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Abstract—A ring array provides a very suitable geometry 
for forward-looking volumetric intracardiac and intravascular 
ultrasound imaging. We fabricated an annular 64-element ca-
pacitive micromachined ultrasonic transducer (CMUT) array 
featuring a 10-MHz operating frequency and a 1.27-mm outer 
radius. A custom software suite was developed to run on a PC-
based imaging system for real-time imaging using this device.

This paper presents simulated and experimental imaging re-
sults for the described CMUT ring array. Three different imag-
ing methods—flash, classic phased array (CPA), and synthetic 
phased array (SPA)—were used in the study. For SPA imag-
ing, two techniques to improve the image quality—Hadamard 
coding and aperture weighting—were also applied. The results 
show that SPA with Hadamard coding and aperture weighting 
is a good option for ring-array imaging. Compared with CPA, 
it achieves better image resolution and comparable signal-to-
noise ratio at a much faster image acquisition rate. Using this 
method, a fast frame rate of up to 463 volumes per second is 
achievable if limited only by the ultrasound time of flight; with 
the described system we reconstructed three cross-sectional 
images in real-time at 10 frames per second, which was limited 
by the computation time in synthetic beamforming.

I. Introduction

a ring-shaped transducer array provides a geometry 
suitable for forward-looking intracardiac echocardiog-

raphy (IcE) and intravascular ultrasound (IVUs) imaging 
[1], [2]. The ring aperture is capable of volumetric imaging 
without mechanical beam steering, while providing clear-
ance in the center, which facilitates its integration with a 
guide wire in IVUs imaging or therapeutic tools in IcE 
applications. The absence of transducer elements in the 
center degrades the beam quality, but the full disk ap-
erture resolution can be obtained by applying a proper 
weighting scheme [3], [4]. recent efforts have led to suc-

cessful fabrication of ring arrays despite the challenges 
in design and fabrication [5]–[8]. some initial character-
ization and imaging results have also been reported [2], 
[9], [10].

capacitive micromachined ultrasonic transducers 
(cMUTs) have advantages over piezoelectric transducers 
in manufacturing the ring shape and integrating the trans-
ducer array with front-end electronics [11]. We fabricated 
a 64-element cMUT ring array using the poly-silicon sac-
rificial layer process with nitride thin plates and electri-
cal through-wafer interconnects [12], and designed custom 
front-end electronics to improve the noise performance 
[13]. Fig. 1 and Table I show, respectively, an optical pic-
ture and the specifications of this device.

commercial medical imaging systems, such as Vivid 
7 (GE Healthcare, Wauwatosa, WI) [14], [15], acUson 
sc2000 (siemens Medical solutions, Mountain View, ca), 
Hd15 (Philips Healthcare, andover, Ma), and Model 1 
(Volumetrics Medical Imaging, durham, nc) [8], [9], can 
be used for volumetric real-time imaging with a ring ar-
ray using conventional beamforming methods, simply by 
changing the probe geometry definition. light et al. pro-
duced volumetric images in real-time at 30 volumes per 
second from a ring array, using a classic phased array 
approach and 16:1 receive-mode parallel processing using 
Model 1 [8]. However, it is difficult to use the commercial 
systems with nonconventional imaging techniques such 
as synthetic beamforming and Hadamard coding. In this 
study, we used a programmable Pc-based imaging system 
(Verasonics data acquisition system, Verasonics Inc., 
redmond, Wa) to demonstrate the imaging performance 
of these nonconventional approaches. The data acquired 
by this system are transferred to a Pc and then processed 
in real time by custom-developed software. Using multiple 
imaging methods, both simulated and experimental im-
ages were reconstructed and investigated, and the results 
are presented in this paper.

section II briefly explains the imaging methods we used 
and the imaging results from simulations and experiments 
are presented in sections III and IV, respectively. In sec-
tion V, we discuss practical limitations for real-time imag-
ing.

II. Theory

In this study, we used flash, classic phased array (cPa), 
and synthetic phased array (sPa) beamforming methods. 
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For sPa, aperture weighting and Hadamard coding were 
also explored to improve the image quality. The follow-
ing subsections briefly explain these imaging methods and 
techniques. a theoretical comparison of these imaging 
methods is given in Table II.

A. Flash Imaging

Flash imaging is the simplest and fastest imaging meth-
od, in which we transmit only once to obtain one image 
frame. all 64 elements are fired at the same time without 
any delay, which results in an unfocused plane wave with 
a fully populated 2-dimensional array. However, because 
of the annular geometry, the flash transmit with a ring 
array generates an axially concentrated ultrasound beam. 
Therefore, flash imaging yields poor image quality, espe-
cially for off-axis targets. In receive, all 64 elements are 
used to obtain the image through conventional delay-and-
sum beamforming operations.

