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Abstract—A method is introduced to monitor cardiac abla-
tive therapy by examining slope changes in the thermal strain 
curve caused by speed of sound variations with temperature. 
The sound speed of water-bearing tissue such as cardiac muscle 
increases with temperature. However, at temperatures above 
about 50°C, there is no further increase in the sound speed 
and the temperature coefficient may become slightly negative. 
For ablation therapy, an irreversible injury to tissue and a 
complete heart block occurs in the range of 48 to 50°C for 
a short period in accordance with the well-known Arrhenius 
equation. Using these two properties, we propose a potential 
tool to detect the moment when tissue damage occurs by using 
the reduced slope in the thermal strain curve as a function of 
heating time. We have illustrated the feasibility of this method 
initially using porcine myocardium in vitro. The method was 
further demonstrated in vivo, using a specially equipped ab-
lation tip and an 11-MHz microlinear intracardiac echocar-
diography (ICE) array mounted on the tip of a catheter. The 
thermal strain curves showed a plateau, strongly suggesting 
that the temperature reached at least 50°C.

I. Introduction

catheter ablation has become a significant modality 
to manage cardiac arrhythmias [1]–[5]. It has trans-

formed the field of cardiac electrophysiology from a diag-

nostic tool to a potent prophylactic and curative method. 
an exciting recent development is the increasing adoption 
of catheter ablation for atrial fibrillation [6]. atrial fibril-
lation is the most frequent arrhythmia in clinical practice 
and its incidence is increasing as the population ages [7].

radio-frequency ablation (rFa) is used in electro-
physiology (EP) procedures to permanently alter the 
myocardium in locations which support aberrant electri-
cal conduction pathways, contributing to irregular heart 
rhythm. regulating power to maximize safety and efficacy 
of energy application is critical for successful outcomes. 
currently, the tissue effects of rF delivery can be moni-
tored indirectly by real-time analysis of impedance [8], 
electrogram amplitude [9], the electrophysiologic behavior 
of the tissue being ablated [10], and temperature at the 
tip of the electrode [11], [12], but none provide an accurate 
indication of tissue temperature during ablation.

Tissue temperature is critically related to the success or 
failure of catheter ablation procedures [13], [14]. To ensure 
irreversible injury, a tissue temperature of approximately 
50°c must be achieved [13], [14]. The minimum tempera-
ture needed to create a complete heart block has been 
observed to be 48°c [11], [15]. raising tissue temperature 
significantly beyond this point can be unnecessary and 
cause complications during the procedure. High tempera-
ture at the tissue site may result in coagulum formation 
on the electrode, endocardial disruption, steam popping, 
or perforation. This would lead to an abrupt rise in im-
pedance which would result in a marked decrease in tissue 
heating [16], [17]. Furthermore, if a coagulum develops, 
the ablation catheter must be removed, cleaned, and re-
positioned, necessitating additional catheter manipulation 
and additional fluoroscopy time.

Because of the importance of temperature monitoring, 
a standalone thermocouple or a thermistor embedded in 
the electrode is used during catheter rFa procedures [11], 
[14]. during energy delivery, a portion of the electrode 
should be typically in contact with the tissue and the re-
mainder in contact with surrounding blood. The electrode 
temperature recorded by the thermocouple reflects a com-
plex interaction between the production of heat in nearby 
tissue by the radio-frequency field and convective heat loss 
to surrounding blood and tissue [14], [18]–[20]. Because of 
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convective heat losses, the temperature recorded by the 
thermocouple could be consistently less than that at the 
hottest point in the tissue, misleading the operator to in-
crease the energy delivered. an optical fluorometric tem-
perature probe [11], [21], for example, could be used for 
more sensitive measurement at increased cost and lower 
speed. In general, temperature sensors are additional de-
vices to be handled and installed in an already crowded 
catheter tip volume.

Temperature imaging using ultrasound techniques is 
more attractive because of the potential to provide 2-d 
real-time temperature information at low cost. However, 
standard B-mode images are less than optimal for visual-
izing the response to heating because the targeted region 
and surrounding tissue usually have similar scattering 
characteristics. Bright echoes from bubble formation at 
high temperature are not desirable for ablation monitor-
ing because bubbles imply the tissue temperature has ex-
ceeded 50°c, causing coagulum and charring [22].

