
Abstract 

 
Mattos, Leonardo Serra. The EvBot II: An Enhanced Evolutionary Robotics Platform 
Equipped with Integrated Sensing for Control. (Under the direction of Edward Grant.) 
 

 

The research presented in this thesis describes the design and development of 

the EvBot II, a small, computationally powerful, and robust evolutionary robotics 

platform equipped with an acoustic array system. The EvBot II represents the next 

generation of autonomous robots for distributed robot-colony research, and its design 

has expanded the sensing capabilities and the overall performance of the EvBot 

robots by the incorporation of two microcontroller units, shaft encoders and a 

complete acoustic array system for tracking and navigation purposes. The design, 

development and test of this new robot is described in detail throughout this thesis, 

including the  design of an  USB data acquisition  system capable of simultaneously 

sampling eight audio channels as required for the realization of the added acoustic 

array system. Experiments designed to evaluate the  performance of this  new robot 

and its components are also described in this thesis, as well as experimental results 

showing that it is a well-suited platform for the study of evolutionary robotics, 

distributed robot-colonies and sensors technologies. 
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Chapter 1 – Introduction  

 

Researchers in the areas of distributed and evolvable robotics have recently 

started to use physical platforms to validate concepts developed in simulation, but one 

of the problems that  they  have  been  facing  is  to  overcome limitations imposed by 

unsuited robotic systems. We believe that the current need in this area is for robot 

platforms that are small enough to be used within research laboratories, yet robust and 

computationally power enough to implement complex machine-learned controllers in 

the real world.  The EvBot robots were developed to bridge the gap that exists 

between cumbersome commercial platforms featuring powerful central processing 

units (CPUs) and extensive sensing capabilities, and small inexpensive robots with 

limited capabilities.  The original EvBot measures only eight inches in diameter and 

is an autonomous system equipped with a Pentium class microcomputer system.  This 

robot has proven to be an extremely useful platform for advanced experimentation in 

robot colony behaviors and evolutionary robotics, but experimentation also indicated 

that the original EvBot platform still needed additional sensor capabilities to improve 

position and velocity control.  The research reported upon in this thesis concentrates 

on specifying the design of, and the implementation of, an improved and flexible 

hardware architecture for hosting and integrating data from a variety of sensor types, 

such as vision, sound and position. The end result is the EvBot II robot, a platform 

with the improved position and velocity accuracy that is required for interacting 
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robots acting as part of a colony.  To support this effort, circuitry was designed to 

enable the incorporation of shaft encoders and the closed loop control of up to three 

motors.  A  USB  hub  was also introduced  to  allow uncomplicated incorporation of 

extra sensors if and when such sensors are required. The USB hub allows “plug and 

play” sensor addition, and was used for the integration of an acoustic array system 

specially developed for this robot. The development of the mentioned acoustic array 

system was the second major focus of the research described in this thesis, and it 

involved the design of a custom data acquisition system (the USB-DAQ8) and several 

associated software programs. The EvBot II autonomous robot that emerged from this 

research work extends the possible application areas of EvBots, e.g., evolutionary and 

distributed robotics to undertake surveillance, reconnaissance and security 

applications. Experimentation with the EvBot II robotic platform demonstrated that, 

in addition to be completely compatible with the original EvBot, it is able to make 

successful use of the shaft encoders to control its traveling speed. Experiments also 

confirmed that the developed data acquisition system can effectively perform the 

simultaneous sampling of eight audio channels at a rate of 9600 samples per second 

per channel, thus successfully enabling the use of the acoustic array system for 

tracking and navigation purposes.  
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Section 1.1 – Thesis Outline 

 

The design and development of the EvBot II platform and its custom acoustic 

array system are described in this thesis. Chapter 2 presents a review of the literature, 

including a summary of autonomous robots currently in use in the areas of distributed 

and evolutionary robotics, and an overview of past and current research focused on 

the use of acoustics by mobile robots. The development of the new hardware and 

software for the EvBot II, including the design of the encoder systems and the new 

circuitry to drive the motor, is presented in Chapter 3. The following chapter presents 

an introduction to acoustic arrays and describes software developed for simulation 

and use on such systems. Chapter 5 provides an in depth description of the data 

acquisition system USB-DAQ8, which was developed to realize the acoustic array. 

The experimental results from tests of the robot platform and acoustic array system 

are presented in Chapter 6. Lastly, Chapter 7 presents some ideas for further 

improvements of the EvBot platform, as well as ideas for future experiments with the 

robot. 
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Section 1.2 – Thesis Goals 

 

The objectives of this thesis are to describe the: 

• Design and construction of the EvBot II, a small but computationally 

powerful autonomous robot created as an enhanced version of the original 

EvBot. 

• Development of the software used to design and make use of the 

acoustic array system implemented on the EvBot II. 

• Design of the USB-DAQ8, a data acquisition system custom 

developed to realize the EvBot’s acoustic array system. 

• Demonstration of the robot’s enhanced performance and use of the 

acoustic array system for tracking and navigation. 
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Chapter 2 – Literature Review  

 

The concept of robots is a very old one in our society and has always been 

related to automatic machines that can perform tasks in the manner of a human. 

Although their history is frequently said to have started around 270 BC with the water 

clocks and organs made by the Greek engineer Ctesibus, it was only in the early 

1920’s that term “robot” appeared. It was introduced by the Czech writer Karel 

Capek, who derived the term from the Czechoslovakian word for slave (robotnik) and 

used it in the play “Rossum’s Universal Robots”. 

From the beginnings, one of the main functions of robots in our society has 

been to free humans from repetitive, difficult or harmful tasks. Industrial robots were 

the first ones to appear in large scale and, since their first demonstration in 1959 by 

the M.I.T. Servomechanisms Lab, they have been improving the quality of life of 

humans across the globe. In recent times mobile robots have also started to be 

designed to help humans in a diverse quantity of tasks, from household work to 

exploration of hazardous environments. However, unlike industrial robots, mobile 

robots are required to have intelligence, the capability to adapt to different 

environments or tasks, and are also often required to be autonomous. Several 

examples of such robots can be found in the recent literature and the main uses 

include reconnaissance, surveillance and target acquisition (RSTA) for military forces 
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[4] [8], security monitoring [24] [27] [32] and search and rescue (SAR) in disaster 

areas [6] [23]. 

The first autonomous robots appeared in the research community in the early 

1950’s when the neurophysiologist W. Grey Walter [29] introduced his “Machina 

Speculatrix”, which was a three wheeled vehicle equipped with a two vacuum tube 

analog computer. This robot had the tendency to wonder around exploring the 

environment and this was the first proof that intelligent and autonomous robots can 

evolve and develop practical functions. Though it was only it the late 1980s that 

researchers would expand that idea to groups of robots that evolve together, 

originating in what is now known as distributed robotics [10] [2] [1] [30]. About that 

same time the artificial intelligence (A.I.) research community was introduced to the 

subsumption architecture proposed by Rodney Brooks [3] and started using its 

essence to build physical platforms to realize and test intelligent systems that 

previously had only existed in simulations. 

From the early work up to recent days, many of the physical autonomous 

robots developed to test evolvable and distributed systems were unsophisticated and 

carried little onboard processing, such as the common Kephera robot [35], which has 

been used by innumerous research groups as mentioned in [21]. Even though these 

robots proved to be very useful for research, their lack of processing power imposes 

limitations, so they often rely on an external computer for high-level processing when 

the implementation of complex controllers are desired [9] [15]. 
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Recently autonomous robots with large processing capabilities have appeared 

in the distributed robotics literature, such as the Urban II and the ATRV-2 developed 

by iRobot Corporation and used by Hogg et al. [12] and Budulas et al. [4]. These 

robots use powerful hand-held computers for processing of sensor data and control, 

but are relatively large, heavy and expensive. Another example of a powerful robot is 

the RATLER, which is a medium-sized all-electric vehicle containing a PC104 stack 

for computation, control and sensing. The RATLER was originally developed at the 

Sandia National Laboratories as a prototype vehicle for lunar missions, and some of 

these robots are currently in distributed robotics research [8] [16]. 

Other research groups are experimenting with evolvable and distributed 

systems using small and inexpensive robots, like the GROWBOT from Parallax [39], 

which was used in the Idaho National Engineering and Environmental Laboratory 

(INEEL) by a research group working on large-scale micro-robotic forces [7]. Even 

with the limited processing power and limited sensorial capabilities provided by 

GROWBOT’s Basic Stamp 2 microcontroller, the researchers were able to 

demonstrate evolution and interaction between robots. 

The robot EvBot developed in the Center for Robotics and Intelligent 

Machines (CRIM) at the NC State University [11] fits well into the mid-range of 

autonomous robots being used for the study of evolvable systems. Although it has 

compatible processing power as most of the newest robots found in the literature, the 

CRIM’s EvBot has the advantage of reduced size (twelve by ten inches) and low 

price (about $1400.00 for parts per unit). Similar to the RATLER and to the Koala 
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robots [35], the EvBot uses a PC104 stack equipped with a Pentium class processor, 

and it also features low power consumption, being able to continuously operate for 

more than two hours on a single 7.2V/3000mAh Ni-MH battery. 

In general, it is seen that the research community in the area of distributed and 

evolvable robotics requires robotic platforms that allow the implementation of 

computationally complex controllers from a wealth of data. This is especially true 

when the robots are designed to leave the research laboratories and undertake “real-

world” tasks. In the “real-world” the usefulness of such robots is usually directly 

proportional to the diversity of their onboard sensors, i.e. the larger the variety of 

sensors one robot has, the higher is the number of possible tasks it can perform, or the 

higher is the precision of the tasks it can perform. For that reason, this research area 

needs robot platforms whose architecture is open and expandable, thus providing a 

capability for the addition of new sensors as needed. Robots being developed for 

military applications, such as urban warfare, are very good examples of systems with 

these needs [16] [19]. They are usually required to have video camera, radar, GPS, 

RF transceivers and other specialized sensors, like chemical detectors or acoustic 

sensors. 

Recently the researchers in the area of robotic RSTA started to revisit the 

acoustic field and the use of sound as tactical information has been regaining 

importance. This field started to become very popular by the end of the World War I, 

when the first sonar devices were developed to detect submarines. Since them the 

sonar technology has been greatly developed and along came the development of 



 9

acoustic arrays and related technologies, such as systems that perform spatial filtering 

by beamforming [28], target localization and classification [13] and estimation of 

sound source location [5] [18]. Acoustic array research is still active and producing 

knowledge, especially in the area of sensor array data processing [14] [25]. 

Recent trends in security and in RSTA are also bringing the attention back to 

passive acoustic array systems due to the fact that such systems can provide important 

strategic information without being easily detected. For that reason, acoustic array 

systems are being studied as part of RSTA robots [31] and as unattended ground 

sensors (UGS) [17].  

In conclusion, it is seen that the research in the area of autonomous mobile 

robotics is growing substantially and strengthening in the area of distributed robotics. 

This is particularly the case where a team of robots may contribute cooperatively and 

overperform an individual robot. As a result, small and sophisticated robot platforms 

capable of carrying multiple sensors, implement complex controllers, and provide a 

wealth of data are being needed to support experimental tests.  
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Chapter 3 – The EvBot II Platform 

 
 The original Evolutionary Robots (EvBots) [11] have always performed well, 

but they needed more on-board sensors to increase their perception and control.  For 

example, they needed the addition of shaft encoders to ensure closed-loop speed 

control.  Without encoders it is not possible for the robot to perform precise 

movements, or move at a constant speed, or realize that it is not moving at all.  

Without shaft encoders each EvBot has to go through a difficult and time-consuming 

calibration process to ensure the robot controller makes precise decisions related to 

desired actions, e.g., turning a desired amount or moving at a desired speed. 

 So, the addition of shaft encoders became the first priority in the design of the 

new EvBot robot platform, the EvBot II.  The encoders along with their associated 

circuitry were the first major design change initiated for expanding the robot colony. 

Because the EvBot II colony was to be based on the Radio Shack Bedlam product 

(see Figure 3.1), a certain amount of redesign was needed to its hardware, e.g., 

replacement of the driving motors and the removal of the extra gears.  Only then 

could the new circuit design required for motor control and enhanced sensing be 

specified.  To expand the connectivity of the original EvBot systems, a USB hub was 

also included on the EvBot II robot platform.  Doing this ensured that the new system 

could implement a diverse number of commercially available or custom designed 

sensor systems, e.g., an acoustic array system that will be discussed later.  
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 The specification and the design of all hardware and software for the new 

generation of EvBots will be fully described in the remaining sections of this chapter. 

 

 

Section 3.1 – The EvBot II Base 

 
 The base used for the EvBot II came from the radio-controlled car Bedlam, 

from Radio Shack.  Driving the car showed that it operated at high speeds, using its 

tank-like traction system for forward and backward motion, and spins.  However, this 

vehicle also includes a third axis that can provide transverse motion, which makes an 

interesting platform for studying the use of biologically inspired actions, subsumption 

architectures, and evolutionary robotics.  

