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Abstract–Evolutionary Robotics (ER) employs population-based 
artificial evolution to develop behavioral robotics controllers.  In 
this paper we focus on the formulation and application of a fitness 
selection function for ER that makes use of intra-population 
competitive selection.  In the case of behavioral tasks, such as 
game playing, intra-population competition can lead to the 
evolution of complex behaviors.  In order for this competition to be 
realized, the fitness of competing controllers must be based mainly 
on the aggregate success or failure to complete an overall task.  
However, because initial controller populations are often sub-
minimally competent, and individuals are unable to complete the 
overall competitive task at all, no selective pressure can be 
generated at the onset of evolution (the Bootstrap Problem).  In 
order to accommodate these conflicting elements in selection, we 
formulate a bimodal fitness selection function.  This function 
accommodates sub-minimally competent initial populations in 
early evolution, but allows for binary success/failure competitive 
selection of controllers that have evolved to perform at a basic 
level.  Large arbitrarily connected neural network-based robot 
controllers were evolved to play the competitive team game 
Capture the Flag.  Results show that neural controllers evolved 
under a variety of conditions were competitive with a hand-coded 
knowledge-based controller and could win a modest majority of 
games in a large tournament. 

1. INTRODUCTION 
 
The goal of evolutionary robotics (ER) is to develop 
automatic methods of autonomous mobile robot controller 
synthesis that do not require hand coding or in depth human 
knowledge of the robot task for which the controller is 
intended.  ER uses population-base artificial evolution to 
evolve autonomous robot controllers.  In most current 
research, the evolved controller structures are artificial 
neural networks (ANN).  The process of controller evolution 
consists of a repeating cycle of several steps that are roughly 
analogous to a generation in a natural evolutionary process.  
During the cycle, individual neural controllers in a larger 
population of neural controllers perform a task or engage in 
an evaluation period.  Following this, each neural 
controller’s performance is evaluated based on a fitness  
 
 
 
 
 

selection metric.  In the final step of the cycle, a genetic 
algorithm (GA) is applied.  The GA uses information 
generated by the fitness selection function to select and 
propagate the fittest individuals in the current population to 
the next generation population.  During propagation, 
controller networks are altered slightly using stochastic 
genetic operators such as mutation and crossover to produce 
offspring that make up the next generation of controllers.  
This cycle is repeated for many generations to train 
populations of robot controllers to perform a given task.   
 
Much of the ER research reported on to date has 
investigated the evolution of controllers for extremely 
simple behaviors such as phototaxis [1][2] or object 
avoidance [3][4].  In such cases, fitness selection metrics 
can be formulated by trial and error.  The resulting 
formulations can include terms that describe sub-behaviors 
as well as simple sensor-actuator responses.  With difficulty, 
and with sufficient knowledge of the dynamics of a 
behavior, this can be extended to evolve controllers for 
somewhat more complex robot tasks.  For example, in [5] 
the authors describe the evolution of a coordinated 
movement task involving several robots.  Other examples of 
relatively complex behaviors evolved using complex hand-
formulated fitness functions include [6] and [7].  
Respectively, these report the evolution of an object 
collection and deposition task (garbage collection) and a 
task in which a robot must collide with objects (collect) in 
one zone and avoid them in another. 
 
The main value of the proof-of-concept ER work to date is 
that it has shown that neural controller structures can be 
evolved to produce functional behaviors in autonomous 
robots (self regulating sensory/motor close loop systems).  
What has not been shown is that ER methods can be 
extended to generate complex novel behaviors.  In 
particular, no ER work to date has shown that it is possible 
to evolve complex controllers in the general case or for 
generalized tasks.  
 
Although issues such as neural architecture and evolutionary 
dynamics are important, we make the case that the 
formulation of appropriate fitness selection functions is now 
the major hurdle confronting the further development of ER.  
In the early days of ER opinions about the necessity of fully 
embodied evolution were promulgate [8].  Many of the 
initial concerns and criticisms of the field of ER that were 



related to embodiment and transference from simulation to 
reality [9] have been addressed.  However, concerns related 
to fitness selection remain largely unresolved.  The 
development of methods for general fitness selection during 
evolution of controllers is crucial to the future of ER.  This 
view is reflected in some recent ER literature [10] and has 
been pointed out earlier in [4]. 
 