Even though conventional B-mode images cannot 
clearly identify regions being treated by rFa, ultrasound 
signals can provide useful information. For example, sev-
eral ultrasonic methods have been proposed to estimate 
temperature changes in tissue. all are related to different 
temperature-induced changes in the ultrasonic properties 
of tissue, including frequency-dependent attenuation [23], 
backscattered power [24], speed of sound [25], thermal ex-
pansion [26], or a combination of the last two effects [27], 
[28]. a tissue differentiation technique, thermal strain im-
aging (TsI), also has been developed recently, building on 
this early work in ultrasonic temperature estimation [29]. 
It uses phase-sensitive speckle tracking to create thermal 
strain images based on the temperature dependence of 
sound speed. TsI has already been successfully used in 
atherosclerosis detection and tissue characterization [29]–
[32].

However, ultrasound-based temperature measurement 
over large ranges is limited because the sensitivity to 
sound speed changes beyond 50°c is low [33]. If a very 
high temperature is considered (tissue temperature of 
50°c or higher), as in the case of high-intensity focused 
ultrasound (HIFU), the effect is two-fold: speed-of-sound 
variations with temperature are not as sensitive and the 
tissue undergoes state changes that could fundamentally 
change the ultrasound backscatter signal character. also, 
limited data are available for the relationship between 
temperature and the sound speed of tissues in vivo, espe-
cially at temperatures above 50°c [22], [24], [26], [33]–[36].

speed of sound variations with temperature introduce 
apparent shifts in scatterer position and thermal expan-
sion of the medium introduces a physical shift in scatterer 
position. Beyond 50°c, thermal expansion is no longer 
negligible and contributes to the total echo shift or de-
lay in strain calculations [22], [24], [26], [33]–[36]. Thus, 
thermal strain imaging may not be practical for ablation 
monitoring based on precise temperature measurements 
because it is most sensitive and unambiguous for small 
temperature changes in the temperature range below 50°c. 

For ablation treatment of arrhythmia, however, a robust, 
reproducible indicator of tissue necrosis rather than abso-
lute temperature monitoring is required. In particular, it 
is most important to know when tissue temperature has 
reached or exceeded 50°c so ablation can be terminated.

It is our hypothesis that by measuring thermally-in-
duced strain as a function of time during the ablation 
procedure, there will be a point when the slope of the 
thermally-induced strain approaches zero. That is, by con-
tinuously tracking from a reference frame just before the 
start of ablation, the thermal strain will eventually pla-
teau because the sound speed has reached its maximum 
value as a function of temperature.

The signal-processing methods proposed in this paper 
were developed to investigate the feasibility of monitor-
ing ablative therapy by identifying the point at which the 
magnitude of the slope of the thermal strain curve de-
creases significantly, caused primarily by speed of sound 
variations with temperature. We first test this idea in a 
dynamic heating experiment using excised porcine myo-
cardium in vitro. The feasibility of this method for abla-
tion monitoring is also tested in vivo.

II. Methods

A. Dynamic Heating Experiment In Vitro

To ensure that sufficient heat could be delivered for 
lesion formation, excised porcine heart was prepared in 
a saline solution. While submerged, the sample was fixed 
on a holder to minimize any motion. It was then allowed 
to reach 37°c (taking about 2 h) in a heated saline bath 
before the experiment began.

rF data were collected using a prototype integrated 
ablation catheter array interfaced with a GE Vivid 7 im-
aging system (GE Healthcare, Horten, norway). The ul-
trasound transmit frequency was 11 MHz with a transmit 
focus at 1 to 2 mm. Temperatures in the tissue were mea-
sured using an implanted fine-wire thermocouple. Ther-
mocouple, ablation catheter, and sample were positioned 
as shown in Fig. 1. a digital thermocouple reader was 
used to record the temperature at 1-s intervals. Table I 
summarizes relevant ultrasound system parameters used 
for these in vitro experiments, and for subsequent in vivo 
tests described later.