 

Figure 3.1: The Bedlam, used as the EvBot II base. 

 

To create the new robot, the Bedlam platform was first striped of all 

unnecessary parts. It was reduced to its drive system, the motors and gear systems, 
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which were kept as the basis of the EvBot II platform.  The shaft encoders were then 

installed in the base using a custom designed support (Figure 3.2) and the motor wire 

loom were extended to ensure that they would be able to connect to the newly 

designed driver board. 

 
Figure 3.2: Encoders installed on the EvBot II base using a custom designed bracket. 

 

 After the changes to the mechanical drive system were made to the Bedlam 

vehicle, it now became the basis of the EvBot II robot platform.  Speed control tests 

carried out with the Bedlam drive system showed that the original motors operated 

too fast for all practical purposes.  It therefore became necessary to reduce the speed 

of the drive system, which the tests showed could not be solely achieved by simply 

reducing the motor’s voltage.  Because the radio-controlled car was design to move at 

high speed, the gearing does not provide a sufficient enough reduction to keep the 

motor in its operating range, particularly when the robot is required to move slowly. 

New motors having built-in reduction gears were specified to overcome this problem. 

The selected motor was the HS-300BB made by Hitec (Appendix A3.8).  Once these 

were sourced and delivered, they were installed in the EvBot II platform.  However, 
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they could not be installed without another design alteration being made to the 

Bedlam body.  The final design of the bracket supported the drive motors and the 

encoders, and is shown in Figure 3.3. 

 
Figure 3.3: Motor-Encoder Assemblage. 

 

  

Section 3.2 - The Encoder Circuitry 

 
 The addition of shaft encoders to each of the robot’s motors required the 

development of dedicated hardware and software capable of handling the data from 

these two sensors.  To achieve this, encoder circuitry was specially designed, tested 

and implemented on the new generation of EvBots.  The design specification of the 

encoder circuitry is descried in this section. 
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The encoder circuit is based on the integrated circuit HCTL-2016 from 

Agilent, see the data sheet in Appendix A3.7. This integrated circuit (IC) is a 

quadrature decoder/counter set up to be directly controlled by a microcontroller chip, 

which in this case is the BasicX24.  The data sheet of the HCTL-2016 shows that the 

chip outputs a 16-bit word to an 8-bit parallel bus.  This is achieved by breaking the 

16-bit word into two 8-bit bytes, i.e., a high byte and a low byte.  The output byte is 

selected by control lines of the microcontroller, but due to the limited number of I/O 

pins on the BasicX a parallel to serial converter had to be employed to get the 

appropriate data control action.  A shift register, IC MM74HC165, was selected for 

this task.  Adopting this design means that only one control line is now required from 

the BasicX microcontroller. 

 The encoders selected for this application are the optical encoder ENS-1J-B28 

from Bourn, see Appendix A3.6.  This encoder provides a 2-bit gray code as output 

and its the maximum shaft speed is 3000 RPM.  After the encoders, the only other 

required component for the new circuitry is a clock oscillator. This needs to be 

connected to the decoder and it should be fast enough to allow proper functioning of 

the system at the maximum desired speed.  Given the maximum operating speed of 

the encoder, the selected clock oscillator was an ECS100AC, which is a 1.22MHz 

oscillator from ECS International Inc. 

The BasicX microcontroller is equipped with internal timers and circuitry that 

is capable of driving two simultaneous pulse width modulation (PWM) outputs.  

However, two quadrature decoders are also needed to get feedback data from the two 



 15

shaft encoders on the EvBot platform.  The final circuit design for the shaft encoders, 

see Figure 3.4, has the two shaft encoder systems working in parallel to ensure 

maximum operating efficiency. 

 

 

Figure 3.4: Encoder circuitry in the utility board. 
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Section 3.3 - The Motor Driver Circuitry 

 
 This part of the EvBot II system design deals with the speed control of a DC 

motor using pulse width modulation (PWM).  The PWM signals, which are a train of 

square waves where the aspect ratio can be altered, are generated in the EvBot II by 

the BasicX microcontroller and are used to control the speed of the DC motors.  By 

introducing an H-Bridge driver into the circuit for power amplification, power can be 

supplied to drive the DC motors and the control of forward/reverse direction of 

rotation of the motor is easily implemented. 

To make use of the BasicX microcomputer’s capability of producing two 

simultaneous PWM outputs, the Dual Full Bridge Driver L298 was selected.  This is a 

compact but powerful IC capable of driving two DC motors with current up to 4A, 

see Appendix A3.9.  Each of the two halves of the L298 driver has an enable pin and 

two input pins that can accept the TTL level signals produced by the BasicX.  The 

input pins are used to select the direction of rotation and the enable pin receives the 

PWM pulses to determine the speed of rotation.  The control sequence is shown in 

Table 3.1.   
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Table 3.1: Control signals for the motor driver L298. 

Input 1 Input 2 Enable A Motor 

X X Low Free running 
High Low High Turn clockwise 
Low High High Turn counter-clockwise 
Low Low 
High High 

Illegal / Not Possible 

 
 

To ensure that the signal on the Input 2 pin is always the inverted signal of the 

Input 1 pin, the inverter IC 7404 was used.  DC motor back-EMF protection was also 

included in the circuit through the addition of the small signal Schottky diodes 

encapsulated on the IC UC3610 chip from Texas Instruments, see Appendix A3.10.   

 

 

Figure 3.5: Motor driver circuit in the utility board. 

 

Microcontrollers
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Section 3.4 – Design of the Utility Printed Circuit Board 

 

The utility board in the EvBot II integrates several functions. First, it is 

responsible for powering the PC/104 stack, which contains the central processing unit 

(CPU).   Second,  it is  responsible for  all interface  connections,  such as  the mouse, 

keyboard, speaker, reset button and a USB port access to the CPU.  Other than these 

utility functions, the board design also incorporates two BasicX microcontrollers and 

all the necessary circuitry for driving the DC motors and interfacing to the shaft 

encoders. 

The utility board was designed to conform to the geometry of the Bedlam 

vehicle’s base, to the extent that it uses the pre-existing holes in the vehicle for 

attachment.  The board has two wiring layers and was drawn using the software 

CirCAD.  Images of the CAD design of top and bottom layers of the utility board are 

shown in Figure 3.6 and Figure 3.7 respectively.  Images of the top and bottom of the 

manufactured utility board are shown in Figure 3.8. 
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Figure 3.6: Top layer of the utility board. 
 
 

 
Figure 3.7: Bottom layer of the utility board. 

 



 20

 

 
 

Figure 3.8: The manufactured utility board. 
 

 

Section 3.5 –CPU to Microcontroller Communication System 

 

As in the original EvBot design, all communications between the CPU 

(PC/104-based) and the microcontrollers (BasicX-based) in the EvBot II design are 

made using the RS232 communications standard.  The main difference between the 

communications system design between the original and the new systems is that there 

are now two microcontrollers on-board instead of one.  However, to ensure economy 
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of design it was decided to use only one of the serial ports in the CPU for data 

transfers. To solve this problem a communications chain was developed. 

The communications system starts on the serial port 1 of the PC/104 stack.  

That port is directly connected to the first BasicX microprocessor, which is called the 

Master BasicX.  The second link is made using the BasicX chip to support and handle 

extra serial ports.  A second RS232 port is thus defined in the Master BasicX and I/O 

pins are allocated to communicate serially to the second microcontroller, called the 

Slave BasicX.  

All the commands in this communication system originate in the CPU and are 

sent to the Master BasicX.  This microcontroller is responsible for determining if 

received commands should be executed locally or if they should be forwarded to the 

Slave BasicX for execution.  All system commands are one-byte in length, which can 

be extended to include arguments if necessary (see Appendix 2).  All system 

commands produce a return value, which is a command byte followed by the return 

argument, again if necessary.  Exceptions are error bytes, which are returned to the 

CPU when the last command has not been successfully executed. 
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Section 3.6 - The PC/104 Stack 

 

The PC/104 stack contains the MZ104, the central processing unity (CPU) of 

all EvBot’s.  It is based on the integrated circuit ZFx86, a Pentium-class processors 

whose main features include: 32 bit CPU core with 100 MHz operation; Full desktop 

AT compatibility; 64 MB of SDRAM; Fail-safe boot ROM; Dual watchdog timer; 

Two serial ports; One parallel port; One USB port; Drive interfaces and support for a 

solid state flash memory device (DiskOnChip).   

The second component in the PC/104 stack is a PC/104 interface module with 

two built-in PCMCIA card slots. It is used to hold additional memory (128 MB in a 

flash card) and a wireless network card. 

 

 
Figure 3.9: The EvBot II completely assembled, showing the utility board and the 

PC/104 stack mounted on the top the threaded base. 
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A detailed description of the hardware and custom software developed for the 

PC/104 system for the EvBots’s can be found in [11]. That work also presents the 

configuration of the network environment were the EvBot’s operate and the Infinity 

Atom Linux, the custom operational system developed for the EvBot platform. 

 The only improvements on the PC/104 system implemented in the EvBot II 

were the expansion of memory size. The flash memory card was upgraded from 

96MB to 128MB and the DiskOnChip size was increased from 8MB to 32MB. The 

remainder of the PC/104 system was kept as specified for the original EvBot’s 

platform.  

 

 

Section 3.7 – Calibration of the Motion System 

 

Although the EvBot II incorporates shaft encoders, calibrations of the motion 

system were necessary to guarantee a reliable performance of the robot. The 

calibrations were performed for the open-loop and closed-loop control modes and 

will be detailed in Chapter 6 along with other experimentations involving the EvBot 

II platform. 
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Chapter 4 – Acoustic Array Sensor  

 

Acoustic arrays are passive sensor systems that can have several uses with a 

robot platform [4] [13]. They are composed by a group of acoustic sensors placed in 

known geometrical locations that can, in connection with a processing unit, perform a 

number of audio related functions. Just like our ears, acoustic arrays can be used for 

communications, for navigation purposes, or as passive sonar for monitoring, 

tracking, object identification and triangulation. 

One of the advantages of acoustic arrays is that they offer increased acoustical 

sensitivity when compared to single sensor systems, but the main reason to use such 

an array of sensors is the possibility to perform beamforming and triangulation with 

the acquired audio data. Both of these functions are based on phase differences 

between the multiple audio signals. Beamforming provides a way to implement 

spatial filtering and directional listening, while triangulation can be used to pinpoint 

the coordinates of a sound source with respect to the sensors array. Both functions 

will be detailed later in this chapter. 

Acoustic arrays started to gain importance when the first sonar devices were 

developed by the end of the World War I. Since then they have been widely used in 

the field of surveillance and target acquisition.  Recently the use of acoustic arrays 

started to be extended to autonomous mobile robots being designed for applications in 

urban warfare and other complex battlefields, and researchers are trying to show their 
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usefulness for target detection and situation awareness, such as location of snipers or 

detection of door slam [31].  

The goal of the development of an acoustic array for the EvBot II is to expand 

its sensorial capabilities and to enable the investigation of the uses of sound as 

another source of information about the robot’s surrounding world. With this 

objective, a small area acoustic array with eight microphones was designed in 

simulation and later implemented as a shield that can be attached to the robot body. 

This chapter briefly presents the background theory involved in acoustic array 

systems, and presents simulation programs developed to help the understanding and 

design of such arrays. The programs include software to analyze acoustic array 

configurations for beamforming and triangulation purposes, and programs developed 

to use and analyze real acoustic arrays. As a group the developed programs provide 

the means to validate simulation data and to demonstrate the usefulness of an acoustic 

array system to the EvBot II. 

 

Section 4.1 – Quick Background 

Section 4.1.1 – Background on Sound  

 
The word “sound” usually means sound which can be perceived by the human 

ear, i.e., it is used as a synonym for pressure waves with frequency between 20 Hz 

and 20,000 Hz.  
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Sound propagates through air as a longitudinal wave, which is characterized 

by the medium being displaced in parallel to the propagation of the wave. As an 

example, “a single-frequency sound wave traveling through air will cause a sinusoidal 

pressure variation in the air. The air motion which accompanies the passage of the 

sound wave will be back and forth in the direction of the propagation of the sound” 

[38]. 

 

 

Figure 4.1: Sound waves in air (reproduced from [38]). 
 

The propagation speed of sound is determined by the properties of the 

medium and, as most other types of waves, follows the relationship v = f λ, where v is 

the propagation velocity, f is the wave frequency  and λ is the wavelength. In the case 

of  dry  air, the  speed of sound  can  be approximated by T0.6331.4+≈soundv  m/s, 

where  T  is  the  Celsius  temperature.  As  an  example, for dry air at 21°C the sound 

speed is 344 m/s and the  audible sound  waves have wavelengths from 0.0172 meters 

to 17.2 meters. 
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Section 4.1.2 – Background on Beamforming  

 

Beamforming is a method used to implement spatial filtering of signals in an 

array of sensors. It is realized by beamformer systems that collect spatially 

propagating waves and exploit the principle of interference in order to receive a 

signal radiating from a specific location and attenuate signals from other locations. 