The research presented in this paper applies competitive 
selection to the evolution robot behavioral controllers.  The 
robots use very large neural networks with large numbers of 
processed video sensor inputs.  We formulate a bimodal 
fitness selection function.  The first mode of this function 
evaluates the potential of evolving controllers to produce a 
detectable level of completion of an overall behavior, 
however poorly, in a finite amount of time.  The second 
mode is used to evaluate competitive performance of 
controllers that complete the overall behavior to some 
detectable degree.  The first mode requires some human 
knowledge and bias to formulate whereas the second mode 
bases fitness solely on the ability of controllers to compete 
against one another to complete the overall behavior (or 
task) as a whole.  A key feature of this method is that 
information from the second mode, if present, completely 
supersedes information from the first mode.  This allows 
robot controllers that have gained a minimum level of 
competence to evolve in an unrestricted competitive 
evolutionary search space even though human knowledge 
and bias was used to achieve that minimal level 
competence.   
 
We present results generated with an advanced colony of 
small mobile robots with evolved neural controllers.  Using 
the bimodal fitness selection function, populations of neural 
controllers were evolved to play a competitive team game, 
Capture the Flag.  The evolutionary process was conducted 
in simulated environments and testing was performed both 
in simulation and using real robots in a physical 
environment.  Populations of controllers were evolved under 
several different environmental conditions.  The best 
evolved individuals from several different evolved 
populations were tested using extensive competitive 
tournaments against a knowledge-based controller of well-
defined abilities.   

2. THE ER ENVIRONMENT 

2.1 The Robot Task 

In this research, populations of robot controllers were 
evolved to play a robot version of the competitive team 
game Capture the Flag.  In this game, there are two teams 
of mobile robots and two stationary goal objects.  All robots 
on team one and one of the goals are of one color (red).  The 
other team members and their goal are another color 
(green).  In the game, robots of each team must try to 
approach the other team’s goal object while protecting their 
own goal.  The robot which first comes within a range of its 

opponent’s goal wins the game for its team.  The game is 
played in maze worlds of varying configurations. 

2.1 The Robots  

The physical robots used in this work are the EvBots 
[11][12].  These robots use vision base range-finding 
sensors for detection of their environment [13].  The robots 
are fully autonomous and are capable of performing all 
vision processing and control computation on board.   
Figure 1 shows a photograph of two EvBots.  Each robot is 
fitted with a colored shell.  The shells are used in the 
Capture the Flag game behavior and serve to differentiate 
robots on different teams.  
 

 
Figure 1.  EvBot robots fitted with colored shells. 

2.3 The Simulation Environment 

Evolution of the neural controllers is performed in a 
simulated environment. The simulation environment is 
coupled to a real robot environment that is used for testing 
and verification. 
 
In the simulation environment, robot agents, sensors, robot-
environment and robot-robot interactions are modeled [13].  
Simulated sensors extract range data from the environment 
and format them into the same format reported by real video 
range sensors used on the physical robots [14].  
  

Red Robots
Green Robots

Green Goal

Red Goal

 
 (a)                                             (b) 

Figure 2.  (a) Graphical representation of the simulation 
environment.  The simulated range sensor data received by the 
robots are displayed as the pie-piece shaped graphics superimposed 
on the environment.  (b) Real robots competing in a physical 
environment.  The light and dark curves indicate the paths taken by 
the robots during the course of the game.  The game was won be 
the red (dark) team. 
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(a)                                                                                          (b) 

Figure 3.  An example neural network weight (W) and connectivity matrix (a) and associated graphical representation (b).  Note that only 
non-zero weighted connections are shown in the graphical representation. 