B. Catheter Ablation Experiment In Vivo

For the in vivo study, juvenile yorkshire pigs were used 
as the animal model. all surgical methods and animal 
treatment procedures were approved by the animal care 
and Use committees of the oregon Health and science 
University. all animals were given general anesthesia and 
maintained with 2% isoflurane and oxygen ventilation. 
Femoral arteries and veins as well as jugular veins were ex-
posed by surgical incision ready for catheter access. Elec-
trocardiograms, body temperature, and oxygen saturation 
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were continuously monitored. Electrocardiography (EcG) 
electrodes were connected to the body of the pig for stan-
dard three-point recording. The output of the EcG served 
as the trigger for the Irvine Biomedical Inc. (IBI) genera-
tor (st. jude Medical, Inc., st. Paul, Mn). The generator 
was active for 250 ms beginning at the peak of the EcG 
r wave, then inactive until the next trigger (Fig. 2). The 
respirator was stopped during data acquisition (20 s) to 
reduce undesired motion, such that the dominant physi-
ological motion would be heart motion.

We used a specially designed ultrasound compatible 
rFa tip integrated into a prototype 9F forward-looking 
microlinear (Ml) IcE catheter array to simultaneously 
image and ablate the right atrial wall [37], [38]. addition-
ally, a thermocouple normally residing inside the electrode 
was pulled out to touch the tissue for thermal strain com-
parisons. Fig. 3 shows the approximate geometry for this 
configuration. The transmit frequency was 11 MHz with 
a transmit focus at 2 mm. ablation was performed while 
the integrated imaging and ablation catheter was localized 
and guided by fluoroscopy.

The electrical impedance during the ablation stayed in 
the range of 75 to 90 Ω, and the generator indicated that 
approximately 10 to 40 W were delivered over the 20-s 

Fig. 1. Photograph showing relative positions of the thermocouple, ab-
lation catheter array, and the sample for the dynamic in vitro heating 
experiment.

TaBlE I. Ultrasound system Parameters Used in Experiments.

Parameter/device 
description In vitro In vivo

Ultrasound system GE Vivid 7, color doppler special mode GE Vivid 7, color doppler special mode
catheter and array a separate ablation catheter and a 

prototype 9F forward-looking Ml IcE 
catheter array

a prototype integrated ablation catheter 9F 
forward-looking Ml IcE catheter array

sampling frequency 20 MHz (later upsampled to 
40 MHz for processing)

20 MHz (later upsampled to 
40 MHz for processing)

Transmit frequency 11 MHz 11 MHz
Transmit focus 1 to 2 mm 2 mm
Imaging target Porcine heart muscle Porcine right atrium
Imaging depth 5 mm 10 mm
Imaging width 45° 45°
number of beams 128 128
Packet size 8 8
Frame rate 32 Hz 1 Hz
Temperature 
measurement

Thermocouple Thermocouple embedded in the array

Fig. 2. Timing diagram describing ablation/data acquisition sequence for 
in vivo experiments.

Fig. 3. approximate geometry of the modified microlinear-PZT catheter 
tip. The original microlinear-PZT tip has a special metal coated plastic 
which is transparent to ultrasound but permits simultaneous rF abla-
tion. Experimental temperature feedback is performed with placement of 
a very small (<100 μm) thermocouple (arrow) in the plastic tip housing.
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time period. ablation started after about 5 s of baseline 
data acquisition.

continuous ultrasound data were acquired during ab-
lation. noise from the rF generator did not diminish B-
mode image quality.