Interference is a phenomenon that can occur between waves propagating in 

the same medium, and may be constructive or destructive. Constructive interference 

occurs when the interfering waves are “in phase” and their amplitudes add. If the 

waves are “out of phase” and the amplitudes subtract the interference is called 

destructive.  

 

Figure 4.2: Constructive and destructive interference (reproduced from [38]). 

 

Beamformers make use of interference by adding delays and linearly 

combining the signals collected from the sensors in the array. Such delays cause the 

signals coming from the listening direction to interfere constructively, and cause the 
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signals coming from other directions to interference destructively. This effectively 

amplifies the signals coming from the listening direction and attenuates signals from 

other directions. 

Typically a beamformer is a digital processing system that contains a data 

acquisition system to translate the analog input data into digital information by means 

of a sampling process. In such a beamformer the sampled time series obtained from 

each sensor is shifted and linearly combined to generate a single output time series, 

which is taken as the signal coming from the specific listening direction. 

 

 

Section 4.1.3 – Background on Triangulation 

 

Triangulation is a term used to indicate the calculation of the coordinates of a 

signal source based on multiple sensors’ data (or the coordinates of the receiver based 

on multiple sources’ signals). In the case of acoustic arrays, the coordinates of the 

sound source can be calculated based on the coordinates of each sensor in the array 

and on the time delays between the signals received by each sensor. Different 

algorithms can be used to perform such calculation, and they usually provide different 

precisions and number of singular points. Two triangulation methods will be 

presented in the following subsections. 
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Section 4.1.3.1 – Triangulation by Solving Simultaneous Equations 

 

 The triangulation method described in this section was called “Matrix 

Method” and its formulation is relatively simple. As described in [18], the solution 

can be developed from the case where there is one signal transmitter and four 

receivers (sensors): 

 

Figure 4.3: Setup for formulation of the triangulation problem (reproduced from [18]). 

 

To start the formulation, consider that the position of the sound source (u,v) is 

unknown, but the coordinates of the sensors are known and have the values R1 (x1,y1), 

R2 (x2,y2), R3 (x3,y3) and R4 (x4,y4). Also consider that we can measure time delays 

between the received signals and assume sensor number 1 as the reference. So the 

time delays are given by ∆T12, ∆T13 and ∆T14. Now, considering that the sound 

travels in circular waves from the transmitter, four concentric circles can be draw as 

in Figure 4.3: one with radius d through R1 and the others with radius (d + c∆T12), (d 
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+ c∆T13) and (d + c∆T14), where c is the speed of the sound. At this point we already 

have a set of equation, which is: 

(x1 – u)2 + (y1 – v)2 = d2 

(x2 – u)2 + (y2 – v)2 = (d + c∆T12)2 

(x3 – u)2 + (y3 – v)2 = (d + c∆T13)2 

(x4 – u)2 + (y4 – v)2 = (d + c∆T14)2 

Now, by solving the first equation for d2 and performing some substitutions, 

the final set of equations can be written: 
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These simultaneous equations can be solved for the sound source coordinates 

(u,v) and for the distance d between the transmitter and the sensor number 1 provided 

that we know the velocity of the sound. If that velocity also needs to be calculated, 

the addition of a fifth sensor can provide an extra equation and a new set of equations 

can be found and solved. This formulation can also be extended to three-dimensional 

arrangements (see [18] for details). 

This algorithm was tested in simulation and it was found that it is sensitive to 

errors in the sensors coordinates and in the time delays measurements. It also presents 

many singular points for planar arrays, so a new algorithm was developed to try to 

solve these problems by using a voting scheme. 
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Section 4.1.3.2 – Triangulation by the Voting Method 

 

This algorithm was developed to approximately determine the azimuth angle 

of an emitting sound source and can be applied to arrays of arbitrary number of 

sensors and arbitrary configurations. The formulation of the triangulation problem for 

this method can be better understood by analyzing an acoustic array composed of 3 

microphones positioned on the same plane: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Setup for formulation of the triangulation problem. 

 
 

For the development of the equations, consider the reference microphone to be 

the mic 1, the microphone with the smallest measured time delay. Now, remembering 

that we know the distances between the reference and the other microphones (d2,1 and 
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d3,1 = distance between mic 3 and 
          reference mic 

θ3,1 = azimuth of the vector from mic 3 to 
         reference mic 

d3,m = calculated distance based on time 
          delay between mic 3 and reference 
          mic. 

θss,3 =  bearing of the sound source from  
          mic 3
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d3,1), as well as the azimuth of the vectors from each microphone to the reference (θ3,1 

and θ2,1), relative time delay measurements can be used to calculate the distances d2,m 

and d3,m. The formula for these calculations are based on the speed of the sound and 

given by: 

)( 12,2 ttVd soundm −∗=  
 

)( 13,3 ttVd soundm −∗=  
 

If we consider that the acoustic array is in the far field of the sound source, square 

angles can be assumed as shown in Figure 4.4, and using geometrical relations we can 

get to the following equations: 
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αθθ ±= 1,33,ss  βθθ ±= 1,22,ss  
 

The above equations can be used to solve for the azimuth of the sound source 

as viewed from each microphone, but ambiguities arise. The approach taken by this 

algorithm to solve this problem is to implement a voting scheme where each 

microphone “votes” for two possible sound source azimuths. This means that, if the 
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array has n microphones, the total number of votes will be 2*(n-1), from which (n-1) 

votes will go to angles that are close to the correct bearing of the sound source. At he 

end of the voting process, the algorithm selects the angle with more votes as the most 

probable azimuth of the sound source. 

This algorithm was tested in simulation and proved to work well, see Section 

4.2.5. Although it does not provide the precise resolution obtained by the solution of 

simultaneous equations, it does not generate singularities and provide a reliable 

estimate of the sound source bearing by using data from all sensors available. 

 

 

Section 4.2 – Acoustic Array Software 

 

The beamforming processing in acoustic arrays is realized in the digital world, 

using digital signal processing techniques. Therefore one of the main parts of acoustic 

array systems is the processing computer and the code running on it. 

The use of software code for simulation is also very important for acoustic 

arrays analysis. Simulations can help in the design of array geometry by providing an 

easy way to change parameters and test new configurations. It also provides graphical 

representations that can help us understand better the intricate characteristic of such 

systems. 
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During the research performed in this area simulation and application 

programs were developed. The main characteristic of these programs is that they are 

general in respect to the acoustic array geometry, enabling any two-dimensional or 

three-dimensional array configurations to be analyzed. Each of the developed 

software is a MATLAB program and will be presented in the following sections.  

 

 

Section 4.2.1 – Creating a Representation of the Array Geometry 
 

The program CreateAcArray.m was developed to gather geometrical 

information about a new acoustic array configuration and create a file containing the 

configuration data of that array. The main objective is the generation of a 

computational representation of the desired acoustic array to be used for simulation 

and data analysis. 

CreateAcArray.m was developed to accommodate for 2-D and 3-D array 

configurations and accepts parameters in inches, feet or meters. The program gathers 

the necessary information by questioning the user, starting with the number of sensors 

in the array. From there, the geometrical coordinates of each microphone relative to a 

user-defined origin of a cartesian coordinate system are requested.  

When CreateAcArray.m finishes the information gathering, it plots a 

representation of each microphone in a 2-D or 3-D figure so the user can easily 

confirm the correctness of the array configuration. The program also creates a 
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configuration text file with the sensors coordinates, saving the entered information so 

other programs can use it. 

A view of the MATLAB window running the CreateAcArray.m program is 

shown in Figure 4.5(A) and an example of plot generated is shown in Figure 4.5(B). 

 
 
 
 

Figure 4.5: (A) MATLAB running the program CreateAcArray.m and (B) created array. 
 

(A) 

(B) 
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Section 4.2.2 – Simulating the Directional Sound Intensity Sensed by 

an Acoustic Array 
 

After the geometrical configuration of an acoustic array is created, one of the 

main questions that arise is: How well does it work in terms of beamforming? The 

MATLAB program ArrayPolarPlot.m was created to answer this question through 

simulation.  

The ArrayPolarPlot.m program simulates the directional sound intensity 

sensed by a general acoustic array for a specific sound source location and frequency, 

which are user defined. To perform that task, the program uses the azimuth and 

elevation angles of the sound source to generate simulated sound signals with 

appropriate delays at the microphones and then calculates the directional sound 

intensity for every look-angle. 

In the ArrayPolarPlot.m program the look-angles consist of a combination of 

azimuth and elevation angles having a pre-specified resolution of one degree. For 

every look-angle, ideal delays that would put signals coming from that direction in 

phase are calculated and added to the sound signals at the microphones. Those signals 

are then added together and, due to the included delays, constructive or destructive 

interference occurs. The result is a signal  whose  RMS value is  proportional to the 

magnitude of the sound sensed as coming from that direction. 
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Figure 4.6: Example of simulated acoustic signals. (A) Signal at the sound source.    
(B) Delayed signals arriving at the microphones. (C) Resulting signal showing 
destructive interference cause by linear combination of the sensors’ signals. 

 
 

 
The output of this simulation program is a figure with two plots, each 

representing the RMS value of the sum-signal at the look-angles. The values are 

normalized and understood as gains, so the plots are described as directional gain 

plots for the acoustic array.  

The first plot in the created figure is a surface plot representing the gain of the 

acoustic array in a 3-D space. The second plot is a polar plot that shows the gain data 

only for the zero-elevation angles. An example of the generated plots is shown next. 
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Figure 4.7: Example of directional gain plots generated by the ArrayPolarPlot program. 
 

This program also outputs the azimuth and elevation angles of the direction 

that corresponds to the maximum RMS value of the sum-signal, offering an easy way 

to check that the maximum value corresponds to the direction of the sound source.  

 

 

Section 4.2.3 – Simulating Beamforming 

 

A simulation program was created as a variation of the ArrayPolarPlot.m 

program with the objective of generating of similar plots by maintaining the look-
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angle fixed and varying the position of the simulated sound source. This program was 

called ArrayBeamformer.m and it allows the user to define the sound source 

frequency and the acoustic array’s look-angle. An example of the plots generated by 

the ArrayBeamformer.m is shown on Figure 4.8. 

 

 

Figure 4.8: Simulated image of a beam that was formed for a look-angle of 45° azimuth 
and 0° elevation. 
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Section 4.2.4 – Passive Sonar Simulation and Waterfall Plot 

 

With the objective of implementing more sophisticated and realistic 

simulations, a program that simulates the use of acoustic arrays as sonar devices was 

developed. The program was called TrackingSonar.m and was developed by 

extending the program ArrayPolarPlot.m to introduce of a moving simulated sound 

source. A waterfall plot of the directional sound intensities and a waterfall plot of the 

signal’s frequency components were also included in this program. 

The TrackingSonar.m lets the user specify the sound source frequency and 

them it rotates the source around the array. For each position of the sound source, the 

program scans all azimuth angles and calculates the sensed directional sound 

intensities, using the data to produce two plots: (1) A polar plot as described in the 

previous sections, and (2) a flat surface plot of the sound intensities versus azimuth 

angle versus time, which is called waterfall plot. In this plot different colors are used 

to represent the various intensity levels and the time is implicit in the scan cycle 

index. 

The same idea is used to create a waterfall plot of the frequency components 

of the sound signals received by the array. In this case, the plot is a flat surface of 

frequency components magnitude versus frequency versus time. The main use of a 

plot like this includes object identification by analysis of the frequency signatures, but 

it can also provide complimentary information about the movement of the sound 

source by measurements of the Doppler effect.  
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The TrackingSonar.m program also creates a movie of each simulation, 

making it easy to store the analysis and simulation results for different combinations 

of acoustic array configuration and sound frequency. An example of the generated 

output is show in Figure 4.9. 

 
Figure 4.9: Graphics generated by the program TrackingSonar. 

 

 

Section 4.2.5 – Simulating Triangulation – Error Plots 

 

The simulations of the triangulation methods presented in Section 4.1.3 were 

performed by the programs Triang_Matrix.m and Triang_Voting.m. Both programs 
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allow the user to specify the sampling rate of a simulated data acquisition system, and 

both implement a moving sound source in order to generate plots of the errors in 

position estimation.  

The error plots were used to compare the performance of the triangulation 

algorithms and it was found that the precision of the time delay measurements is the 

key factor for obtaining correct estimates. This is especially noticeable in the case of 

the matrix method, where lower-resolution time measurements cause the appearance 

of larger errors in the position estimations. Examples of the error plots are shown in 

Figures 4.10. The poor simulation performance of both algorithms at the sampling 

frequency used by the EvBot’s data acquisition system (9600 Hz)  discouraged  

further developments  of  triangulation software, so no actual implementation of the 

triangulation methods was realized.  
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Figure 4.10: Simulated Error plots from the use of the EvBot’s acoustic array to 
estimate the direction of a sound source. (A) Matrix method. (B) Voting method. 

