153353.8
1.0 148255 148255.0
1.2 172555 143795.8
1.4 196224 140160.0
1.6 223181 139488.1

Table A1.9: Results from data transfer tests performed while using a sampling
frequency of 9600 Hz. The values in the table represent and average of 100 trials

performed for each acquisition time.

Sampling frequency = 9600 Hz
Acquisition Time

(seconds)
Average Number of

Bytes Received
Calculated Rate

(Bps)
0.1 16552 75670.1
0.2 23686 78626.3
0.3 32312 76589.6
0.4 39559 77049.3
0.5 47003 77036.6
0.6 54803 76231.6
0.8 69358 75727.2
1.0 82889 76137.5
1.2 97279 75864.1
1.4 112993 76091.8

 124

Appendix 2 – Commands for the BasicX MCU’s

This appendix presents the commands used for motion control and to gather

data from the EvBot’s BasicX microcontroller units. The commands must follow the

described formats for proper functioning of the robot’s motion system.

The BasicX MCU’s have the following commands available:

Motion Commands

P Set the PWM duty-cycle for motor 1 and motor 2

M Set the speed for motor 1 and motor 2 (use feedback control)

T Set the PWM duty-cycle for motor 3

N Set the speed for motor 3 (use feedback control)

S Stop all motors and return speed control errors

Speed Control Setup Commands

K Set the control proportional gain for motor 1 or motor 2

C Set the control proportional gain for motor 3

I/O Commands

R Read a digital input pin from the master BasicX

I Read a digital input pin from the slave BasicX

 125

P command

Description
Set the PWM duty-cycle for motor 1 (right motor) and motor 2 (left motor).

Syntax
[P] [LeftDir|RightDir] [LeftPWM] [RightPWM] or

[p] [LeftDir|RightDir] [LeftPWM] [RightPWM]

Arguments Description

Item Type Description
[P] or [p] Byte ASCII(P) = 80

ASCII(p) = 112
[LeftDir|RightDir] Byte Bit 0: Right direction

Bit 1: Left direction
0 = Forward
1 = Backward

[LeftPWM] Byte PWM duty-cycle for the left motor
255 = 100%

[RightPWM] Byte PWM duty-cycle for the right motor
255 = 100%

Return Value
If success, return [P].

Related MatLab file
setpwm.m

 126

M command

Description
Set the speeds for motor 1 (right motor) and motor 2 (left motor). The motor speed is

controlled using feedback from wheel encoders.

Syntax
[M] [LeftDir|RightDir] [LeftSpeed] [RightSpeed] or

[m] [LeftDir|RightDir] [LeftSpeed] [RightSpeed]

Arguments Description

Item Type Description
[M] or [m] Byte ASCII(M) = 77

ASCII(m) = 109
[LeftDir|RightDir] Byte Bit 0: Right direction

Bit 1: Left direction
0 = Forward
1 = Backward

[LeftSpeed] Byte Left motor speed
255 = maximum speed

[RightSpeed] Byte Right motor speed
255 = maximum speed

Return Value
If success, return [M].

Related MatLab file
setspeed.m

 127

T command

Description
Set the PWM duty-cycle for third motor.

Syntax
[T] [TransverseDir] [TransversePWM] or

[t] [TransverseDir] [TransversePWM]

Arguments Description

Item Type Description
[T] or [t] Byte ASCII(T) = 84

ASCII(t) = 116
[TransverseDir] Byte Bit 0: Direction

0 = Rightward
1 = Leftward

[TransversePWM] Byte PWM duty-cycle for the transverse
motor (255 = 100%)

Return Value
If success, return [T].

Related MatLab file
setpwm3.m

 128

N command

Description
Set the speeds for motor 3 (transverse motor). The motor speed is controlled using

feedback from a wheel encoder.

Syntax
[N] [TransverseDir] [TransverseSpeed] or

[n] [TransverseDir] [TransverseSpeed]

Arguments Description

Item Type Description
[N] or [n] Byte ASCII(N) = 78

ASCII(n) = 110
[TransverseDir] Byte Bit 0: Direction

0 = Rightward
1 = Leftward

[TransverseSpeed] Byte Transverse motor speed
255 = maximum speed

Return Value
If success, return [N].

Related MatLab file
setspeed3.m

 129

R command

Description
Read a digital input pin from the master BasicX (BasicX 1).

Syntax
[R] [I/O pin number] or

[r] [I/O pin number]

Arguments Description

Item Type Description
[R] or [r] Byte ASCII(R) = 82

ASCII(r) = 114
[I/O pin number] Byte 0 = 0 ... 9 = 9, A = a = 10 ...

z = Z = 35

Return Value Syntax
[R] [pin value]

Return Arguments Description

Item Type Description
[R] Byte ASCII(R) = 82
[pin value] Byte 0 or 1 in ASCII

ASCII(0) = 48
ASCII(1) = 49

Related MatLab file
readpin.m

 130

I command

Description
Read a digital input pin from the slave BasicX (BasicX 2).