C. Finite Element Modeling

We have preformed finite element (FE) modeling to 
visualize the temperature rise and thermal diffusion ef-
fects. Temperature rise from rF ablation as a function of 
time was estimated using an FE representation (coM-
sol Multiphysics, v3.2, comsol, Inc., Burlington, Ma) of 
the bioheat equation [39], [40]

 ρC
T
t k T W C T T Q
∂
∂
= ∇ − − +2

b b b( ) , (1)

where k is the thermal conductivity of the tissue 
(0.533 W/m/K), T is the tissue temperature (K), Wb is 
the blood perfusion rate (0.013 kg/l/s), Cb is the specific 
heat of the blood (4180 j/kg/K), C is the specific heat 
of the tissue (3720 j/kg/K), Tb is the blood temperature 
(310K), Q is the local power density deposition rate, ρ is 
the density of the tissue (1060 kg/m3), and t is time (s) 
[41]. The accuracy of the power and temperature calcula-
tions obtained using the bioheat transfer equation was 
previously verified elsewhere [42]. a schematic diagram of 
the modeled region is shown in Fig. 4. The model assumed 
that the boundary temperature remained at 37°c during 
the entire procedure. The initial temperature throughout 
the tissue was 37°c. a portion of the gold electrode was 
in contact with the blood pool, limiting the extent of the 
heat delivered to tissue. The rF pulse sequence and ex-
posure duration followed the experimental setup. a 2-d, 
axially symmetric model was used to reduce computation 
time. The model consisted of 827 mesh points and 1584 
triangular elements.

D. TSI Signal Processing

Because ultrasound data acquisition was not triggered 
by the EcG, we assumed that the heart returns to its ini-
tial state before ablation [43]–[45].

Four frames of data with the least motion were selected 
by examining B-mode images from the first cardiac cy-
cle before ablation. Using these as reference frames, 2-d 
cross-correlation was performed to find the best matched 
frame with the highest cross-correlation (≥0.85) within 
a cycle for all subsequent cardiac phases. Then, using 
each frame from the first cardiac cycle as a reference, 2-d 
speckle tracking was performed with all corresponding 
frames throughout the experiment. These four displace-
ment sets were averaged to produce the measured axial 
displacement (Fig. 5).

Two-dimensional phase-sensitive correlation-based 
speckle tracking [46] was applied to rF data from every 
frame in the sequence to estimate temporal strain along 

the axial direction. The tracking algorithm involves calcu-
lating complex cross-correlation coefficients between small 
windowed blocks from two consecutive frames, reducing 
the probability of peak hopping by filtering the correla-
tion coefficient functions, and estimating the shift from 
the phase zero-crossing around the peak correlation co-
efficient. The correlation kernel size was approximately 
the full-width at half-maximum (FWHM) of a speckle 
autocorrelation function for optimal strain estimation. 
reduced kernel size and correlation filtering significantly 
decreases peak hopping probability and increases the ac-
curacy of displacement estimation [46].

Fig. 4. schematic diagram of the axially symmetric region used for finite 
element modeling of thermal diffusion.

Fig. 5. Block diagram describing processing steps to generate thermal 
strain image.
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axial displacement was estimated from the position 
of the maximum correlation coefficient, and was further 
refined using the phase zero-crossing of the complex cor-
relation function. The kernel size used for tracking in vivo 
was slightly larger than the speckle size, approximately 
0.3 mm × 6.6° (axial × lateral) and the filter size was 
0.75 mm × 7.3° (axial × lateral). spatial derivatives of the 
displacements were computed to estimate temporal strain 
caused by the sound speed change and thermal expansion 
from axial displacement using a simple 1-d difference fil-
ter along the axial direction for correlation windows sepa-
rated by 0.9 mm.

Finally, thermal strain (∂/∂t)[δt(z)] is related to sound 
speed changes and thermal expansion according to

 
∂
∂
[ ] = −t t z z z zδ β λ δθ( ) ( ( ) ( )) ( ), (2)

where β is the thermal expansion coefficient, λ is the lin-
ear coefficient of sound speed versus temperature, and δθ 
is the temperature change [27]. Thermal expansion can be 
ignored over a wide range of operating temperatures. λ 
has a positive value and overwhelms β for water-bearing 
tissue by at least an order of magnitude until about 50°. 
at temperatures approaching 50°, thermal expansion can-
not be ignored.