 

 

(A) 

(B) 
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Section 4.2.6 – Testing the EvBot’s Tracking Sonar 

 

The program EvBot_TrackingSonar.m was developed to test the acoustic array 

installed on the EvBot II by commanding the robot to turn and move towards a sound 

source. It works like the TrackingSonar.m, but instead of simulating the sound signals 

it gathers real data from the microphones in the array. The data is then processed and 

after the direction with maximum magnitude is found, the program sends commands 

to move the robot. This program was tested successfully and some results from 

experimentation can be found in Chapter 6. 

With the objective of better testing the acoustic array system, a second version 

of the program EvBot_TrackingSonar.m was developed to generated graphics of what 

the robot was actually seeing. Due to the fact that the EvBot doesn’t have a display, 

the control of the robot was transferred to a desktop computer programmed to act as 

its CPU, thus enabling the generation of plots from real data gathered from the array. 

The figures created by this new version of EvBot_TrackingSonar.m are comparable to 

the simulation plots generated by the programs ArrayPolarPlot.m and 

TrackingSonar.m. Examples are shown in Figures 4.11 and 4.12. 
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Figure 4.11: Directional sound magnitude as viewed by the EvBot. The green line 

marks the azimuth of maximum magnitude. The plot’s title displays the generated 
movement command. 

 

 
Figure 4.12: Graphics generated by the program EvBot_TrackingSonar when a 

helicopter’s sound was being reproduced near the robot. 
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Section 4.3 – The EvBot’s Acoustic Array Configuration 

 

The design of the acoustic array configuration for the EvBot II was mostly 

empirical and based on the developed simulation programs described in the previous 

section.  During this design process a decision was made to install the microphone on 

the robot’s shield (see Figure 4.15), so some constraints were imposed by the size of 

the robot body and the shield itself. The use of simulation programs enabled the 

analysis of beamforming characteristics for different array configurations, resulting in 

the decision to implement a 3-D arrangement of the sensors. The selected array 

configuration is shown in Figure 4.13 and the expected beam formed for a sound 

frequency of 1 KHz is shown in Figure 4.14. A comparison of the simulated 

performance obtained  for  this array  configuration along with  its measured 

performance will be later considered and is presented in Chapter 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Acoustic array configuration for the EvBot II. 
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Figure 4.14: Simulation of the directional sound magnitude sensed by the EvBot’s 

acoustic array due to a 1 KHz sound source at azimuth 45°. 
 

Figure 4.15: The EvBot II equipped with its acoustic array and data acquisition board. 
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Chapter 5 – The USB-DAQ8 Data Acquisition System  

 

A data acquisition system is the equipment responsible for collecting data 

from the exterior world sensors, translating that data into a structure, and linking it to 

a computer where digital processing turns it into useful information.  To perform 

sensor  data  capture and data organization tasks, a data acquisition system is 

commonly  designed  to  accommodate  the  type  of data coming from external world 

and to accomplish specific requirements of the data collection process.  It is an 

important link in the intelligent connection of perception to action.  The manner of 

the  connection  to  the  processing  computer and the communications parameters are 

two very important design characteristics of any data acquisition system because they 

must accommodate for hardware limitations and guarantee mutual understanding. 

The need for the development of a data acquisition system for the EvBot II 

came from the necessity to collect audio signals from an acoustic array of 

microphones, which is included on the new robot as part of an enhanced sensory 

capability, so that processing and analysis could be performed.  Possible benefits seen 

from  including  an  acoustic array of sensors  are: increased  sensor  sensitivity, 

beamforming and triangulation capabilities, and frequency-time analysis.  Increasing 

the sensor count would not be possible without a data acquisition system capable of 

acquiring and linking all the microphones’ acoustic data to the processing unit.  In the 
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long-term an increased sensory capability was intended to give the EvBot II better 

localization and control capabilities. 

The designed data acquisition system was named USB-DAQ8 and it is 

capable of receiving the analog signals coming from the eight audio microphones to 

be mounted on the EvBot II. The USB-DAQ8 can simultaneously sample those eight 

audio channels, what is very important to preserve inter-channel phase relationships.  

The necessary connection to the CPU is made via a USB link, because of its plug-

and-play  capabilities  and  the  physical  availability of a USB communication’s port.  

USB was chosen over the RS232C serial ports for this task based solely on 

communication speed requirements. 

So, the circuitry developed for acoustic array data acquisition consisted of 

eight input channels equipped with signal amplifiers and anti-aliasing low-pass filters.  

Each input channel has its own track-and-hold (T/H) and analog-to-digital converter 

(ADC) circuit, which are activated simultaneously, thus providing simultaneous 

sampling  of  all  eight  channels.  The  sampling  frequency  selected  for the task was 

78.125 KHz, resulting in 5 million bits of data being sent to the CPU every second (5 

Mb/s).  Knowing that the EvBot II would generate a large amount of data from its 

enhanced  sensory  capability  a USB  link  became a  natural choice,  after all it is 

designed to handle such large volume of data with relative ease.  
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Section 5.1 – Commercially Available Data Acquisition Systems 

 
Data acquisition systems are a huge market and out-of-the-self systems can be 

easily found for any type of application one might think of.  The only problem is that 

those systems tend to be expensive and most of the times require to be connected to a 

desktop computer as the CPU host.  Most of the systems on the market are also too 

large and consume too much power to be useful for the EvBot II application.  A study 

of commercially available data acquisition systems indicated that not a single one had 

the required size, capability, e.g., eight channels with simultaneous sampling, and 

Linux operating system (OS) compatibility to comply with the EvBot II specification. 

A review of the literature indicated that the data acquisition systems that 

would be most suited to the EvBot II specification are manufactured by National 

Instruments, Quatech, and MicroDAQ.  National Instruments has the SCXI-1140 

module that has eight simultaneously sampled input channels, and it is easily 

programmed and controlled by LabView programs.  Although this system has been 

used by other research groups working in the area of acoustic arrays [22], it is not 

applicable to the EvBot II project because: the price of the system is prohibitive, and 

it has large dimensions and large power consumption.  A fully functioning system 

based on SCXI-1140 would cost in excess of US$ 2,000.00, and this was considered 

excessive for the EvBot II. 

The second company mentioned above, Quatech, produces compact PCMCIA 

data acquisition cards with good specifications, like the DAQP-208.  However, this 

device was discounted for the intended application because it did not offer 
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simultaneous sampling nor did it support the Linux operating system, two key design 

requirements for all EvBot robot platforms.   

The third company mentioned above, MicroDAQ, produces a data acquisition 

systems that uses a USB connection, and this attracted attention to the product during 

the search phase.  The USB-30 model was considered first of all, but once again there 

was a problem with a lack of: support for the Linux OS, simultaneous sampling, and 

economic price (US$ 570.00/unit).  Lastly, it’s power requirements were also a factor 

in the decision to discount this device, since they consume typically 1A at 9 VDC. 

After the search of the commercially available data acquisition systems was 

completed, and found to be unsuccessful, the obvious conclusion was that it would be 

necessary to design a customized data acquisition system for the EvBot II.  It is this 

design specification that will be discussed in the following sections of this chapter.   
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Section 5.2 – USB-DAQ8 Overview 

 
As briefly mentioned earlier, the data acquisition system specification to be 

used for data collection of the acoustic array of sensors includes:  

• The amplification of sensors signals 

• A low-pass filter, to allow audio signals only to be processed and to serve 

as an anti-aliasing filter 

• The simultaneous track-and-hold of eight channels 

• Fast analog-to-digital conversions, to enable ideally 40K samples per 

second per channel 

• An ADC resolution of at least 8 bits per sample 

• A USB link to the data processing CPU 

• Low power consumption 

The developed USB-DAQ8 system accomplishes the requirements above by 

having eight complete analog-to-digital converter circuits working in parallel and 

consuming only 1 Watt (200mA at 5V).  Unlike typical multi-channel ADC’s that use 

an input multiplexer and convert one input channel at a time, the designed system 

implements multiple ADC’s and performs parallel conversions on all the channels 

simultaneously.  This design specification that was selected due to the fact that no 

single  component  was  found  to  offer  both  a reasonable price and the capability to 

simultaneously sample 8 channels at the minimum required speed.  
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A block diagram showing the functionality of the USB-DAQ8 system as 

specified is shown in Figure 5.1. 

 

 
Figure 5.1: The USB-DAQ8 block diagram. 

 

The amplifiers implemented on the USB-DAQ8 provide adjustable gain 

settings with a minimum gain of 46dB and low-pass filters that have a cut-off 

frequency set to 20 KHz, which is typically the maximum frequency in the audible 

range.  The sampling speed of the system is 78.125 KHz and it uses 8-bit resolution 

over the range of 0 to 5 volts.  These values translate into a precision of ±0.02 volts 

and the generation of 5 million bits of data every second (5 Mb/s).  

The sampling process in the USB-DAQ8 is controlled by a timing and control 

digital circuit specifically developed to sequentially read the data from the ADC’s and 
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transfer it directly to the USB controller.  From there, the generated digital data is 

transferred to the processing CPU via a USB link that is capable of transmitting data 

at a maximum data rate of 8 Mb/s.  

 

Section 5.3 – USB-DAQ8’s Amplifier Circuit 

 

The amplifier circuits designed for the USB-DAQ8 are used to couple the 

electrical signals coming from the sensing microphones into the data acquisition 

system. They were designed to provide the required gain on the input signals’ power 

and to add a DC level to those signals, enforcing an output signal ranging from 0 to 5 

volts.  

The amplifier circuits on the USB-DAQ8 are basically AC coupled non-

inverting amplifiers that are based on the LMX324 series of operational amplifiers 

from Maxim Integrated Products (Appendix A3.15).  This integrated circuit contains 

four operational amplifiers, each featuring rail-to-rail output and single supply 

voltage range, thereby eliminating the need for a (non-available) negative voltage 

power supply and increasing the swing range of the amplified audio signals.  The 

designed amplifier circuit also provides a variable gain capability, which can be 

adjusted through an incorporated potentiometer.  The minimum gain setting possible 

is 46dB but usually larger gain values are necessary with the EvBot II acoustic array 

because of the very low power characteristic of the microphone’s signals.  This 
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variable gain setting feature is also useful to accommodate for any slight differences 

in microphone sensitivity and to set the proper gain value necessary in specific 

experiments.   

An image showing three amplifier circuits on a section of the manufactured 

and populated USB-DAQ8’s printed circuit board is presented in Figure 5.2.  Each of 

the eight input channels of the USB-DAQ8 uses an amplifier circuit like the one 

described here, always remembering that the gain settings are independent for each 

channel. 

 

Figure 5.2: Amplifier circuits on the USB-DAQ8’s printed circuit board 
 

The Figure 5.3 below shows typical waveforms seen at the input and output of 

the amplifier circuit.  The input signal is a typical audio signal generated from speech 

and it was measured directly from a microphone’s terminals.  
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Figure 5.3: Waveforms at the input (Ch 1) and output (Ch 2) of the amplifier circuit. 

 

 

Section 5.4 – USB-DAQ8’s Low-Pass Filter 

 

Frequency filters are used in electronic circuits to select the frequencies of 

interest or to reject undesired frequency components.  In the case of data acquisition 

systems, filters are a fundamental requirement to prevent any aliasing problems that 

may arise during the sampling process [26].  

The developed data acquisition system uses filters for two tasks, to 

simultaneously: act as low-pass filters to reject frequency components of noise above 

20 KHz; thus selecting only the frequencies in the audible range, and, to act as anti-

aliasing filters.  The audible frequency range for humans is typically from 20 Hz to 20 
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KHz, but the band-pass of the filters also include frequency components between 0 

and 20 Hz. These very low frequencies (especially DC) are later filtered out using 

software techniques. 

The implementation of the filters for the EvBot II are based on the integrated 

circuit LTC1563-3 from Linear Technologies, see Appendix A3.16. This device 

implements a 4th order active RC low-pass filter that approximates a Bessel response.  

It also features rail-to-rail operation and an internal architecture that enables the 

selection of any desired cutoff frequency using a single resistor value.  The formula 

used to calculate the value of the resistor for a unit gain filter configuration is given 

by:  

)/256(10 cfkHzkR =   

where, fc is the desired cutoff frequency. 

 The equation above was used to calculate the desired cutoff frequency of the 

USB-DAQ8’s filters, which was previously selected to be 20 KHz.  The calculated 

resistor value was 128 KΩ, which was approximated to 130 KΩ due to the preferred 

numbers of available resistors.  The filter circuit was tested successfully after its 

construction and provided a cutoff frequency of 20.07 KHz.  Typical frequency 

response plots for the filters are shown on Figure 5.4, where both the gain (db) and 

phase (degrees) characteristics of the filter are seen plotted against a base of 

frequency (Hz). 
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Figure 5.4: Gain and phase frequency response of the USB-DAQ8’s active filter.  
 

Figure 5.5 below shows an image of a section of the USB-DAQ8 board that 

contains one of the filters. 