 
Figure 2 panel (a) shows a screen-capture form the 
simulation environment.  The figure shows the final state of 
a game of Capture the Flag played between members of an 
evolving population.   In this case, the red team has won the 
game.  The path taken by the robot that won the game for its 
team is shown by the solid red (dark) line.  Figure 2 (b) 
shows an overhead view of the physical maze environments.  
The figure shows the final positions of teams of real robots 
after a game.  The light and dark curves superimposed on 
the image indicate the paths taken by the robots over the 
course of the game.  In this case, the red (dark) team has 
won the game by locating their opponent’s goal. 

2.4 The Neural Network Architecture 

A generalized class of network structures was used for the 
research reported on in this paper.  The networks can be 
quite large and may contain 5000 or more weighted 
connections. These networks include: (1) arbitrary 
connectivity with feed forward and feedback connections, 
(2) mixed types of neurons, and (3) variable integer time 
delays on neuron inputs.  Neuron activation function types 
include sigmoid, linear, step-threshold, and Gaussian radial 
basis functions.  All network connectivity and weighting 
information is maintained in a Matrix W.  An additional 
formatted vector structure N is required to store neuron type 
and time delay information.  During evolution, W and N for 
each network in a population are operated on directly.  No 
further genetic encoding or genome is used. 
 
Figure 3 shows an example neural network’s weight and 
connectivity matrix W, and its associated graphical 
representation.  Note that only non-zero weighted 
connections are shown in the graphical representation.  The 
network shown is much smaller than the networks actually 
evolved for control.  It is included here as an example.  This 
network formulation is amenable to evolutionary neural 
computing applications that use variable-size networks 
because neurons and connections can be added and removed 
easily without disrupting the connectivity relationships of 
the other neurons in a given network. 

3. THE BIMODAL FITNESS FUNCTION 

3.1 Fitness Function Formulation 

Fitness for individual controllers was based on their 
performance in competition in tournaments of games.  
During each generation, a single tournament of games was 
played.  A bimodal training fitness selection function was 
used.  The selection function has an initial mode that 
accommodates sub-minimally competent seed populations 
and a second mode that selects for aggregate fitness based 
only on overall success or failure (winning or losing games).  
Additionally, this selection metric was applied in a relative 
competitive form in which controllers in an evolving 
population competed against one another to complete their 
task - to win the competitive game Capture the Flag. 
 
Fitness F(p) of an individual p in an evolving population P 
( P∈p ) takes the general form: 
 

)()()( 2mode_1mode_ pFpFpF ⊕=       (1) 
 
where Fmode_1 is the initial minimal-competence mode and 
Fmode_2 is the purely success/failure based mode.  Here ⊕  
indicates dependant exclusive-or: if the success/failure 
based mode’s value is non-zero, it is used and any value 
from Fmode_1 is discarded.  Otherwise fitness is based on the 
output of Fmode_1.  Fmode_1 is formulated to return negative 
values and returns 0 when maximized or if Fmode_2 is active.  
Fmode_2 in contrast returns positive values based on number 
of game-wins, if any. 
 
The first mode of the fitness function selects for minimal 
competence to successfully complete the task (however 
poorly) in a detectable fraction of the trials, and in a finite 
amount of time.  In essence, the mode selects for the ability 
to travel a distance D through the competition environment.  
The general form of mode 1 is as follows: 



 
msFF dist −−=mode_1   (2) 

 
where Fdist calculates a penalty proportional to the 
difference between distance d travel by the best robot on a 
team, and the minimal competence distance D: 
 







 <−−

=
otherwize                   0

 if      )(* DddD
Fdist

α  (3) 

 
D is defined as half the length of the training environment’s 
greatest dimension and α is a constant of proportionality.  In 
Equation (2), s and m are penalty constants applied in the 
case that robots on a team becoming immobilized or stuck 
(by any means), and, in the case of controllers, producing 
actuator output commands that exceed the range of the 
actuators (the wheel motors) respectively.   
 