III. results

A. Dynamic Heating Experiment In Vitro

Fig. 6 presents a B-mode overlaid with thermal strain 
images from the in vitro dynamic heating experiment us-

ing a prototype PZT Ml array for a rapid heating case. 
For B-mode images, the colorbar represents a standard 
decibel scale and for strain images, it represents actual 
(i.e., fractional) strain values. The image presents the 
thermal strain at approximately 52°c. several representa-
tive pixels in the focal region were averaged to plot the 
thermal strain as a function of heating time in Fig. 7. The 
slope changes are noted with gray arrows. similar results 
are presented in Figs. 8 and 9 for a slow heating case. For 
both cases, there is an obvious change in the slope of the 
thermal strain curve in the region of 50°c.

B. Catheter Ablation Experiment In Vivo

Fig. 10 shows cardiac motion from the four reference 
frames with no respiratory motion before ablation. The 
average of a small region about 0.25 mm × 0.1 mm (axial 

Fig. 6. B-mode images (dB) with thermal strain overlaid using microlinear array for in vitro experiment: rapid heating case. Thermal strain is dis-
played at a temperature of approximately 52°c.

Fig. 7. Thermal strain plotted with temperature rise in porcine myocar-
dium using a microlinear array for in vitro experiment: rapid heating 
case.

Fig. 8. B-mode images (dB) with thermal strain overlaid using microlinear array for in vitro experiment: slow heating case. Thermal strain is dis-
played at a temperature around 52°c.
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× lateral) used to generate the plots is also highlighted. 
as expected, motion is minimal because the heart’s pe-
riodicity enabled the averaging scheme mentioned in the 
methods section. Figs. 11, 13, and 15 show B-mode and 
B-mode overlaid with thermal strain images when the 
thermal strain has reached its maximum magnitude. Figs. 
12, 14, and 16 plot the thermal strain versus time. several 
representative pixels in the focal region were averaged to 
plot the thermal strains. similar to the in vitro case, there 
was a significant slope change around 50°c. Using ther-
mal strain, it was clear when the temperature reaches at 
least 50°c for the experimental conditions used here. In 
particular, this method appears promising for the case in 
which heating is sufficiently fast to minimize the effects of 
thermal diffusion, as discussed in the next section.

C. Thermal Diffusion Effect

The temperature distribution during rF ablation is af-
fected by two processes: resistive heating from the tip of 
the electrode and spatial redistribution of heat caused by 
thermal diffusion. We have compared the temperature rise 
from one of the in vivo data sets to our finite element mod-
eling. Fig. 17 shows that our heating protocol operates 
in a region where thermal diffusion has not taken over. 
In particular, the pulse duration for the heating scheme 
presented in Fig. 2 was sufficiently short that we could as-
sume instantaneous heating of the medium with minimal 
thermal diffusion. In a clinical environment, rapid heating 
is required to reduce the effects of thermal diffusion and 
motion.

IV. discussion and Future Work

The feasibility of monitoring the progression of rF 
ablation in the myocardium using a slope change in the 
thermal strain curve has been demonstrated using both in 
vitro and in vivo measurements in a porcine model. The 
speed of sound for most water-bearing tissue increases 
with temperature. However, at temperatures above about 
50°c, there is no further increase in the sound speed and 
the temperature coefficient may become slightly negative. 
For ablation therapy, irreversible injury to tissue and a 
complete heart block occurs at around 48 to 50°c. Using 

Fig. 9. Thermal strain plotted with temperature rise in porcine myocar-
dium using a microlinear array for in vitro experiment: slow heating case. Fig. 10. cardiac motion versus time (first 5 cardiac cycles before rF 

ablation) for the same region corresponding to the thermal strain image 
in Fig. 11.

Fig. 11. B-mode images (dB) with thermal strain overlayed using microlinear array for in vivo experiment: case 1. Image is displayed at time of 
maximum thermal strain magnitude.

Fig. 12. Thermal strain plotted with temperature rise in porcine myocar-
dium using a microlinear array for in vivo experiment: case 1.
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these two properties, we propose a potential tool to detect 
the moment at which clinically significant tissue damage 
occurs by using the reduced slope in the thermal strain as 
a function of heating time.