 

Figure 5.5: A single low-pass filter seen on a section of the USB-DAQ8 printed circuit 
board. 
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Section 5.5 – USB-DAQ8’s Analog-to-Digital Converter 

 

The analog-to-digital (ADC) converter modules on the USB-DAQ8 are the 

most important components of the data acquisition system.  The ADC’s are 

responsible for converting the continuous time electrical signals generated by the 

acoustic array sensor microphones into sequences of zeros and ones that can be 

interpreted and used by the processing CPU.  Like data acquisition systems, ADC’s 

can be found for virtually any type of application.  The large number of ADC 

integrated circuits available commercially creates a large variety of specifications, 

including resolution, speed, approximation techniques, number of input channels and 

price options. 

As usual, the selection of an adequate ADC for the USB-DAQ8 started by a 

comprehensive search based on the desired characteristics of performance.  Certain 

potential candidate ADC’s where easily excluded from consideration due to price, 

eventually leaving only two components to decide from: Maxim’s MAX155, and, 

National Semiconductor’s ADC08161.  Now, although the MAX155 offers an 8-

Channel ADC with simultaneous track-and-hold, it does not support the minimum 

sampling frequency of 40 KHZ required by the USB-DAQ8.  So, the final choice was 

made in favor of the very fast National Semiconductor ADC08161 (Appendix 

A3.14).  

 



 60

The National Semiconductor ADC08161 is an 8-bit ADC with internal 

sample-and-hold and conversion time of only 500ηs.  It also features a convenient 

2.5V reference output and supports sample rates up to 300 KHz.  These features, 

added to the low price of $3.47 per unit, made this IC the perfect choice for our 

EvBot II data acquisition system.  Because the selected IC is a single channel analog-

to-digital converter, eight ADC08161 are required to be used in the USB-DAQ8.  

Simultaneous sampling is achieved by starting the conversion process at the same 

time in all eight ADC’s, and this is guaranteed by hardwiring a parallel connection to 

all eight ADC08161 WR  pins. 

The interfacing of the ADC’s to the USB controller was also made easy due to 

the fact that the selected IC had a parallel data bus featuring tri-state buffers and 

control lines.  This feature made possible to connect all ADC’s to the same parallel 

data bus  and to  design a  relatively simple logic circuit for timing  and  data control. 

Figure 5.6 is an image  of a section  of the designed printed circuit board showing one 

of the installed analog-to-digital converters (ADC’s). 

 
Figure 5.6: Analog-to-digital converter on a section of the USB-DAQ8 board. 
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Section 5.6 – USB Interface and Controller 

 
From the design requirements, all data generated by the USB-DAQ8 needs to 

be uploaded to the processing CPU via a USB link.  This was accomplished on the 

USB-DAQ8 by the incorporation of the USBMOD2, a low-cost integrated module for 

transferring data between an 8-bit parallel bus and a USB channel.  The USBMOD2 

(Appendix A3.13) is based on the FTDI FT8U245 USB FIFO – Fast Parallel Data 

Transfer IC, which can transfer data at speeds up to 8 Megabits per second.  This 

technology makes the USB connection very easy by having flag pins for data 

received and busy, and a control pin to send data.  A picture of the USBMOD2 is 

shown in Figure 5.7. 

 

Figure 5.7: The USBMOD2. 
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The USBMOD2 is viewed by the processing CPU as a standard COM port 

when FTDI’s virtual COM port drivers are used.  This was done in the design of the 

EvBot II so that the data gathering by the processing CPU follows similar procedures 

as a regular RS232 communications system.  Once the required drivers are installed, 

the USBMOD2 becomes plug-and-play and hot swappable, making it easy for the 

complete data acquisition system to be connected and disconnected from the EvBot II 

as required.  

 

 

Section 5.7 – The USB-DAQ8’s Timing and Control Circuit 

 
To ensure the proper functioning of the developed data acquisition system for 

the EvBot II platform, the components and modules described on the Sections 5.3 to 

5.6 had to be connected  together using a timing and control circuit. The design and 

operation of this circuit is described in this section.   

The main tasks undertaken by the timing and control circuit include: starting 

and stopping the simultaneous sampling process in all eight channels, the control of a 

sequential reading of the ADCs’ values, and the transfer of data from the ADC’s to 

the processing CPU.  A logic circuit was designed for this purpose, thereby 

eliminating the need for a local microcontroller system dedicated for this task in the 

USB-DAQ8. 
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A general overview of how the timing and control circuit works and interacts 

with the other components in the USB-DAQ8 can be better understood after the 

analysis of the functional block diagram presented in Figure 5.8.  On the USB-DAQ8, 

the sampling process is started when it receives any one data byte from the CPU.  

When that occurs, the USBMOD2 automatically flags the presence of data available 

for reading by pulling the pin RXF  low.  This is the signal to start the analog-to-

digital conversions and the ADC’s are all simultaneously triggered.  A demultiplexer 

controlled by a main counter selects the channel to be read and the system waits for 

the end of the analog-to-digital conversions. When the selected ADC pulls the pin 

INT  low to flag that data is ready, the logical control circuit enables the parallel bus 

and the data is loaded to the USBMOD2, which automatically uploads the data to the 

CPU.  At this point, the main counter is incremented and another channel is read 

following the same process as just described.  The system is reset and restarted at the 

end of reading of the eighth analog-to-digital converter data, provided it did not 

receive a stop byte from the CPU. 
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Figure 5.8: USB-DAQ8’s functional block diagram 
 

 

A simplified timing diagram showing the sequences of operations that occur 

on the data acquisition system is presented in Figure 5.9.  Note in the diagram that 

most of the operations require a minimum processing time. 
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Figure 5.9: Timing diagram for the USB-DAQ8 data acquisition system. 

 

 

The timing circuitry incorporated into the logic control circuit guarantees a 

constant sampling frequency of 78.125 KHz for all eight channels for as long as it is 

required to gather data.  It also provides a sufficient amount of time necessary for 

each signal, and it accommodates for maximum possible delays to guarantee the 

correct operation of the system.  The implementation of the timing and control circuit 

on the printed circuit board designed for the USB-DAQ8 is shown in Figure 5.10. 
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Figure 5.10: Logic circuit for timing and control on the USB-DAQ8 board. 

 

 

Section 5.8 – USB-DAQ8’s Circuit Board 

 

The circuit board created for the USB-DAQ8 was designed to fit the PC104 

stack, enabling an easy attachment to any EvBot robot platform. The circuit board has 

two wiring layers and was created using the software CirCAD.  Images of the top and 

bottom layers are shown in Figures 5.11 and 5.12, along with pictures of the 

populated circuit board, Figure 5.13. 
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Figure 5.11: CirCAD drawing of the USB-DAQ8’s top layer. 

 
 

 
Figure 5.12: CirCAD drawing of the USB-DAQ8’s bottom layer. 
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Figure 5.13: The USB-DAQ8’s printed circuit board. 

 

 

Section 5.9 – Design Fault and Solution 

 
After the completion of the USB-DAQ8 implementation several tests were 

conducted to evaluate its performance, and one of the tests pointed to a design fault 

related to the data transfer rate on the USB connection. The experiment, which is 
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described in detail in Chapter 6, made clear that the assumption of an 8 MBps 

connection was a mistake. It was found that the EvBot’s USB port only supports low-

speed USB, which works at a maximum 1.5 MBps. Therefore, even though the USB-

DAQ8 works fine at higher speeds, it had to be modified to accommodate this 

parameter change. This problem was addressed by reducing the sampling frequency 

of the USB-DAQ8 to 9600 samples per second per channel, thus reducing the total 

amount of data generated from 625 KBps to 76.8 KBps. After this modification 

experiments were performed and proved that this new sampling rate results in a 

reliable communication speed.  

The consequence of this design change was, as mentioned, a reduced 

sampling frequency used by the USB-DAQ8 and this reflected on the maximum 

sound frequency that the system is able to sample, reducing it from 39 KHz to 4.8 

KHz. This change was initially thought to be bad, but experimentation proved that 

this sampling speed is reasonable to the desired application and can provide good 

results.  
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Chapter 6 – Experimentation and Results 

 

In this chapter some of the experiments performed during the research are 

described. These experiments were designed to test the functionality of the individual 

parts of the new EvBot II architecture, to calibrate them, and to test them in 

application. The calibration and performance measurements of the EvBot II platform 

are explained first, followed by descriptions of experimentation involving the USB-

DAQ8 data acquisition system. The third section in this chapter presents the 

experiments performed with the acoustic array system, mainly comparing real results 

and simulations to evaluate the system. Lastly, an experiment demonstrating the 

EvBot use of the acoustic array sensor to navigate towards a sound source is 

presented.  

 

 

Section 6.1 – Experiments with the EvBot II Platform 

 
The most significant experiments performed on the EvBot II’s platform were 

related to testing of the modules of the new architecture and calibration of the 

locomotion system. Experiments were also conduct to evaluate the compatibility 

between the two generations of EvBots.  These experiments are described in the next 

subsections. 
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Section 6.1.1 – Calibration of the Open Loop Speed Control  

 

Although the EvBot II incorporates shaft encoders, it is required to have a 

motor control system capable of operation in an open-loop configuration to maintain 

full compatibility with the existing EvBot’s.  This means that each robot must 

perform within a pre-specified error margin when commanded to move or turn. To 

reach this goal a precise calibration was necessary.  

The calibration procedure consisted of adjustments of the PWM duty cycles 

so the motors turn at the desired speed. To reach such goals, measurements were 

taken for commands with an active time of one second, what facilitated the 

calibration process by allowing the measurement of the average speeds by measuring 

the distance travelled. The entire range of speeds supported by the EvBot II was 

tested and the PWM values were adjusted to reduce the measured errors to less than 

±5%. This process generated the specific PWM values necessary for speed values 

ranging from zero to 8.5 inches/second, the maximum linear speed of the robot. Such 

information was used to generate the plot seen in Figure 6.1, from which the linear 

relationship between the PWM values and the linear speed was calculated. 
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Figure 6.1: Open loop calibration points for linear motion. Error bars show ±5% error at 

each calibrated speed. 

 

A similar procedure was followed to calibrate the robot rotation. In this case 

angular displacements were measured and compared to a desired value. The PWM 

duty cycles and the active time of the commands were then adjusted to generate the 

desired rotation. This process of calibration was performed for rotation angles ranging 

from -180° to +180°, and the resulting values are shown in the next figures as the 

product of the two parameters varied during calibration. 
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Open Loop Calibration
Clockwise Rotation
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Figure 6.2: Open loop calibration points for clockwise rotations. The y axis represents 
the product of PMW values and active time of the rotation commands. The error bars 

show ±5% error at each calibrated point. 

Open Loop Calibration
Counter Clockwise Rotation
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Figure 6.3: Open loop calibration points for counter clockwise rotations. The y axis 

represents the product of PMW values and active time of the rotation commands. The 
error bars show ±5% error at each calibrated point. 
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From the plots above a linear relationship between the rotation angles and the 

product PMW-Time can be observed  and is made  explicit by the  formulas shown. 

Such formulas will be implemented in the EvBot II’s software and are used to 

produce the correct commands when rotations are desired. 

 

 

Section 6.1.2 – Calibration of the Closed Loop Speed Control  

  
The closed-loop speed control system developed for the EvBot II was 

implemented using PID controllers running on the BasicX microcontroller. Each 

motor has its own control system, which receives speed commands generated at the 

EvBot’s CPU and feedback signals from optical shaft encoders. The microcontroller 

is responsible for evaluating the data from the encoders and measuring the motor 

angular velocities, obtaining values in encoders-counts per second. It also translates 

the unit of the received commands from inches/second to encoder-counts/second, and 

imposes a limit of 2550 encoder-counts/second. This limit translates to a maximum 

linear speed of approximately 6.5 inches/second. 

The calibration procedure for the closed-loop speed control systems consisted 

of basically two phases: Initially the PID controllers were experimentally calibrated 

to provide relatively fast rise-time and low oscillation on the steady-state phase; later 

the scaling factors for the speed commands were calibrated to provide compensation 

for slight differences between the two driving motors. The calibrations of the PID 
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controllers were very qualitative but the results show a good performance of the 

system, as can be noticed from Figure 6.5. 

The calibrations of the scaling factors for the commanded speeds were 

necessary to make the EvBot II move on a straight line when the same speed value is 

commanded for both driving motors. These factors are basically the maximum speed 

of the robot’s treads and are used for normalization of the speed commands. As a 

consequence, the calibrations were performed experimentally by measuring the robot 

motion in a straight line.  

 After the calibrations were performed, experiments were conducted to 

evaluate the quality of the speed control system. Satisfactory results were obtained 

and are summarized by the following plots. The data collected during the experiments 

can be found in Appendix A1.2. 
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Figure 6.4: Distance traveled by the EvBot II for different speed commands when using 

closed-loop speed control. 
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EvBot II - Speed Control
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Figure 6.5: Response of the speed control system to different commanded speeds 

obtained from experimental data. 
 

