
Evolution of Complex Autonomous Robot Behaviors
using Competitive Fitness

A. L. Nelson, E. Grant, G. Barlow, M. White
Center for Robotics and Intelligent Machines

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC 27695-7911

Abstract–Evolutionary Robotics (ER) employs population-based
artificial evolution to develop behavioral robotics controllers. In
this paper we focus on the formulation and application of a fitness
selection function for ER that makes use of intra-population
competitive selection. In the case of behavioral tasks, such as
game playing, intra-population competition can lead to the
evolution of complex behaviors. In order for this competition to be
realized, the fitness of competing controllers must be based mainly
on the aggregate success or failure to complete an overall task.
However, because initial controller populations are often sub-
minimally competent, and individuals are unable to complete the
overall competitive task at all, no selective pressure can be
generated at the onset of evolution (the Bootstrap Problem). In
order to accommodate these conflicting elements in selection, we
formulate a bimodal fitness selection function. This function
accommodates sub-minimally competent initial populations in
early evolution, but allows for binary success/failure competitive
selection of controllers that have evolved to perform at a basic
level. Large arbitrarily connected neural network-based robot
controllers were evolved to play the competitive team game
Capture the Flag. Results show that neural controllers evolved
under a variety of conditions were competitive with a hand-coded
knowledge-based controller and could win a modest majority of
games in a large tournament.

1. INTRODUCTION

The goal of evolutionary robotics (ER) is to develop
automatic methods of autonomous mobile robot controller
synthesis that do not require hand coding or in depth human
knowledge of the robot task for which the controller is
intended. ER uses population-base artificial evolution to
evolve autonomous robot controllers. In most current
research, the evolved controller structures are artificial
neural networks (ANN). The process of controller evolution
consists of a repeating cycle of several steps that are roughly
analogous to a generation in a natural evolutionary process.
During the cycle, individual neural controllers in a larger
population of neural controllers perform a task or engage in
an evaluation period. Following this, each neural
controller’s performance is evaluated based on a fitness

selection metric. In the final step of the cycle, a genetic
algorithm (GA) is applied. The GA uses information
generated by the fitness selection function to select and
propagate the fittest individuals in the current population to
the next generation population. During propagation,
controller networks are altered slightly using stochastic
genetic operators such as mutation and crossover to produce
offspring that make up the next generation of controllers.
This cycle is repeated for many generations to train
populations of robot controllers to perform a given task.

Much of the ER research reported on to date has
investigated the evolution of controllers for extremely
simple behaviors such as phototaxis [1][2] or object
avoidance [3][4]. In such cases, fitness selection metrics
can be formulated by trial and error. The resulting
formulations can include terms that describe sub-behaviors
as well as simple sensor-actuator responses. With difficulty,
and with sufficient knowledge of the dynamics of a
behavior, this can be extended to evolve controllers for
somewhat more complex robot tasks. For example, in [5]
the authors describe the evolution of a coordinated
movement task involving several robots. Other examples of
relatively complex behaviors evolved using complex hand-
formulated fitness functions include [6] and [7].
Respectively, these report the evolution of an object
collection and deposition task (garbage collection) and a
task in which a robot must collide with objects (collect) in
one zone and avoid them in another.

The main value of the proof-of-concept ER work to date is
that it has shown that neural controller structures can be
evolved to produce functional behaviors in autonomous
robots (self regulating sensory/motor close loop systems).
What has not been shown is that ER methods can be
extended to generate complex novel behaviors. In
particular, no ER work to date has shown that it is possible
to evolve complex controllers in the general case or for
generalized tasks.

Although issues such as neural architecture and evolutionary
dynamics are important, we make the case that the
formulation of appropriate fitness selection functions is now
the major hurdle confronting the further development of ER.
In the early days of ER opinions about the necessity of fully
embodied evolution were promulgate [8]. Many of the
initial concerns and criticisms of the field of ER that were

related to embodiment and transference from simulation to
reality [9] have been addressed. However, concerns related
to fitness selection remain largely unresolved. The
development of methods for general fitness selection during
evolution of controllers is crucial to the future of ER. This
view is reflected in some recent ER literature [10] and has
been pointed out earlier in [4].