B. Classic Phased Array Imaging

In each transmit event, all 64 elements are fired with 
different delays determined by the distance between the 
transducer element and the focal point. Therefore, the 
transmitted beam is steered to a desired direction and 
focused at the focal depth with narrow beam profile. Echo 
signals are received by all 64 elements, and processed for 
image reconstruction along the transmitted beam line 
through delay-and-sum operations. To obtain the whole 
image, as many beams are fired as the number of scan 
lines in the region of interest, and this limits the achiev-
able frame rate significantly in volumetric imaging.

The transmit and receive apertures can be weighted 
separately to suppress the side lobes. However, the weight-
ing scheme cannot be applied on the individual transmit-

receive pairs for proper coarray formation [16]. as a result, 
for ring array geometry, cPa imaging is disadvantaged by 
a high side lobe level compared with sPa with appropri-
ate aperture weighting.

C. Synthetic Phased Array Imaging

In the basic form of sPa imaging, a single element 
transmits and all 64 elements receive in each acquisition. 
after 64 firings, the a-scans from all 64 × 64 transmit-
receive pairs are collected, upon which synthetic beam-
forming is performed based on the round-trip delay from 
the transmit element to the field point and then to the 
receive element. The image for a field point 
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The number of firings is significantly fewer than that 
in cPa, but this method suffers from a low snr because 
of the single-element firing. Firing multiple elements in 
each acquisition, by tying neighboring elements together 
[1] or using coded excitation techniques, helps improve 
the snr. In this study, we implemented one of the spatial 
coded excitation techniques, Hadamard coding, which is 

TaBlE II. Theoretical comparison of Imaging Methods. 

Flash cPa sPa
sPa with  
Hadamard coding

number of firings per frame 1 16 471a 64 64
Maximum achievable frame rateb 29 615 fps 1.80 fps 463 fps 463 fps
Transmit/receive focusing Unfocused/dynamic Fixed/dynamic dynamic/dynamic dynamic/dynamic
snr gain from beamformingc N NTX RX⋅  (54 dB)d N NTX RX⋅  (54 dB) N NTX RX⋅  (36 dB) N NTX RX⋅  (54 dB)

cPa = classic phased array; sPa = synthetic phased array; snr = signal-to-noise ratio; NTX = number of transmit elements (64); NrX = 
number of receive elements (64).
aBeam sampling interval of 1° was assumed in both θ- and φ-directions, with viewing angle of 90° in θ and 180° in φ.
bMaximum achievable frame rate was calculated based only on the ultrasound time of flight, assuming a 2.6-cm imaging depth.
csnr gain of the reconstructed image, over the snr of a single-element pulse-echo a-scan.
dValid only in on-axis region.

Fig. 1. optical picture of a capacitive micromachined ultrasonic trans-
ducer (cMUT) ring array.

TaBlE I. capacitive Micromachined Ultrasonic  
Transducer ring array specifications. 

number of elements 64
ring radius 1.16 mm
center frequency 10 MHz
Transducer fractional bandwidth (−3 dB) 80%
Element size 80 × 100 μm



choe et al.: volumetric real-time imaging using a cMUT ring array 1203

introduced later in this section. recently, a synthesis tech-
nique by delay dithering with whole-array transmission 
was proposed by Hoctor et al. [17].

D. Aperture Weighting in SPA Imaging

one advantage of sPa is that each of the transmit-
receive element pairs can be weighted for optimal coarray 
formation with the desired point spread function (PsF). 
Weighting the ring aperture with norton weights results 
in a PsF of the form J1(R)/R, which corresponds to the 
PsF of a full disk aperture, where J1 is the first-order Bes-
sel function [3], [4]. The norton weight for the ith trans-
mitter and the jth receiver is given by

 w i jn i j( , ) sin( ) ,= ⋅ −2 θ θ  (2)

where θi and θj are, respectively, the angular locations of 
the transmit and the receive elements.

cosine apodization in the radial dimension helps sup-
press the side lobes, at the expense of widened main lobe 
[2], [18]. The weights for cosine apodization are
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where

 ρ θ θi j i ja, cos( )= ⋅ + ⋅ −2 2  (4)

is the radius of the effective aperture, a is the radius of 
the ring array, and K is a parameter that we can adjust 
to trade off between main lobe width and side lobe level. 

Higher K results in lower side lobes, but a wider main 
lobe.

In the simulations and experiments presented in this 
paper, both norton and cosine weightings were applied, 
with K = 0.5 for cosine weighting.