 

Section 6.1.3 – EvBot II in Action 

 

The EvBot II platform was developed to be completely compatible with the 

original EvBot, so a major indicator of  how well the EvBot II  performed was 

obtained by testing it against the EvBot. To test compatibility the EvBot II was given 

the same neural network controller as used by other EvBots, then tested in a maze 

environment. The results obtained showed that the EvBot II operates in a similar 

matter to the original EvBots and also to the simulated EvBots under similar 

conditions. This performance can be seen in Figure 6.6, which shows two images of 
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the tracks followed by the EvBot II while searching for the red goal in the maze 

environment.  

A performance comparison of the two generation of EvBots during one of the 

experimental runs is shown in Figure 6.7, and an image of simulated EvBots in the 

simulated world used to evolve the neural networks controllers is shown in Figure 

6.8. By observing those two figures we can see that both generations perform closely 

to that obtained in simulations. Furthermore it is clear that when the two generations 

of EvBots operate in the real world they avoid colliding with walls, in a similar 

fashion to their simulated counterparts. 
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Figure 6.6: EvBot II traveling through the maze in search of the red goal (two trials). 
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Figure 6.7: Two generations of EvBots playing together. 

 

 
Figure 6.8: Simulated world with simulated EvBots running the same neural network 
controllers as the one used by the real robots (courtesy of Andrew Nelson, CRIM). 
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Section 6.2 – Experiments with the Data Acquisition System 

 

In this section experiments designed to detect faults and to evaluate the 

performance and capabilities of the USB-DAQ8 data acquisition system were carried 

out. The first two experiments described here deal with the evaluation of subsystems 

and components used in the USB-DAQ8 board. First, the frequency response 

measurement of the implemented low-pass filters is presented. Second, a description 

of experimentation to test the quality of the analog to digital converter IC is given. 

Thirdly, experiments that test the data acquisition system as a whole are described, 

starting from the evaluation of achievable data transfer rates and ending with the 

demonstration of the capabilities and possible uses of the USB-DAQ8 system. 

 

 

Section 6.2.1 – Test of the Low Pass Filter Frequency Response 

 

The frequency response of the low-pass filters embedded in the USB-DAQ8 

were measured experimentally to verify the designed cutoff frequency of 20 KHz. 

The obtained data validated design calculations and the quality of the integrated 

circuit LTC1563-3 by showing that the actual cutoff frequency is 20.07 KHz. This 

experimental data is summarized in the Figure 6.9 and can be found in Appendix 

A1.3. 
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Figure 6.9: Frequency response USB-DAQ8’s low-pass filter.  

 

 

Section 6.2.2 – Test of the ADC Linearity and Frequency Distortion 

 

As a way of testing the quality and reliability of the USB-DAQ8, tests were 

performed to analyze the main component in that system: the analog to digital 

converter integrated circuit. This was done by performing experiments designed to 

measure its linearity and frequency distortion. For the linearity tests, known input 

voltages were applied to the ADC’s and the outputted digital values were recorded. 

The performance of the ADC08161C was good and the measured errors remained 

close to the specified resolution (±0.02V). The results obtained during this 

experiment are shown in Figure 6.10 and Figure 6.11. 
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Figure 6.10: Results from the linearity test performed on the IC ADC08161C. 
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Figure 6.11: Results from the linearity test performed on the IC ADC08161C. The 

expected error reflects the ±0.02V resolution (5V / 256 levels). 
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The frequency distortion test performed on the ADC08161C consisted of the 

application of signals of known frequency to the IC’s input, followed by the sampling 

process and later calculation of the signal’s frequency components based on the 

Fourier transform of the obtained series. The obtained results are shown on the next 

figures and are positive, exhibiting a maximum measured frequency distortion of 1%.  
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Figure 6.12: Results from the frequency distortion test performed on the IC 
ADC08161C and data acquisition system. 

 
 



 84

Error in Frequency

-0.6000
-0.4000
-0.2000
0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000

10.0 100.0 1000.0 10000.0
Frequency (Hz)

Er
ro

r (
%

)

Measured Error (Average)

 
Figure 6.13: Errors measured during the frequency distortion test performed on the IC 

ADC08161C and data acquisition system. 

 

Even though the tests were not performed using high-accuracy nor recently 

calibrated instruments, the obtained results were very consistent and demonstrated 

that the integrated circuit ADC08161C is a reliable component. 

 

 

Section 6.2.3 – Test of the Data Transfer Speed 

 

The sampling speed of the data acquisition system was originally designed to 

be 78.125 KHz per channel and use a resolution of 8 bits per sample. This 

corresponds to a data transfer speed greater than of 5 million bits per second (5 Mb/s) 

when control bits are considered, which was assumed to be feasible based on 
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datasheets information [A3.13]. After completion of the USB-DAQ8 implementation 

that assumption was put to a test and a design fault was found. The experiment 

described in this section showed that, although the USB-DAQ8 is capable of 

managing such baud rates, the computer’s USB port used for the experiment is not. 

The problem is that the EvBot’s USB port is also limited and can only support low-

speed USB (1.5 Mbps from USB Rev. 1.1 specifications). This design problem was 

addressed by reducing the sampling frequency of the USB-DAQ8 to 9600 samples 

per  seconds  per  channel,  requiring 614.4 Kbps  for  the  data bits only. Experiments 

proved that this new sampling rate results in a reliable communication speed.  

The data obtained from the experiments performed to measure data transfer 

speed between the USB-DAQ8 and a host computer are summarized in the next plots. 

Figure 6.14 and Figure 6.15 present the data obtained for the original sampling rate of 

78.125 KHz per channel, and respectively show plots of the total number of bytes 

transferred and average transfer rate of data bytes as a function of the sampling time. 

The figures 6.16 and 6.17 present corresponding data for a sampling rate of 9600 Hz 

per channel. Each data point obtained from these experiments is an average of 100 

trials.  
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Figure 6.14: Total number of bytes transferred as a function of sampling time. 
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Figure 6.15: Transfer rate in bytes per second as a function of the sampling time. 
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USB-DAQ8 Data Transfer Test
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Figure 6.16: Total number of bytes transferred as a function of sampling time. 
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Figure 6.17: Transfer rate in bytes per second as a function of the sampling time. 
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Section 6.2.4 – Acquiring Data with the USB-DAQ8 

 

After finalizing the assembly of the USB-DAQ8, its overall performance and 

functioning had to be tested, so software code was developed for this purpose. The 

created programs enabled the communications between the data acquisition system 

and a desktop computer, allowing for on/off control, data logging and data analysis. 

Innumerous experiments were performed and three of them were selected to be 

shown as examples in this section. The first two experiments consisted of sampling 

analog sine waves with known frequencies, followed by analysis of the collected data 

in the digital domain. In the first experiment a 202 Hz sine wave with 4.08 Vpp was 

sample using the USB-DAQ8, and in the second experiment the sine wave frequency 

was changed to 4.53 KHz. The obtained results, as well as a screen shot of the analog 

waves obtained from an oscilloscope, are shown in Figures 6.18 and 6.19. Note that 

the sampling frequency used by the USB-DAQ8 during these experiments was set to 

9600 samples/sec/channel.  
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Figure 6.18: USB-DAQ8 acquiring a 202 Hz signal.  
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Figure 6.19: USB-DAQ8 acquiring a 4.53 KHz signal.  
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From the results presented in the above figures we can see that the data 

acquisition system works as expected, introducing little noise and frequency 

distortion.  

The third experiment mentioned earlier consisted of simultaneously sampling 

and displaying the signals from all eight input channels of the USB-DAQ8. This 

function was implemented by a program developed to continuously gather and 

display data from the channels in eight separate plots, creating a quasi eight-channel 

digital oscilloscope. The program was called USBscope and a screen shot of it is 

shown in Figure 6.20. 

 
 Figure 6.20: The program USBscope displaying data simultaneously sampled from all 

eight input channels of the USB-DAQ8.  
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Section 6.3 – Experiments with the Acoustic Array 

 

The experimentation carried out on the acoustic array area consisted of 

systems simulations and analysis of the implemented array. The simulations were 

initially performed as a mean to select the desired acoustic array configuration for the 

EvBot, and later used to evaluate its performance through comparisons between 

obtained and expected results. Initially the experimentation with different 

configurations of acoustic arrays is presented. This is followed by the performance 

analysis of the implemented system. Finally experiments demonstrating the use of the 

acoustic array as a tracking sonar system are presented.  

 

 

Section 6.3.1 – Beamforming by Different Array Configurations 

 
The final design of the EvBot’s acoustic array configuration was empirically 

performed by the use of the simulation software described in Chapter 4. During this 

process several configurations were analyzed, from which two were selected to be 

presented here as representative examples. Similar plots for the final acoustic array 

configuration have already been presented in Chapter 4 but are reproduced here for 

comparisons purposes. 
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One of the acoustic array configurations considered for the EvBot II consisted 

of a planar configuration that would fit on the top of the PC/104 stack. It was called 

Planar10x10 in reference to its dimension of 10 cm2, and the beam pattern obtained 

from that array is presented in Figure 6.21. 

Figure 6.21: Beamforming simulation for a frequency of 1 KHz using a planar array that 
would fit on the top of the PC/104 stack. 

  

The second simulated array configuration presented here consists of a three 

dimensional configuration resembling a pyramid. For that reason it was called 

PyramidArray and it was also designed to fit the EvBot II body. The obtained beam 

pattern from this array configuration for a sound frequency of 1 KHz is presented in 

Figure 6.22.   
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Figure 6.22: Beamforming simulation for a frequency of 1 KHz using a 3-D array 
configuration that could fit on the EvBot II body. 

 

From the figures above it can be seen that the larger size of the PyramidArray 

improved the directional resolution for the selected frequency, presenting a narrower 

beam when compared to the one produced by the Planar10x10 array. This 

phenomenon shows the proportional relationship that exists between the sound 

wavelength and the ideal distances among sensors when beamforming is desired, i.e., 

the longer the sound wavelength, the larger the distances between the microphones 

should be to produce an effective interference pattern. This will be further noticed by 

examination of the beamforming characteristics of the EvBotArray, which is an even 

larger array configuration. The EvBotArray is the array configuration selected for 

implementation on the EvBot II.  
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The comparison of the beam pattern plots in Figures 6.21 and 6.22 also shows 

that the beam size was reduced as a whole, reflecting on increased resolution for both 

azimuth and elevation angles. 

The beam pattern generated by the EvBotArray is presented in Figure 6.23 and 

shows that a larger array configuration provided further improvements on the 

directional resolution of azimuth angles at the 1 KHz frequency range. This array was 

designed to fit the EvBot II shield and also uses a 3-D configuration.  

The observation of the beam pattern plot for the EvBotArray also shows that 

the elevation angle resolution was somewhat decreased from the one obtained by the 

use of the PyramidArray. This change is believed to be result of a reduction on the 

height of the array but this phenomenon wasn’t deeply studied because the research 

focus was on a system capable of good azimuth resolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.23: Beamforming simulation for a frequency of 1 KHz using the final array 
configuration selected for the EvBot II. 
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Section 6.3.2 – Evaluation of the EvBot’s Acoustic Array System 

 

The experiments realized to evaluate the performance of the implemented 

acoustic array system consisted of using real data to perform beamforming. Several 

trials were carried out for a diverse number of sound frequencies and sound source 

positions, but only a few examples were selected to be presented in this section. In 

such examples the sound source was kept on a fixed position and data was collected 

for sound frequencies ranging from 200 Hz to 1500 Hz. The acquired data was then 

used to generate plots of the directional sound intensities which were compared to 

similar plots generated by simulated data.  

The plots created during this experiment are displayed in the figures 6.24 

through 6.25, and clearly show that the performance of the implemented acoustic 

array system is very similar to what was expected from simulations, but only up to 

frequencies around 1500 Hz. For higher sound frequencies the actual beam pattern 

starts to deviate from the simulated ones, but no conclusion was reach about this 

effect, only that further investigation is necessary. 

Another interesting note about the plots created during this experimentation is 

that they clearly show the changes in the beam pattern formed for different sound 

frequencies. From the plots we can see that at low frequencies the beam patterns are 

very broad, but as the sound frequency increases the beams get narrower. From these 

observations it was noted that the best directionality for the implemented acoustic 
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array occurs for frequencies around 1200 Hz. In that frequency range the beam 

formed is relatively narrow and the secondary beams are relatively small. 

 
 

 

 

 
 

Figure 6.24: Comparisons between beam patterns obtained from real data (right) and 
simulated data (left) for the following sound frequencies: (A) 200 Hz. (B) 500 Hz.         

(C) 1000 Hz. 

(A) 

(B) 

(C) 
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Figure 6.25: Comparisons between beam patterns obtained from real data (right) and 
simulated data (left) for the following sound frequencies: (A) 1200 Hz. (B) 1500 Hz. 