The research presented in this paper applies competitive
selection to the evolution robot behavioral controllers. The
robots use very large neural networks with large numbers of
processed video sensor inputs. We formulate a bimodal
fitness selection function. The first mode of this function
evaluates the potential of evolving controllers to produce a
detectable level of completion of an overall behavior,
however poorly, in a finite amount of time. The second
mode is used to evaluate competitive performance of
controllers that complete the overall behavior to some
detectable degree. The first mode requires some human
knowledge and bias to formulate whereas the second mode
bases fitness solely on the ability of controllers to compete
against one another to complete the overall behavior (or
task) as a whole. A key feature of this method is that
information from the second mode, if present, completely
supersedes information from the first mode. This allows
robot controllers that have gained a minimum level of
competence to evolve in an unrestricted competitive
evolutionary search space even though human knowledge
and bias was used to achieve that minimal level
competence.

We present results generated with an advanced colony of
small mobile robots with evolved neural controllers. Using
the bimodal fitness selection function, populations of neural
controllers were evolved to play a competitive team game,
Capture the Flag. The evolutionary process was conducted
in simulated environments and testing was performed both
in simulation and using real robots in a physical
environment. Populations of controllers were evolved under
several different environmental conditions. The best
evolved individuals from several different evolved
populations were tested using extensive competitive
tournaments against a knowledge-based controller of well-
defined abilities.

2. THE ER ENVIRONMENT

2.1 The Robot Task

In this research, populations of robot controllers were
evolved to play a robot version of the competitive team
game Capture the Flag. In this game, there are two teams
of mobile robots and two stationary goal objects. All robots
on team one and one of the goals are of one color (red). The
other team members and their goal are another color
(green). In the game, robots of each team must try to
approach the other team’s goal object while protecting their
own goal. The robot which first comes within a range of its

opponent’s goal wins the game for its team. The game is
played in maze worlds of varying configurations.

2.1 The Robots

The physical robots used in this work are the EvBots
[11][12]. These robots use vision base range-finding
sensors for detection of their environment [13]. The robots
are fully autonomous and are capable of performing all
vision processing and control computation on board.
Figure 1 shows a photograph of two EvBots. Each robot is
fitted with a colored shell. The shells are used in the
Capture the Flag game behavior and serve to differentiate
robots on different teams.

Figure 1. EvBot robots fitted with colored shells.

2.3 The Simulation Environment

Evolution of the neural controllers is performed in a
simulated environment. The simulation environment is
coupled to a real robot environment that is used for testing
and verification.

In the simulation environment, robot agents, sensors, robot-
environment and robot-robot interactions are modeled [13].
Simulated sensors extract range data from the environment
and format them into the same format reported by real video
range sensors used on the physical robots [14].

Red Robots
Green Robots

Green Goal

Red Goal

 (a) (b)

Figure 2. (a) Graphical representation of the simulation
environment. The simulated range sensor data received by the
robots are displayed as the pie-piece shaped graphics superimposed
on the environment. (b) Real robots competing in a physical
environment. The light and dark curves indicate the paths taken by
the robots during the course of the game. The game was won be
the red (dark) team.