Syntax
[I] [I/O pin number] or

[i] [I/O pin number]

Arguments Description

Item Type Description
[I] or [i] Byte ASCII(I) = 73

ASCII(i) = 105
[I/O pin number] Byte 0 = 0 ... 9 = 9, A = a = 10 ...

z = Z = 35

Return Syntax
[I] [pin value]

Return Arguments Description

Item Type Description
[I] Byte ASCII(I) = 73
[pin value] Byte 0 or 1 in ASCII

ASCII(0) = 48
ASCII(1) = 49

Related MatLab file
readpinbx2.m

 131

K command

Description
Set the proportional gain of the feedback control of the motor 1 (right motor) or of the

motor 2 (left motor). The decimal number corresponding to the 16-bit word is divided

by 1000.0, so the range of the proportional gain is from 0.000 to 32.767.

Syntax
[K] [Left_K|Right_K] [HighByte] [LowByte] or

[k] [Left_K|Right_K] [HighByte] [LowByte]

Arguments Description

Item Type Description
[K] or [k] Byte ASCII(K) = 75

ASCII(k) = 107
[Left_K|Right_K] Byte Bit 0 : select right motor or left motor

0 = Right motor
1 = Left motor

[HighByte] Byte High byte of a 16 bit number (bit 8 to bit 15)
 [LowByte] Byte Low byte of a 16 bit number (bit 0 to bit 7)

Return Value
If success, return [K].

Related MatLab file
setpgain.m

 132

C command

Description
Set the proportional gain of the feedback control of the motor 3 (transverse motor).

The decimal number corresponding to the 16-bit word is divided by 1000.0, so the

range of the proportional gain is from 0.000 to 32.767.

Syntax
[C] [HighByte] [LowByte] or

[c] [HighByte] [LowByte]

Arguments Description

Item Type Description
[C] or [c] Byte ASCII(C) = 67

ASCII(c) = 99
[HighByte] Byte High byte of a 16 bit number (bit 8 to bit 15)
 [LowByte] Byte Low byte of a 16 bit number (bit 0 to bit 7)

Return Value
If success, return [C].

Related MatLab file
setpgain3.m

 133

S command

Description
Stop all motors and return error codes when on closed-loop control mode.

Syntax
[S] or [s]

Arguments Description

Item Type Description
[S] or [s] Byte ASCII(S) = 83

ASCII(s) = 115

Return Values
If successful stop and errors on the speed control are less than 10%, return [S].

If only the error on the speed control of the motor 1 is greater than 10%, return

[A][S].

If only the error on the speed control of the motor 2 is greater than 10%, return

[B][S].

If errors on the speed control of the motors 1 and 2 are greater than 10%, return

[A][B][S].

Related MatLab file
stopmotors.m

 134

Appendix 3 – Datasheets

The following sections present copies of the datasheets of the components

used in the EvBot II and in the USB-DAQ8. The datasheets presented here are mere

copies of the first two pages of datasheets found on the world wide web.

 135

A3.1 – MZ104 computer

 136

A3.2 – DiskOnChip 2000

 137

 138

A3.3 – PCM-3115B PCMCIA Module

 139

A3.4 – PCMCIA Wireless Card

 140

 141

A3.5 – BasicX24 Microcontroller

 142

A3.6 – ENS-1J-B28 Rotary Optical Encoder

 143

 144

A3.7 – HCTL-2016 Quadrature Decoder

 145

 146

A3.8 – HS-300BB Servo Motor

 147

 148

A3.9 – L298 Dual Full-Bridge Driver

 149

 150

A3.10 – UC3610 Dual Schottky Diode Bridge

 151

 152

A3.11 – 74HC165 Parallel-in / Serial-out Shift Register

 153

 154

A3.12 – MIC29501 Voltage Regulator

 155

 156

A3.13 – USB MOD2

 157

 158

A3.14 – ADC8161 Analog to Digital Converter

 159

 160

A3.15 – LMX324 Quad Operational Amplifiers

 161

 162

A3.16 – LTC 1563-3 Active Lowpass Filter

 163

 164

A3.17 – WM-52B Omnidirectional Electret Microphone

 165

A3.18 – 74VHC112 J-K Flip-Flop

 166

 167

A3.19 – 74AC74 D-Type Flip-Flop

 168

 169

A3.20 – 74VHC393 Dual 4-Bit Binary Counter

 170

 171

A3.21 – 74AC32 Quad 2-Input OR Gate

 172

 173

A3.22 – 74AC138 1-of-8 Decoder

 174

 175

A3.23 – 74HC30 8-input NAND Gate

 176

 177

A3.24 – 74AC04 Hex Inverter

 178

 179

A3.25 – TU–400E USB Hub

 180

Movies

1. EvBot II exploring the maze

2. EvBot II exploring the maze (2)

 181

3. Two generations of EvBots in the maze

4. EvBot II moving towards a sound source

 182

5. Simulation of the EvBot sonar for a sound frequency of 1 KHz

6. EvBot sonar tracking a 1 KHz sound source

 183

7. EvBot sonar tracking the sound of an airplane reproduced by a nearby speaker

	Abstract
	Title Page
	Signatures

	Biography
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 - Introduction
	Section 1.1 - Thesis Outline
	Section 1.2 - Thesis Goals