The second mode of the fitness function Fmode_2 is classified 
as aggregate because it produces fitness based only on 
success or failure of the controllers to complete the task at 
hand (competitive team game playing).  The formulation of 
the success/failure mode (Fmode_2) of the fitness function is 
determined by the competitive nature of the training 
algorithm and the behavioral task.  Here, competitive games 
were played, so success or failure was determined by 
winning or losing games.  In each generation, a tournament 
of games involving all the individuals in the population was 
conducted.  Each individual played two games against one 
other member of the population (the opponent).  Note that 
the opponent was selected at random from the population at 
the beginning of each tournament.  The possible outcomes 
of these games incurred different levels of fitness and are 
summarized in Table. 1 below. 
 
Table 1.  Fitness points awarded by the aggregate success/failure 
mode Fmode_2, for pairs of reciprocal games during a generational 
tournament. 

Game Pair 
Outcomes 

Fitness Points 
Awarded 

win-win 3 
win-draw 1 
win-lose .5 
no win 0  (Fmode_1 

dominates) 
 
Note that in cases where no win occurs Fmode_1 is used to 
determine a negative fitness value. 

3.2 The GA and neural network mutation 

After a tournament of games (one generation), controller 
population members p are scored relative to each other 
using the performance metric F(p) defined in Equation (1) 
before propagation to the next generation. 
 

Offspring are generated using mutation only. During the 
propagation phase of the GA, the fittest 50% of the 
population produce offspring that replace the least-fit 50% 
of the population.  An important ramification of this is that 
in the case that 50% or more of the population receives a 
positive fitness value, then selection will be based entirely 
on success/failure information and the minimal competence 
mode will have no bearing, i.e. all individuals not achieving 
success will be eliminated.     
 
Network weights, neurons and connectivity may all be 
mutated during propagation. 

4. RESULTS 

4.1 Incremental Verses All-in-one Evolution 

Populations of robot controllers were evolved under two 
different environmental setting.  In one case, controller 
populations were evolved in increasingly complex worlds 
over the course of evolution.  This case will be referred to as 
the incremental case.   The population of controllers starts 
evolution in a very simple world.  As a level of competence 
is evolved, the population graduates to progressively more 
challenging training worlds. The sequence of training 
worlds is shown in Figure 4 below.   
 

W o r l d  # 1 W o r l d  # 2 W o r l d  # 3 W o r l d  # 4

W o r l d  # 5 W o r l d  # 6 W o r l d  # 7 W o r l d  # 1

 
Figure 4.  Training worlds used over the course of evolution. 

 
Populations were also evolved completely in a very 
challenging world configuration (world #7 from Figure 4). 
This case will be referred to as the all-in-one case.  All 
evolution runs were initialized with populations of 
randomly configured neural networks.  In both cases, the 
fitness selection function given in Equation (1) from the 
previous section was used without alteration. 
 
Figure 5 (a) and (b) and show training fitness data from two 
population evolutions.  Figure 5 (a) shows data from an all-
in-one evolution case while Figure 5 (b) presents data from 
an incremental case.  In the top panel of (a) and (b), the best 
controller selection fitness (as measured by the bimodal 
fitness function) is plotted at each generation over the 
course of evolution.  The population best, mean and poorest 
fitness levels are all shown.  The middle panels of (a) and 
(b) indicate the number of wins generated by the evolving  



   
   (a)                                                                                            (b) 

Figure 5. Incremental evolution and all-in-one evolution data curves.  (a) shows data training data collected over the course of an all-in-one 
population evolution.  (b) shows data from an incremental evolution. 

 
populations as a whole at each generation.  This is a purely 
passive metric with regard to fitness selection.  However, in 
the incremental case, this passive metric serves to 
automatically increment the training world difficulty.  In 
Figure 5 (a) and (b) the current training world is indicated at 
each generation.  Note that in (a), this remains at 7 
throughout training, whereas in (b) the sequence of 
environments is stepped through several times over the 
course of evolution. 
 
In the all-in-one evolution case (Figure 5 (a)), selection 
fitness was not maximized until after generation 100.  This 
reflects the fact that controllers were evolved from the 
beginning in the most difficult training world.  No controller 
capable of winning both of its games in a tournament arose 
before the 100th generation.  After the 100th generation the 
fitness of the best (fittest) controller oscillated between 
levels corresponding to one and two wins per generation.  
The total population wins per generation data (middle panel 
Figure 5 (a)) however, indicate that the overall number of 
games that a population can win continued to increase over 
the next 200 generations.  
 