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.3
0

-0.4
0

-0.1
0.4
0.3

0
-0.3
-0.4

0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.4
0

-0.4
-0.3
0.4

0
0

0.3
0

-0.3
-0.2
-0.1

0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.3
-0.1

0
0

-0.1
0

0.1
0.1
0.4

0

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.3
0

-0.3
0

0.4
0.4

-0.3
-0.1
-0.5
-0.3

0
-0.4

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.2
0.3

-0.3
0
0
0
0

-0.1
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.2
-0.5
0.4

-0.5
-0.2
-0.1

0
-0.4

0
0

0.1
0

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.3
-0.3

0
0

0.4
0.5

-0.3
0
0

0.4
0.1

-0.4

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

-0.2
0
0

0.4
0
0

-0.4
0.1

0
-0.2
-0.1

0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0.3
0.5

0
0.5

0
-0.1
-0.5

0
-0.1
-0.3
-0.2

0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0.4
0

-0.4
-0.1

0
0.3

-0.4
0
0
0

-0.2
-0.4

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0.4
0
0
0
0
0

0.1
-0.3
-0.5
-0.4
0.2

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

-0.2
0.2
0.2
0.2

-0.4
0
0
0

0.3
0.4

0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

-0.2
0

0.1
-0.3
-0.3

0
0.2

0
-0.2
-0.3

0
0.4

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

-0.1
0
0

0.4
0.4
0.3
0.5

-0.3
0
0

-0.2
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

0.1
-0.2
0.2
0.5
0.1

0
0.4

-0.4
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0.5
0.1

0
0

-0.5
0

-0.4
0

-0.1
-0.1

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0.5
0
0

0.4
-0.1

0
0.2

0
0

0.1
0

0.5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

-0.1
0
0

-0.3
0.3

0
0

0.3
0
0
0

-0.3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

-0.5
-0.3

0
0
0

0.1
0
0
0

0.1
0

0.2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0.2
0
0
0
0

0.4
0
0
0

-0.2
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.1
0

-0.1
0.4

-0.4
0
0

-0.2
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.2
0

0.4
-0.3

0
0
0

0.4
-0.3

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.2
0

0.2
0

0.3
0

-0.2
0.2
0.2

0
-0.4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.2
0.4

0
0
0

0.2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.3
0
0
0
0

0.4
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-0.1
-0.4

0
0

-0.1
0

-0.2
0

0.4
0.3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.3
-0.4

0
-0.3
0.5
0.2

-0.5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.3
-0.1

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.3
0
0
0
0

-0.5
0.5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.2
0

-0.2
0

-0.3
0.1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.1
0
0
0

-0.4
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.5
-0.2
0.4

-0.1
0.1
0.2

-0.3
0.2
0.4
0.3

-0.1
-0.1in1

in1 in1 type = lin

in2

in2 in2 type = lin

in3

in3 in3 type = lin

in4

in4 in4 type = lin

in5

in5 in5 type = lin

in6

in6 in6 type = lin

in7

in7 in7 type = lin

in8

in8 in8 type = lin

in9

in9 in9 type = lin

in10

in10 in10 type = lin

in11

in11 in11 type = lin

in12

in12 in12 type = lin

in13

in13 in13 type = lin

in14

in14 in14 type = lin

in15

in15 in15 type = lin

in16

in16 in16 type = lin

in17

in17 in17 type = lin

in18

in18 in18 type = lin

in19

in19 in19 type = lin

in20

in20 in20 type = lin

hid1

hid1 Hid1 type = sdl

hid2

hid2 Hid2 type = rdl

hid3

hid3 Hid3 type = rdl

hid4

hid4 Hid4 type = rbf

hid5

hid5 Hid5 type = sdl

hid6

hid6 Hid6 type = sdl

hid7

hid7 Hid7 type = sdl

hid8

hid8 Hid8 type = rbf

hid9

hid9 Hid9 type = sdl

hid10

hid10 Hid10 type = rdl

out1

out1 Out1 type = lin

out2

out2 Out2 type = linbias

W N

1

2

3

4

5 6

7

8

9
10

11
12

in 1

in 2

in 3

in 4

in 5

in 6

in 7

in 8

in 9

in 10

in 11

in 12

in 13

in 14

in 15

in 16

in 17

in 18

in 19

in 20

out 1

out 21

2

3

4

5 6

7

8

9
10

11
12

(a) (b)

Figure 3. An example neural network weight (W) and connectivity matrix (a) and associated graphical representation (b). Note that only
non-zero weighted connections are shown in the graphical representation.

Figure 2 panel (a) shows a screen-capture form the
simulation environment. The figure shows the final state of
a game of Capture the Flag played between members of an
evolving population. In this case, the red team has won the
game. The path taken by the robot that won the game for its
team is shown by the solid red (dark) line. Figure 2 (b)
shows an overhead view of the physical maze environments.
The figure shows the final positions of teams of real robots
after a game. The light and dark curves superimposed on
the image indicate the paths taken by the robots over the
course of the game. In this case, the red (dark) team has
won the game by locating their opponent’s goal.

2.4 The Neural Network Architecture

A generalized class of network structures was used for the
research reported on in this paper. The networks can be
quite large and may contain 5000 or more weighted
connections. These networks include: (1) arbitrary
connectivity with feed forward and feedback connections,
(2) mixed types of neurons, and (3) variable integer time
delays on neuron inputs. Neuron activation function types
include sigmoid, linear, step-threshold, and Gaussian radial
basis functions. All network connectivity and weighting
information is maintained in a Matrix W. An additional
formatted vector structure N is required to store neuron type
and time delay information. During evolution, W and N for
each network in a population are operated on directly. No
further genetic encoding or genome is used.

Figure 3 shows an example neural network’s weight and
connectivity matrix W, and its associated graphical
representation. Note that only non-zero weighted
connections are shown in the graphical representation. The
network shown is much smaller than the networks actually
evolved for control. It is included here as an example. This
network formulation is amenable to evolutionary neural
computing applications that use variable-size networks
because neurons and connections can be added and removed
easily without disrupting the connectivity relationships of
the other neurons in a given network.