	Chapter 2 - Literature Review
	Chapter 3 - The EvBot II Platform
	Section 3.1 - The EvBot II Base
	Section 3.2 - The Encoder Circuitry
	Section 3.3 - The Motor Driver Circuitry
	Section 3.4 - Design of the Utility PCB
	Section 3.5 - CPU to MCU Communication System
	Section 3.6 - The PC/104 Stack
	Section 3.7 - Calibration of the Motion System

	Chapter 4 - Acoustic Array Sensor
	Section 4.1 - Quick Background
	Background on Sound
	Background on Beamforming
	Background on Triangulation
	Triangulation by Solving Simultaneous Equations
	Triangulation by the Voting Method

	Section 4.2 - Acoustic Array Software
	Creating a Representation of the Array Geometry
	Simulating the Directional Sound Intensity Sensed by an Acoustic Array
	Simulating Beamforming
	Passive Sonar Simulation and Waterfall Plot
	Simulating Triangulation - Error Plots
	Testing the EvBot's Tracking Sonar

	Section 4.3 - The EvBot's Acoustic Array Configuration

	Chapter 5 - The USB-DAQ8 Data Acquisition System
	Section 5.1 - Commercially Available Data Acquisition Systems
	Section 5.2 - USB-DAQ8 Overview
	Section 5.3 - USB-DAQ8's Amplifier Circuit
	Section 5.4 - USB-DAQ8's Low-Pass Filter
	Section 5.5 - USB-DAQ's Analog-to-Digital Converter
	Section 5.6 - USB Interface and Controller
	Section 5.7 - The USB-DAQ8's Timing and Control Circuit
	Section 5.8 - USB-DAQ8's Circuit Board
	Section 5.9 - Design Fault and Solution

	Chapter 6 - Experimentation and Results
	Section 6.1 - Experiments with the EvBot II Platform
	Calibration of the Open Loop Speed Control
	Calibration of the Closed Loop Speed Control
	EvBot II in Action

	Section 6.2 - Experiments with the Data Acquisition System
	Test of the Low-Pass Filter Frequency Response
	Test of the ADC Linearity and Frequency Distortion
	Test of the Data Transfer Speed
	Acquiring Data with the USB-DAQ8

	Section 6.3 - Experiments with the Acoustic Array
	Beamforming by Different Array Configurations
	Evaluation of the EvBot's Acoustic Array System
	Using the Acoustic Array as a Tracking Sonar

	Section 6.4 - EvBot's Navigation by Sound

	Chapter 7 - Conclusion and Future Research
	Section 7.1 - Concluding Remarks
	Section 7.2 - Future Research

	References
	Cited Websites

	Appendices
	Appendix 1 - Experimental Data
	Section A1.1 - Calibration of the Open Loop Control System
	Section A1.2 - EvBot II Speed Control Experiments
	Section A1.3 - Low-Pass Filter Characterization
	Section A1.4 - ADC Linearity and Frequency Distortion
	Section A1.5 - USB-DAQ8 Data Transfer Rate Test

	Appendix 2 - Commands for the BasicX MCU's
	P Command
	M Command
	T Command
	N Command
	R Command
	I Command
	K Command
	C Command
	S Command

	Appendix 3 - Datasheets
	A3.1 - MZ104 computer
	A3.2 - DiskOnChip 2000
	A3.3 - PCM-3115B PCMCIA Module
	A3.4 - PCMCIA Wireless Card
	A3.5 - BasicX24 Microcontroller
	A3.6 - ENS-1J-B28 Rotary Optical Encoder
	A3.7 - HCTL-2016 Quadrature Decoder
	A3.8 - HS-300BB Servo Motor
	A3.9 - L298 Dual Full-Bridge Driver
	A3.10 - UC3610 Dual Schottky Diode Bridge
	A3.11 - 74HC165 Parallel-in / Serial-out Shift Register
	A3.12 - MIC29501 Voltage Regulator
	A3.13 - USB MOD2
	A3.14 - ADC8161 Analog to Digital Converter
	A3.15 - LMX324 Quad Operational Amplifiers
	A3.16 - LTC1563-3 Active Lowpass Filter
	A3.17 - WM-52B Omnidirectional Electret Microphone
	A3.18 - 74VHC112 J-K Flip-Flop
	A3.19 - 74AC74 D-Type Flip-Flop
	A3.20 - 74VHC393 Dual 4-Bit Binary Counter
	A3.21 - 74AC32 Quad 2-Input OR Gate
	A3.22 - 74AC138 1-of-8 Decoder
	A3.23 - 74HC30 8-input NAND Gate
	A3.24 - 74AC04 Hex Inverter
	A3.25 - TU-400E USB Hub

	Movies
	EvBot II exploring the maze
	EvBot II exploring the maze (2)
	Two generations of EvBots in the maze
	EvBot II moving towards a sound source
	Simulation of the EvBot sonar
	EvBot sonar tracking a 1 KHz sound source
	EvBot sonar tracking the sound of an airplane