 

 

Section 6.3.3 –Using the Acoustic Array as a Tracking Sonar 

 

The usefulness of the developed acoustic array as a tracking sonar device was 

studied through experiments based on the program EvBot_TrackingSonar.m. As 

described in Chapter 4, this program makes use of regularly sampled acoustical data 

to generate waterfall plots of the directional sound intensities and frequency 

(A) 

(B) 
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components, so the performed experiments consisted of the generation and analyzes 

of such plots. Experiments were performed for several real-object sounds, such as 

helicopters, trucks and airplanes, which were played back on a speaker. Some single-

tone sounds were also tested by the use of a function generator. A sample of the 

obtained plots is shown on the next figures. 

 

 
Figure 6.26: Acoustic array system being used to track the sound of truck reproduced 

by a nearby moving speaker. 
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Figure 6.27: Acoustic array system being used to track a single-tone sound source. 

 

From the observation of the plots in Figures 6.26 and 6.27 it can be noticed 

that the acoustic array system works well as a tracking device. It was able to 

successfully track all played-back sounds tested and shows that the waterfall plots are 

a fine way to  keep a  history  of  surrounding sound events. Furthermore, the 

visualization of the frequency components provided by the FFT waterfall plot can be 

very useful for object identification and speed estimation through the analysis of the 

sound signatures and Doppler effects. 
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Section 6.4 – EvBot’s Navigation by Sound 

The final set of experiments performed during this research consisted of 

testing the capabilities the EvBot to use its acoustic array to navigate towards a sound 

source. This was performed by the development of a controller program responsible 

to gather and process the data from the array of sensors, generating movement 

commands as a result. This program is described in Chapter 4 and is the first version 

of the EvBot_TrackingSonar.m. 

The performed experiments proved that the design of this new sensor system 

for the EvBot was successful and able to provide reliable data. A screen shot showing 

the track followed by the EvBot II in one of the experiments is displayed in Figure 

6.28, and clearly shows that the robot is able to turn and precisely move towards the 

sound source by correcting its bearing in the way. 

 
Figure 6.28: Path taken by the EvBot II to find the sound source. 
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Chapter 7 – Conclusion and Future Research 

 
 

Section 7.1 – Concluding Remarks 

 
The research work presented in this thesis has resulted in the development of a 

small and computationally powerful robotic platform for studying distributed and 

evolutionary robotics. Such robots are suited to application areas such as surveillance, 

reconnaissance and security. This robot, called EvBot II, was successfully created to 

enhance the sensing, mobility and intelligent control capabilities of its predecessor.  

The EvBot II’s high level processing was kept with the same configuration as 

in the previous generation, a PC/104 computer system which is able to host intelligent 

control software developed entirely in a MATLAB environment. On the other hand, 

the low level processing system was redesigned to make use of two microcontroller 

units  serially  connected  to  the  CPU.  These microcontrollers are able to effectively 

handle the closed loop control of up to three motors through the use of custom 

designed circuitry, and can also provide the input channels for several additional 

sensors if necessary. Sensor integration is seen as an important element of 

evolutionary robotics. 

The efforts put into the expansion of the EvBot’s sensing capabilities also 

resulted in the development and successful implementation of an acoustic array 

system. Such system is able to perform beamforming based on data collected from 
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eight microphones, and can be used by the EvBot on tasks like object identification or 

object tracking, as demonstrated by performed experiments. As part of the 

development of this acoustic array system a number of simulation and application 

software programs were created, generating a very useful resource for the study and 

development of other acoustic array configurations. 

The successful design and realization of a data acquisition system with 

simultaneous sampling of eight audio channels was also part of the development of 

the acoustic array system, and created a very versatile plug-and-play device that can 

be used on any computer system equipped with an USB port. 

In summary, the research presented in this thesis created the next generation 

of autonomous mobile robots, one that is small, robust and computationally powerful 

enough to provide integrated sensor feedback for intelligent control. In addition, 

experimentation demonstrated that all of the hardware and software designs were 

successful, and that the EvBot II and its subcomponents function within 

specifications.  
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Section 7.2 – Future Research 

 

There are innumerous experiments in the areas of evolvable robotics, SAR 

and RSTA in which the EvBot II could be applied. Its capabilities could be very 

useful, for example, to test evolved systems designed to perform two tasks with 

different priorities, such as “go to sound source” and “avoid walls”, or to study the 

implementation of triangulation systems based on the use of two or more robots. Even 

completely different experiments than the ones mentioned in this thesis can be 

supported by the EvBot II platform, such as experimentation involving rule based 

controllers or remote control functionality. 

Although the EvBot II platform has proven to be a remarkable robotic 

platform, there are still grounds for enhancements. The odometer system is an 

example of an area that still needs some work, so is the speed control system, where 

improvements are expected to reduce the inherent delay of the data gathering process, 

thus enabling a higher quality control. Modifications to the USB-DAQ8 system are 

also foreseen, especially to make it able to sample at higher frequencies while still 

transmitting data through slow USB channels. 
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Appendix 1 – Experimental Data  

The following sections present tables and figures containing experimental data 

collected during the development and testing of the EvBot II platform, the USB-

DAQ8 data acquisition system and the acoustic array system. 

 

Section A1.1 – Calibration of the Open Loop Control System 

 

The following tables contain the experimental data acquired while calibrating 

the open loop control of the EvBot II. Each value in the tables is an average of five 

trials.  

Table A1.1: Calibration values obtained for linear motion. 

Distance traveled in  
one second (inch) Required PWM value  

0.0 0 
0.5 80 
1.0 90 
1.5 100 
2.0 105 
2.5 120 
3.0 125 
3.5 130 
4.0 135 
4.5 160 
5.0 165 
5.5 180 
6.0 185 
6.5 200 
7.0 225 
7.5 240 
8.0 250 
8.5 255 
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Table A1.2: Calibration values obtained for rotations. 

Rotation 
angle 

Time step 
(seconds) 

LEFT PWM 
Value 

RIGHT PWM 
Value 

Product 
PWM x Time 

0 0 0 0 0.00 
10 0.3 -180 180 21.18 
20 0.5 -190 190 37.25 
30 0.6 -200 200 47.06 
40 0.7 -220 220 60.39 
50 0.8 -240 240 75.29 
60 0.9 -250 250 88.24 
70 1.1 -240 240 103.53 
80 1.1 -250 250 107.84 
90 1.3 -245 245 124.90 

100 1.4 -250 250 137.25 
110 1.5 -250 250 147.06 
120 1.6 -250 250 156.86 
130 1.7 -250 250 166.67 
140 1.8 -255 255 180.00 
150 2 -250 250 196.08 
160 2.1 -253 253 208.35 
170 2.3 -251 251 226.39 
180 2.6 -253 253 257.96 
-170 2.5 253 -253 248.04 
-160 2.3 251 -251 226.39 
-150 2 253 -253 198.43 
-140 1.9 254 -254 189.25 
-130 1.9 248 -248 184.78 
-120 1.7 250 -250 166.67 
-110 1.6 250 -250 156.86 
-100 1.5 250 -250 147.06 
-90 1.3 253 -253 128.98 
-80 1.2 245 -245 115.29 
-70 1.1 242 -242 104.39 
-60 1 240 -240 94.12 
-50 0.8 244 -244 76.55 
-40 0.7 230 -230 63.14 
-30 0.6 212 -212 49.88 
-20 0.5 195 -195 38.24 
-10 0.3 180 -180 21.18 
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Section A1.2 – EvBot II Speed Control Experiments 

 

The following tables contain experimental data obtained during calibration 

and testing of the closed loop speed control system for the EvBot II. Each value in the 

tables is an average of five trials.  

 

Table A1.3: Measured speed versus time for different commanded speeds 

Commanded 
Speed 1 2 3 4 5 6 
Time Speed (inches/sec) 

0 0 0 0 0 0 0 
1 0 0 0.1 0.25 1.25 1.77 
2 0 1.25 2.483 4.5 5.1875 5.75 
3 0.25 2 3.5 4.25 5.2625 5.77 
4 0.75 2.42 3.334 3.917 5.05 7.28 
5 1.58 2.205 3.166 4.783 5.31 5.93 
6 1.09 2.292 3.667 4 5.13 6.65 
7 1.205 1.833 2.833 4.3 5.56 6.47 
8 1.125 2 3.247 4.56 5.5 6.63 
9 1 2.3125 3.753 4.14 5.5 6.125 
10 1.25 2.1875 2.917 4.425 5.375 6.45 
11 0.91      
15 1.1675  3.325 4.375  6.303 
20  2.1583  4.2   
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Table A1.4: Measured distance traveled versus time for different commanded speeds 

Commanded 
Speed 1 2 3 4 5 6 
Time Distance Traveled  (inches) 

0 0 0 0 0 0 0 
1 0 0 0.1 0.25 1.25 1.77 
2 0 1.25 2.583 4.75 6.4375 7.52 
3 0.25 3.25 6.083 9 11.7 13.29 
4 1 5.67 9.417 12.917 16.75 20.57 
5 2.58 7.875 12.583 17.7 22.06 26.5 
6 3.67 10.167 16.25 21.7 27.19 33.15 
7 4.875 12 19.083 26 32.75 39.62 
8 6 14 22.33 30.56 38.25 46.25 
9 7 16.3125 26.083 34.7 43.75 52.375 
10 8.25 18.5 29 39.125 49.125 58.825 
11 9.16      
15 13.83  45.625 61  90.34 
20  40.083  82   

 

The data shown in the above tables was used to generate plots of the distance 

traveled versus time and speed versus time for each speed command value. These 

plots are shown in Figures A1.1 to A1.12.  
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Figure A1.1: Measured distance traveled versus time for a commanded speed of one 

inch/second. 
 

 
Figure A1.2: Plot of velocity versus time for a commanded speed of one inch/second. 
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Figure A1.3: Measured distance traveled versus time for a commanded speed of two 

inches/second. 
 

 
Figure A1.4: Plot of velocity versus time for a commanded speed of two 

inches/second. 
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EvBot II - Traveled Distance
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Figure A1.5: Measured distance traveled versus time for a commanded speed of three 

inches/second. 
 

 
Figure A1.6: Plot of velocity versus time for a commanded speed of three 

inches/second. 
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EvBot II - Traveled Distance
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Figure A1.7: Measured distance traveled versus time for a commanded speed of four 

inches/second. 
 

 
Figure A1.8: Plot of velocity versus time for a commanded speed of four 

inches/second. 
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EvBot II - Traveled Distance
Commanded Speed = 5 in/s
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Figure A1.9: Measured distance traveled versus time for a commanded speed of five 

inches/second. 
 

EvBot II Speed Control
Commanded Speed = 5 in/s

0

1

2

3

4

5

6

0 2 4 6 8 10 12

Time (seconds)

Sp
ee

d 
(in

/s
) 

 
Figure A1.10: Plot of velocity versus time for a commanded speed of five 

inches/second. 
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Figure A1.11: Measured distance traveled versus time for a commanded speed of six 

inches/second. 
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Figure A1.12: Plot of velocity versus time for a commanded speed of six 

inches/second. 
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Section A1.3 – Low-Pass Filter Characterization 

 

The low-pass filters implemented on the USB-DAQ8 were experimentally 

tested and the following data was obtained. 

 

Table A1.5: Measured values for gain and phase as a function of frequency. 

Frequency Gain Phase 
98 1 0 
195 0.9798 0 
390 0.9903 0 
707 0.9709 0 

1000 1 -7.2 
4950 0.9533 -28.5 
8160 0.9135 -58.75 
15120 0.7961 -98 
17960 0.7525 -116.38 
20090 0.7075 -130.18 
22940 0.6321 -148.6 
30090 0.4227 -184.2 
40000 0.2476 -230.4 
60000 0.0947 -261.9 

 
 

 

 
Section A1.4 – ADC Linearity and Frequency Distortion 

 

 The experimental data obtained from experiments with the analog to digital 

converter ADC08161C are shown in the next tables. Table A1.6 presents the data 

from the linearity tests. Table A1.7 presents data from the frequency distortion tests. 
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Table A1.6: Values obtained during the linearity test performed on the IC ADC08161C. 

Input DC 
voltage 

Measured DC  
voltage Error (%) Expected Error  

(from ±0.02V resolution) 

0.01 0.01 0.000 2.000 
0.20 0.17 0.140 0.100 
0.50 0.49 0.030 0.040 
0.60 0.57 0.053 0.033 
0.70 0.67 0.030 0.029 
1.00 0.98 0.023 0.020 
1.21 1.16 0.041 0.017 
1.38 1.35 0.022 0.014 
1.47 1.47 0.003 0.014 
1.70 1.71 -0.006 0.012 
1.81 1.80 0.006 0.011 
2.01 2.02 -0.005 0.010 
2.18 2.18 0.000 0.009 
2.35 2.34 0.004 0.009 
2.42 2.42 0.000 0.008 
2.53 2.52 0.004 0.008 
2.73 2.72 0.004 0.007 
2.82 2.81 0.004 0.007 
2.92 2.91 0.003 0.007 
3.15 3.14 0.003 0.006 
3.25 3.27 -0.006 0.006 
3.44 3.44 0.000 0.006 
3.55 3.55 0.000 0.006 
3.75 3.75 0.000 0.005 
3.86 3.86 0.000 0.005 
3.93 3.92 0.003 0.005 
4.11 4.10 0.002 0.005 
4.21 4.22 -0.002 0.005 
4.27 4.26 0.002 0.005 
4.45 4.44 0.002 0.004 
4.56 4.55 0.002 0.004 
4.86 4.86 0.000 0.004 
4.98 4.98 0.000 0.004 
5.04 4.98 0.012 0.004 
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Table A1.7: Values obtained during the frequency distortion test performed on the IC 
ADC08161C. 