3. THE BIMODAL FITNESS FUNCTION

3.1 Fitness Function Formulation

Fitness for individual controllers was based on their
performance in competition in tournaments of games.
During each generation, a single tournament of games was
played. A bimodal training fitness selection function was
used. The selection function has an initial mode that
accommodates sub-minimally competent seed populations
and a second mode that selects for aggregate fitness based
only on overall success or failure (winning or losing games).
Additionally, this selection metric was applied in a relative
competitive form in which controllers in an evolving
population competed against one another to complete their
task - to win the competitive game Capture the Flag.

Fitness F(p) of an individual p in an evolving population P
(P∈p) takes the general form:

)()()(2mode_1mode_ pFpFpF ⊕= (1)

where Fmode_1 is the initial minimal-competence mode and
Fmode_2 is the purely success/failure based mode. Here ⊕
indicates dependant exclusive-or: if the success/failure
based mode’s value is non-zero, it is used and any value
from Fmode_1 is discarded. Otherwise fitness is based on the
output of Fmode_1. Fmode_1 is formulated to return negative
values and returns 0 when maximized or if Fmode_2 is active.
Fmode_2 in contrast returns positive values based on number
of game-wins, if any.

The first mode of the fitness function selects for minimal
competence to successfully complete the task (however
poorly) in a detectable fraction of the trials, and in a finite
amount of time. In essence, the mode selects for the ability
to travel a distance D through the competition environment.
The general form of mode 1 is as follows:

msFF dist −−=mode_1 (2)

where Fdist calculates a penalty proportional to the
difference between distance d travel by the best robot on a
team, and the minimal competence distance D:







 <−−

=
otherwize 0

 if)(* DddD
Fdist

α (3)

D is defined as half the length of the training environment’s
greatest dimension and α is a constant of proportionality. In
Equation (2), s and m are penalty constants applied in the
case that robots on a team becoming immobilized or stuck
(by any means), and, in the case of controllers, producing
actuator output commands that exceed the range of the
actuators (the wheel motors) respectively.

The second mode of the fitness function Fmode_2 is classified
as aggregate because it produces fitness based only on
success or failure of the controllers to complete the task at
hand (competitive team game playing). The formulation of
the success/failure mode (Fmode_2) of the fitness function is
determined by the competitive nature of the training
algorithm and the behavioral task. Here, competitive games
were played, so success or failure was determined by
winning or losing games. In each generation, a tournament
of games involving all the individuals in the population was
conducted. Each individual played two games against one
other member of the population (the opponent). Note that
the opponent was selected at random from the population at
the beginning of each tournament. The possible outcomes
of these games incurred different levels of fitness and are
summarized in Table. 1 below.

Table 1. Fitness points awarded by the aggregate success/failure
mode Fmode_2, for pairs of reciprocal games during a generational
tournament.

Game Pair
Outcomes

Fitness Points
Awarded

win-win 3
win-draw 1
win-lose .5
no win 0 (Fmode_1

dominates)

Note that in cases where no win occurs Fmode_1 is used to
determine a negative fitness value.

3.2 The GA and neural network mutation

After a tournament of games (one generation), controller
population members p are scored relative to each other
using the performance metric F(p) defined in Equation (1)
before propagation to the next generation.

Offspring are generated using mutation only. During the
propagation phase of the GA, the fittest 50% of the
population produce offspring that replace the least-fit 50%
of the population. An important ramification of this is that
in the case that 50% or more of the population receives a
positive fitness value, then selection will be based entirely
on success/failure information and the minimal competence
mode will have no bearing, i.e. all individuals not achieving
success will be eliminated.

Network weights, neurons and connectivity may all be
mutated during propagation.

4. RESULTS

4.1 Incremental Verses All-in-one Evolution

Populations of robot controllers were evolved under two
different environmental setting. In one case, controller
populations were evolved in increasingly complex worlds
over the course of evolution. This case will be referred to as
the incremental case. The population of controllers starts
evolution in a very simple world. As a level of competence
is evolved, the population graduates to progressively more
challenging training worlds. The sequence of training
worlds is shown in Figure 4 below.

W o r l d # 1 W o r l d # 2 W o r l d # 3 W o r l d # 4

W o r l d # 5 W o r l d # 6 W o r l d # 7 W o r l d # 1

Figure 4. Training worlds used over the course of evolution.

Populations were also evolved completely in a very
challenging world configuration (world #7 from Figure 4).
This case will be referred to as the all-in-one case. All
evolution runs were initialized with populations of
randomly configured neural networks. In both cases, the
fitness selection function given in Equation (1) from the
previous section was used without alteration.