The variation in sound speed with temperature for 
most water-bearing soft tissue follows a similar pattern to 
that of water. around 37°c, the thermal expansion coef-
fcient for water bearing tissue is negligible compared with 
the sound speed variation with temperature. However, at 
temperatures above about 50°c, there is no further in-
crease in the sound speed. at this point, thermal expan-
sion can contribute to physical displacements at the same 
level as sound speed variations to apparent displacements. 
Thus, TsI may not be practical for ablation monitoring 
based on precise temperature measurements, because it 
is more sensitive and unambiguous for small temperature 
changes in the range below 50°c. For ablation treatment 
of arrhythmia, however, a robust, reproducible indicator 

of tissue necrosis rather than absolute temperature moni-
toring is required. In particular, it is more important to 
know when tissue temperature has reached or exceeded 
50°c so ablation can be terminated.

For the first time, a specially equipped ablation tip Ml 
IcE array was used to collect thermal strain data during 
rF ablation in the right atrium of the beating heart in 
vivo. similar to in vitro results, the thermal strain curve 
plateaus around 50°c. For this initial in vivo experiment, 
EcG triggering was not integrated with data acquisition 
because of a weak EcG signal that was overwhelmed by 
the rF ablation signal. Therefore, ultrasound data were 
acquired continuously and manually processed to identify 
image frames that would be used for 2-d speckle tracking.

It is desirable to automatically select both reference 
frames and their respective well-matched regions based on 
correlation coefficients. Because minimal cardiac motion 
occurs during end-diastole [45], this cardiac phase can be 
easily identified in the EcG, facilitating subsequent data 
collection and processing. currently, we are investigating 
several options to enable EcG-triggered data acquisition. 
Because we were able to trigger the rF generator to start 
the ablation, we could use the signal from the generator 
fed into the ultrasound system. This technique will obvi-
ously depend on the ringdown time of the rF ablation sig-
nal. another option would be to create a special isolation 
buffer amplifier for the animal EcG to provide a cleaner 
signal to the Vivid-7 machine.

another issue is the low snr of the prototype Ml ar-
ray. Because it has a low frame rate (1 Hz) relative to 
the heart rate, we did not have enough frames to average 
within a cycle to compensate for low snr. However, it 

Fig. 15. B-mode images (dB) with thermal strain overlayed using microlinear array for in vivo experiment: case 3. Image is displayed at time of 
maximum thermal strain magnitude.

Fig. 14. Thermal strain plotted with temperature rise in porcine myocar-
dium using a microlinear array for in vivo experiment: case 2.

Fig. 13. B-mode images (dB) with thermal strain overlayed using microlinear array for in vivo experiment: case 2. Image is displayed at time of 
maximum thermal strain magnitude.
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would be beneficial to use a higher frame rate for averag-
ing. The speckle tracking algorithm also will benefit from 
a higher frame rate, which permits less mismatch and 
more usable frames in one cycle.

Important tissue parameters, such as the attenuation 
coefficient and thermal expansion coefficient, which could 
affect the apparent temperature rise, and thus influence 
speckle tracking, have not been included in this data anal-
ysis. Further studies will involve finite element simulations 
that will include all relevant parameters. nevertheless, it 
is important to note that the goal of this technique was 
not to track an absolute temperature but to detect clini-
cally significant tissue damage during ablation therapy. 
other possible indices to monitor the ablation processes, 
such as the stiffness change in the ablated tissues com-
pared with normal tissues, temperature dependence of 
the shear modulus [47], and thermally-induced changes in 
backscattered energy (cBE) from tissue inhomogeneities, 
can be used in conjunction with TsI. These methods use 
the same rF data but are processed differently. In the 
future, we will explore the possibility of integrating these 
measures for robust monitoring and real-time optimiza-
tion of rF ablation in the heart.

Because only three in vivo experiments are reported in 
this paper, additional in vivo studies are needed to better 
evaluate the robustness of this technique for real clinical 
applications. nonetheless, preliminary results look prom-
ising and suggest that thermal strain imaging may be a 

useful tool to guide rF ablations of the heart using intra-
cardiac devices.
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