Analog Signal
 Frequency 

Digital Signal  
Frequency (from FFT) Error (%) 

20.0 20.2 1.0000 
30.3 30.4 0.3300 
41.1 41.5 0.9732 
50.3 50.1 -0.3976 
60.4 60.9 0.8278 
70.4 70.5 0.0284 
80.5 81.0 0.5590 
101.4 101.7 0.2465 
202.4 202.0 -0.1976 
298.1 299.8 0.5703 
510.1 509.0 -0.2156 
805.9 805.5 -0.0496 
997.9 998.2 0.0301 

2016.0 2014.8 -0.0620 
2998.0 2997.3 -0.0233 
3993.0 3992.0 -0.0250 
4529.0 4525.5 -0.0773 

 

 

 

Section A1.5 – USB-DAQ8 Data Transfer Rate Test 

 

The data collected from performed experiments designed to measure the data 

transfer rates between the USB-DAQ8 and a host computer are show next. Table 

A1.6 presents data from the USB-DAQ8 trying to sample at 78.125 KHz, and Table 

A1.7 presents data for the reduced sampling rate. 
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Table A1.8: Results from data transfer tests performed while using a sampling 
frequency of 78.125 KHz. The values in the table represent and average of 100 trials 

performed for each acquisition time. 

Sampling frequency = 78.125 KHz 
Acquisition Time

(seconds) 
Average Number of

Bytes Received 
Calculated Rate 

(Bps) 
0.1 33259 332590.0 
0.2 43982 219910.0 
0.3 58898 196326.7 
0.4 71883 179707.5 
0.5 82899 165798.0 
0.6 96305 160508.3 
0.8 122683 153353.8 
1.0 148255 148255.0 
1.2 172555 143795.8 
1.4 196224 140160.0 
1.6 223181 139488.1 

 

 

Table A1.9: Results from data transfer tests performed while using a sampling 
frequency of 9600 Hz. The values in the table represent and average of 100 trials 

performed for each acquisition time. 

Sampling frequency = 9600 Hz 
Acquisition Time

(seconds) 
Average Number of

Bytes Received 
Calculated Rate 

(Bps) 
0.1 16552 75670.1 
0.2 23686 78626.3 
0.3 32312 76589.6 
0.4 39559 77049.3 
0.5 47003 77036.6 
0.6 54803 76231.6 
0.8 69358 75727.2 
1.0 82889 76137.5 
1.2 97279 75864.1 
1.4 112993 76091.8 
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Appendix 2 – Commands for the BasicX MCU’s 

 

This appendix presents the commands used for motion control and to gather 

data from the EvBot’s BasicX microcontroller units. The commands must follow the 

described formats for proper functioning of the robot’s motion system. 

The BasicX MCU’s have the following commands available: 
 
 
Motion Commands 

P  Set the PWM duty-cycle for motor 1 and motor 2 

M  Set the speed for motor 1 and motor 2 (use feedback control) 

T  Set the PWM duty-cycle for motor 3 

N  Set the speed for motor 3 (use feedback control) 

S  Stop all motors and return speed control errors 

 

Speed Control Setup Commands 

K  Set the control proportional gain for motor 1 or motor 2 

C  Set the control proportional gain for motor 3 

 

I/O Commands 

R  Read a digital input pin from the master BasicX 

I  Read a digital input pin from the slave BasicX 
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P command 
 
 
Description 
Set the PWM duty-cycle for motor 1 (right motor) and motor 2 (left motor). 

 
 
Syntax 
[P] [LeftDir|RightDir] [LeftPWM] [RightPWM]   or 
 
[p] [LeftDir|RightDir] [LeftPWM] [RightPWM] 
 
 
Arguments Description 

Item Type Description 
[P] or [p] Byte ASCII(P) = 80 

ASCII(p) = 112 
[LeftDir|RightDir] Byte Bit 0: Right direction 

Bit 1: Left direction 
0 = Forward 
1 = Backward 

[LeftPWM] Byte PWM duty-cycle for the left motor 
255 = 100% 

[RightPWM] Byte PWM duty-cycle for the right motor 
255 = 100% 

 
 
Return Value 
If success, return [P]. 
 
 
Related MatLab file 
setpwm.m 
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M command 
 
 
Description 
Set the speeds for motor 1 (right motor) and motor 2 (left motor). The motor speed is 

controlled using feedback from wheel encoders. 

 
Syntax 
[M] [LeftDir|RightDir] [LeftSpeed] [RightSpeed]  or 
 
[m] [LeftDir|RightDir] [LeftSpeed] [RightSpeed] 
 
 
Arguments Description 

Item Type Description 
[M] or [m] Byte ASCII(M) = 77 

ASCII(m) = 109 
[LeftDir|RightDir] Byte Bit 0: Right direction 

Bit 1: Left direction 
0 = Forward 
1 = Backward 

[LeftSpeed] Byte Left motor speed 
255 = maximum speed 

[RightSpeed] Byte Right motor speed 
255 = maximum speed 

 
 
Return Value 
If success, return [M]. 
 
 
Related MatLab file 
setspeed.m 
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T command 
 
 
Description 
Set the PWM duty-cycle for third motor. 
 
 
Syntax 
[T] [TransverseDir] [TransversePWM]   or 

[t] [TransverseDir] [TransversePWM] 

 
 
Arguments Description 
 
Item Type Description 
[T] or [t] Byte ASCII(T) = 84 

ASCII(t) = 116 
[TransverseDir] Byte Bit 0: Direction 

0 = Rightward 
1 = Leftward 

[TransversePWM] Byte PWM duty-cycle for the transverse 
motor (255 = 100%) 

 

Return Value 
If success, return [T]. 

 

Related MatLab file 
setpwm3.m 

 

 



 128

N command 
 
 

Description 
Set the speeds for motor 3 (transverse motor). The motor speed is controlled using 

feedback from a wheel encoder. 

 

Syntax 
[N] [TransverseDir] [TransverseSpeed]   or 

[n] [TransverseDir] [TransverseSpeed] 

 

Arguments Description 

Item Type Description 
[N] or [n] Byte ASCII(N) = 78 

ASCII(n) = 110 
[TransverseDir] Byte Bit 0: Direction 

0 = Rightward 
1 = Leftward 

[TransverseSpeed] Byte Transverse motor speed 
255 = maximum speed 

 
 

Return Value 
If success, return [N]. 

 

Related MatLab file 
setspeed3.m 
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R command 
 

 

Description 
Read a digital input pin from the master BasicX (BasicX 1).  

 

Syntax 
[R] [I/O pin number]   or 

[r] [I/O pin number]  

 

Arguments Description 

Item Type Description 
[R] or [r] Byte ASCII(R) = 82 

ASCII(r) = 114 
[I/O pin number] Byte 0 = 0 ... 9 = 9,  A = a = 10 ...  

z = Z = 35 
 

Return Value Syntax 
[R] [pin value]  

 

Return Arguments Description 

Item Type Description 
[R]  Byte ASCII(R) = 82 
[pin value] Byte 0 or 1 in ASCII  

ASCII(0) = 48 
ASCII(1) = 49 

 

Related MatLab file 
readpin.m 
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I command 
 
 
Description 
Read a digital input pin from the slave BasicX (BasicX 2).  

 

Syntax 
[I] [I/O pin number]   or 

[i] [I/O pin number]  

 

Arguments Description 

Item Type Description 
[I] or [i] Byte ASCII(I) = 73 

ASCII(i) = 105 
[I/O pin number] Byte 0 = 0 ... 9 = 9,  A = a = 10 ...  

z = Z = 35 
 

Return Syntax 
[I] [pin value]  

 

Return Arguments Description 

Item Type Description 
[I]  Byte ASCII(I) = 73 
[pin value] Byte 0 or 1 in ASCII  

ASCII(0) = 48 
ASCII(1) = 49 

 

Related MatLab file 
readpinbx2.m 
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K command 
 
 

Description 
Set the proportional gain of the feedback control of the motor 1 (right motor) or of the 

motor 2 (left motor). The decimal number corresponding to the 16-bit word is divided 

by 1000.0, so the range of the proportional gain is from 0.000 to 32.767.  

 

Syntax 
[K] [Left_K|Right_K] [HighByte] [LowByte]    or 

[k] [Left_K|Right_K] [HighByte] [LowByte] 

 

Arguments Description 

Item Type Description 
[K] or [k] Byte ASCII(K) = 75 

ASCII(k) = 107 
[Left_K|Right_K] Byte Bit 0 : select right motor or left motor 

0 = Right motor 
1 = Left motor 

[HighByte]  Byte High byte of a 16 bit number (bit 8 to bit 15) 
 [LowByte] Byte Low byte of a 16 bit number (bit 0 to bit 7) 

 

Return Value 
If success, return [K]. 

 

Related MatLab file 
setpgain.m 
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C command 
 

 

Description 
Set the proportional gain of the feedback control of the motor 3 (transverse motor). 

The decimal number corresponding to the 16-bit word is divided by 1000.0, so the 

range of the proportional gain is from 0.000 to 32.767.  

 

Syntax 
[C] [HighByte] [LowByte]    or 

[c] [HighByte] [LowByte] 

 

Arguments Description 

Item Type Description 
[C] or [c] Byte ASCII(C) = 67 

ASCII(c) = 99 
[HighByte]  Byte High byte of a 16 bit number (bit 8 to bit 15) 
 [LowByte] Byte Low byte of a 16 bit number (bit 0 to bit 7) 

 

Return Value 
If success, return [C]. 

 

Related MatLab file 
setpgain3.m 
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S command 
 
 
Description 
Stop all motors and return error codes when on closed-loop control mode.  

 

Syntax 
[S]    or    [s] 

 

Arguments Description 

Item Type Description 
[S] or [s] Byte ASCII(S) = 83 

ASCII(s) = 115 
 

 

Return Values 
If successful stop and errors on the speed control are less than 10%, return [S]. 

If only the error on the speed control of the motor 1 is greater than 10%, return 

[A][S]. 

If only the error on the speed control of the motor 2 is greater than 10%, return 

[B][S]. 

If errors on the speed control of the motors 1 and 2 are greater than 10%, return 

[A][B][S]. 

 

 

Related MatLab file 
stopmotors.m 
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Appendix 3 – Datasheets 

 

The following sections present copies of the datasheets of the components 

used in the EvBot II and in the USB-DAQ8. The datasheets presented here are mere 

copies of the first two pages of datasheets found on the world wide web. 
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A3.1 – MZ104 computer 
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A3.2 – DiskOnChip 2000 
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A3.3 – PCM-3115B PCMCIA Module 
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A3.4 – PCMCIA Wireless Card 
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A3.5 – BasicX24 Microcontroller 
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A3.6 – ENS-1J-B28 Rotary Optical Encoder 
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A3.7 – HCTL-2016 Quadrature Decoder 
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A3.8 – HS-300BB Servo Motor 
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A3.9 – L298 Dual Full-Bridge Driver 
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A3.10 – UC3610 Dual Schottky Diode Bridge 
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A3.11 – 74HC165 Parallel-in / Serial-out Shift Register 
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A3.12 – MIC29501 Voltage Regulator 
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A3.13 – USB MOD2 
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A3.14 – ADC8161 Analog to Digital Converter 
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A3.15 – LMX324 Quad Operational Amplifiers 
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A3.16 – LTC 1563-3 Active Lowpass Filter 
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A3.17 – WM-52B Omnidirectional Electret Microphone 
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A3.18 – 74VHC112 J-K Flip-Flop 
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A3.19 – 74AC74 D-Type Flip-Flop 
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A3.20 – 74VHC393 Dual 4-Bit Binary Counter 
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A3.21 – 74AC32 Quad 2-Input OR Gate 
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A3.22 – 74AC138 1-of-8 Decoder 
 

 
 



 174
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A3.23 – 74HC30 8-input NAND Gate 
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A3.24 – 74AC04 Hex Inverter 
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A3.25 – TU–400E USB Hub 
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Movies 
 
 
 

1. EvBot II exploring the maze 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. EvBot II exploring the maze (2) 
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3. Two generations of EvBots in the maze 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. EvBot II moving towards a sound source 
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5. Simulation of the EvBot sonar for a sound frequency of 1 KHz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. EvBot sonar tracking a 1 KHz sound source  
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7. EvBot sonar tracking the sound of an airplane reproduced by a nearby speaker 
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