Figure 5 (a) and (b) and show training fitness data from two
population evolutions. Figure 5 (a) shows data from an all-
in-one evolution case while Figure 5 (b) presents data from
an incremental case. In the top panel of (a) and (b), the best
controller selection fitness (as measured by the bimodal
fitness function) is plotted at each generation over the
course of evolution. The population best, mean and poorest
fitness levels are all shown. The middle panels of (a) and
(b) indicate the number of wins generated by the evolving

 (a) (b)

Figure 5. Incremental evolution and all-in-one evolution data curves. (a) shows data training data collected over the course of an all-in-one
population evolution. (b) shows data from an incremental evolution.

populations as a whole at each generation. This is a purely
passive metric with regard to fitness selection. However, in
the incremental case, this passive metric serves to
automatically increment the training world difficulty. In
Figure 5 (a) and (b) the current training world is indicated at
each generation. Note that in (a), this remains at 7
throughout training, whereas in (b) the sequence of
environments is stepped through several times over the
course of evolution.

In the all-in-one evolution case (Figure 5 (a)), selection
fitness was not maximized until after generation 100. This
reflects the fact that controllers were evolved from the
beginning in the most difficult training world. No controller
capable of winning both of its games in a tournament arose
before the 100th generation. After the 100th generation the
fitness of the best (fittest) controller oscillated between
levels corresponding to one and two wins per generation.
The total population wins per generation data (middle panel
Figure 5 (a)) however, indicate that the overall number of
games that a population can win continued to increase over
the next 200 generations.

Figure 5 part (b) shows data from an incremental evolution
run. In this case the best fitness at each generation was
maximized very early in evolution. This indicates that the
best individuals in the population evolved relatively quickly
to be able to win games in the simpler worlds. Even so, the
middle panel of Figure 5 (b) indicates that at the first
generation, no controller in the in the initial random seed
population was capable of winning a game. By the 25th
generation the population as a whole was capable of
winning enough games during a tournament to graduate to
the next level of training world difficulty. Over the course
of training up to the 250th generation, the population became

competent in each of the progressively more challenging
environments. The cycle of training worlds repeats after it
is completed. The lower panel of Figure 5 (b) indicates that
the first cycle through the training world sequence required
250 generations. There after, the population cycled though
the sequence completing four full cycles between the 250th
450th generations.

4.2. Evaluation of Evolved Controller Performance

Because a relative competitive fitness selection metric was
used to drive the evolutionary process, absolute fitness is
not known. To address this, fully evolved controllers were
compared to a knowledge-based controller of known
abilities. The fittest controllers from populations evolved
under both incremental conditions and in single
environments (all-in-one cases) were selected and tested in
competition against the knowledge-based controller.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

W
in

s
pe

r T
ou

rn
am

en
t

ANN Wins
Rule-base Wins
Draws

All-in-one Evolved Populations Incremental Evolved Populations

Population 1 Population 2 Population 3 Population 4
Figure 6. Results of evolve controller and knowledge-based
controller competitions. The dark bars indicate the number of
neural controller wins per tournament, the shaded bars indicated
the number of knowledge-based wins, whereas the open bars
record the number of games played to a draw. The range bars
indicate a 95% confidence interval.

Four evolved populations were compared: 2 incrementally
evolved populations and 2 all-in-one populations. Using the
best controller from each of the evolved populations, an
extensive tournament of 240 games was conducted (against
the knowledge-based controller). All games were played in
a challenging world configuration similar to that shown in
world #7 of Figure 4. Each game during the tournaments
was initialized with a new randomly generated set of
starting positions for robots and goals. Note that the same
set of 240 random initializations was used for each of the 4
tournaments.

Figure 6 summarize the results of the four testing
tournaments. Controllers from both populations 1 and 4
were able to play competitively against the knowledge-
based controller and were able to win modest majorities of
games over the course of 240 games. This indicates that
incrementation of environmental difficulty produced no
clear evolutionary advantage. It is likely that the bootstrap
mode of the bimodal fitness selection function compensates
for difficult initial training environments. This is further
evidenced by comparing the number of wins per generation
data from the incremental and all-in-one evolutions. In the
all-in-one case, no wins at all occured in early training,
while in the incremental case, controllers evolved to
produce game wins relatively quickly (early in evolution) in
the simpler environments.

5. CONCLUSION
This research investigated the application of a bimodal
fitness selection function toward the evolution of team
game-playing behaviors in mobile robots.