Figure 5 part (b) shows data from an incremental evolution 
run.  In this case the best fitness at each generation was 
maximized very early in evolution.  This indicates that the 
best individuals in the population evolved relatively quickly 
to be able to win games in the simpler worlds.  Even so, the 
middle panel of Figure 5 (b) indicates that at the first 
generation, no controller in the in the initial random seed 
population was capable of winning a game.  By the 25th 
generation the population as a whole was capable of 
winning enough games during a tournament to graduate to 
the next level of training world difficulty.  Over the course 
of training up to the 250th generation, the population became 

competent in each of the progressively more challenging 
environments.  The cycle of training worlds repeats after it 
is completed.  The lower panel of Figure 5 (b) indicates that 
the first cycle through the training world sequence required 
250 generations.  There after, the population cycled though 
the sequence completing four full cycles between the 250th 
450th generations. 

4.2. Evaluation of Evolved Controller Performance 

Because a relative competitive fitness selection metric was 
used to drive the evolutionary process, absolute fitness is 
not known.  To address this, fully evolved controllers were 
compared to a knowledge-based controller of known 
abilities.   The fittest controllers from populations evolved 
under both incremental conditions and in single 
environments (all-in-one cases) were selected and tested in 
competition against the knowledge-based controller. 
 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

W
in

s 
pe

r T
ou

rn
am

en
t

ANN Wins      
Rule-base Wins
Draws         

All-in-one Evolved Populations  Incremental Evolved Populations 

Population 1 Population 2 Population 3 Population 4  
Figure 6.  Results of evolve controller and knowledge-based 
controller competitions.  The dark bars indicate the number of 
neural controller wins per tournament, the shaded bars indicated 
the number of knowledge-based wins, whereas the open bars 
record the number of games played to a draw.  The range bars 
indicate a 95% confidence interval. 



Four evolved populations were compared: 2 incrementally 
evolved populations and 2 all-in-one populations.  Using the 
best controller from each of the evolved populations, an 
extensive tournament of 240 games was conducted (against 
the knowledge-based controller).  All games were played in 
a challenging world configuration similar to that shown in 
world #7 of Figure 4.  Each game during the tournaments 
was initialized with a new randomly generated set of 
starting positions for robots and goals.  Note that the same 
set of 240 random initializations was used for each of the 4 
tournaments. 
 
Figure 6 summarize the results of the four testing 
tournaments.  Controllers from both populations 1 and 4 
were able to play competitively against the knowledge-
based controller and were able to win modest majorities of 
games over the course of 240 games.  This indicates that 
incrementation of environmental difficulty produced no 
clear evolutionary advantage.   It is likely that the bootstrap 
mode of the bimodal fitness selection function compensates 
for difficult initial training environments.  This is further 
evidenced by comparing the number of wins per generation 
data from the incremental and all-in-one evolutions.  In the 
all-in-one case, no wins at all occured in early training, 
while in the incremental case, controllers evolved to 
produce game wins relatively quickly (early in evolution) in 
the simpler environments. 

5. CONCLUSION 
This research investigated the application of a bimodal 
fitness selection function toward the evolution of team 
game-playing behaviors in mobile robots. 
 
Although only populations 1 and 4 in Figure 6 produced 
controllers capable of outperforming the knowledge base, 
all 4 evolved populations produced relatively competent 
controllers.  This indicates that the bimodal fitness selection 
function can be used to drive the evolution of game-playing 
behaviors under the different conditions considered. 
 
Populations of large neural networks using 150 or more 
processed video sensor inputs were evolved. 
 
Further work will include investigations into a broader 
range of environmental and algorithmic conditions.  For the 
current research, information from only a single trail 
(tournament) was used at each generation.  Methods for 
integration of fitness information over the course of 
evolution will also be investigated. 
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