Although only populations 1 and 4 in Figure 6 produced
controllers capable of outperforming the knowledge base,
all 4 evolved populations produced relatively competent
controllers. This indicates that the bimodal fitness selection
function can be used to drive the evolution of game-playing
behaviors under the different conditions considered.

Populations of large neural networks using 150 or more
processed video sensor inputs were evolved.

Further work will include investigations into a broader
range of environmental and algorithmic conditions. For the
current research, information from only a single trail
(tournament) was used at each generation. Methods for
integration of fitness information over the course of
evolution will also be investigated.

References

[1] I. Harvey, P. Husbands, D. Cliff, “Seeing the light: artificial

evolution, real vision,” in D. Cliff, P. Husbands, J.-A.
Meyer, S. Wilson Eds, From Animals to Animates 3, Proc.
of 3rd Intl. Conf. on Simulation of Adaptive Behavior,
SAB94, MIT Press/Bradford Books, Boston, MA, 1994, pp.
392-401.

[2] R.A. Watson, S.G. Ficici, J.B. Pollack, “Embodied
Evolution: Distributing an Evolutionary Algorithm in a
Population of Robots,” Robotics and Autonomous Systems,
vol. 39 no. 1, pp 1-18, Apr. 2002.

[3] J. Kodjabachian, J.-A. Meyer, “Evolution and development
of neural networks controlling locomotion, gradient-
following, and obstacle avoidance in artificial insects,” IEEE
Transaction on Neural Networks, vol. 9, no. 5, pp. 796-812,
Sept. 1998.

[4] D. Floreano, F. Mondada , “Evolution of homing navigation
in a real mobile robot,” IEEE Transactions on Systems, Man,
Cybernetics Part B: Cybernetics, vol. 26 no. 3, pp. 396-407,
1996.

[5] M. Quinn, “Evolving communication without dedicated
communication channels,”
in Kelemen, J. and Sosik, P. Eds., Advances in Artificial
Life: Sixth European Conference on Artificial Life (ECAL
2001), Prague, Czech Republic, Sept. 2001, Springer, pp.
357-366.

[6] S. Nolfi, “Evolving non-trivial behaviors on real robots,”
Robotics and Autonomous Systems, vol. 22, no. 3-4 pp. 187-
198, 1997.

[7] T. Ziemke, “Remembering how to behave: Recurrent neural
networks for adaptive robot behavior,” in Medsker and Jain
Eds., Recurrent Neural Networks: Design and Applications,
Boca Raton, CRC Press, 1999.

[8] R.A Brooks, “Intelligence Without Representation”,
Artificial Intelligence Journal, vol. 47, pp.139–159, 1991.

[9] G.S. Hornby, S. Takamura, J. Yokono, O. Hanagata, M.
Fujita, J. Pollack, “Evolution of Controllers from a High-
Level Simulator to a High DOF Robot,” Evolvable Systems:
from biology to hardware; proceedings of the third
international conference (ICES 2000), J. Miller, Ed., Lecture
Notes in Computer Science, vol. 1801, Springer, 2000, pp.
80-89.

[10] D. Floreano, J. Urzelai, “Evolutionary Robots: The Next
Generation,” in The 7th International Symposium on
Evolutionary Robotics (ER2000): From Intelligent Robots to
Artificial Life, Gomi T. Ed., pp. 231-266, AAI Books, 2000.

[11] J. Galeotti, The EvBot A Small Autonomous Mobile Robot
for the Study of Evolutionary Algorithms in Distributed
Robotics, MS Thesis, North Carolina State University, 2002.

[12] J. Galeotti, S. Rhody, A. Nelson, E. Grant, and Gordon Lee,
“EvBots – The Design and Construction Of A Mobile Robot
Colony for Conducting Evolutionary Robotic Experiments,”
Proceedings of the ISCA 15th International Conference:
Computer Applications in Industry and Engineering
(CAINE-2002), pp. 86-91, San Diego Ca, Nov. 7-9, 2002.

[13] A.L. Nelson, E. Grant, T.C. Henderson, “Competitive
relative performance evaluation of neural controllers for
competitive game playing with teams of real mobile robots,”
Measuring the Performance and Intelligence of Systems:
Proceedings of the 2002 PerMIS Workshop, Gaithersburg
MD, Aug. 13-15, 2002, pp. 43-50.

[14] A.L. Nelson, “Competitive Relative Performance and
Fitness Selection for Evolutionary Robotics", Doctoral
Dissertation, North Carolina State University, 2003.