E. Hadamard Coding in SPA Imaging

Hadamard coding is one of the spatial pulse encoding 
techniques effective in increasing the snr of sPa imaging 
without affecting its frame rate [19], [20]. In each of the 
64 firings, all 64 elements are active simultaneously, with 
their pulse polarities encoded by 64 × 64 Hadamard ma-
trix. The 64 pulses have the same polarity only in the first 
firing, and in the subsequent firings half of them are in-
verted. The same Hadamard matrix is used to decode the 
received echo signals, and the weighting schemes can be 
applied on the decoded data. The 64-element Hadamard 
coding scheme increases the snr by 18 dB.

III. simulations

Imaging with a ring array was simulated for six differ-
ent imaging methods: flash, cPa, basic sPa without aper-

TaBlE III. simulation conditions. 

sampling frequency 45 MHz
Transducer center frequency 10 MHz
Transducer fractional bandwidth (−3 dB) 80%
attenuation not included
Image voxel size 0.05 mm × 1° × 1°

Fig. 2. simulated B-mode images of 10 point targets, shown in 40 dB dynamic range: (a) flash, (b) cPa with 10 mm focal depth, (c) sPa-0, (d) 
sPa-W (norton weighting and cosine weighting with K = 0.5), (e) sPa-H, and (f) sPa-HW (norton weighting and cosine weighting with K = 0.5). 



IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 59, no. 6, JUnE 20121204

ture weighting or multi-element firing (sPa-0), sPa with 
aperture weighting (sPa-W), sPa with Hadamard coding 
(sPa-H), and sPa with both Hadamard coding and aper-
ture weighting (sPa-HW). an ultrasound field simulation 
program, Field II [21], [22], was used to generate the simu-
lated rF data, each of which contained white Gaussian 
noise with equal power to the experimentally measured 
noise. Ten point reflectors were assumed at (6 mm, 30°), 
(8 mm, 15°), (10 mm, 0°), (12 mm, −15°), (14 mm, −30°), 
(20 mm, −30°), (20 mm, −15°), (20 mm, 0°), (20 mm, 15°), 
and (20 mm, 30°) in the (R, θ) plane. Important simula-
tion parameters are summarized in Table III.

Fig. 2 presents the B-mode images reconstructed by our 
custom real-time imaging software. Flash imaging [Fig. 
2(a)] is very poor in showing the off-axis targets because 
the ultrasound energy is concentrated along the axis, and 
even the on-axis targets show strong side lobes. sPa with-
out Hadamard coding [Figs. 2(c) and 2(d)] suffers from 
low snr, but Hadamard coding improves the snr sig-
nificantly [Figs. 2(e) and 2(f)]. sPa-H [Fig. 2(e)] achieves 
identical snr to that of cPa [Fig. 2(b)]. side lobe sup-
pression resulting from aperture weighting is observed in 
the sPa-HW image [Fig. 2(f)], by comparing it to the 
sPa-H image [Fig. 2(e)]. In sPa-HW [Fig. 2(f)], as well as 
in sPa-W [Fig. 2(d)], norton weighting was applied along 
with cosine weighting with K = 0.5. constant-R images 
at 10 mm depth, through the target at (10 mm, 0°), are 

shown in Fig. 3. The snr increase by Hadamard cod-
ing and side lobe suppression by weighting are clear from 
these images as well.

Fig. 3. simulated constant-R images of an on-axis point target at 10 mm depth, shown in 40 dB dynamic range: (a) flash, (b) cPa with 10 mm focal 
depth, (c) sPa-0, (d) sPa-W (norton weighting and cosine weighting with K = 0.5), (e) sPa-H, and (f) sPa-HW (norton weighting and cosine 
weighting with K = 0.5).

Fig. 4. Experimental setup and the fishing wire phantom used in the 
experiment.
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IV. Experiments

a phantom with the same target locations as in the 
simulations was made using 150-μm fluorocarbon fishing 
wires [Fig. 4], and was imaged using different imaging 
methods. We programmed the Verasonics data acquisi-
tion system specifically for our ring array and the imaging 
methods we used, to acquire the reflection data, which are 
sent to our custom software for image reconstruction. The 
software reconstructs and displays three cross-sectional 
images—two B-mode planes orthogonal to each other and 
one constant-R plane—in real time. The frame rate varies 
with the imaging method and the imaging options, as will 
be discussed in more detail in section V. Fig. 4 shows the 
experimental setup and Table IV lists the relevant experi-
mental conditions.

Experimental B-mode images and constant-R images 
are illustrated in Figs. 5 and 6, respectively, for the six 
imaging methods we tested. The presented B-mode plane 
is perpendicular to the wires, and the constant-R images 
are shown at 13 mm depth, where the nearer on-axis wire 
target (target 3 in Fig. 4) is located. These images look 

different than the simulated images because the experi-
mental targets are not point reflectors, but wires with a 
thickness in the order of the ultrasound wavelength. Two 
distinct reflections from the front and the back sides of 
the wire are seen in the B-mode images. In the constant-R 
images, the wire looks longer in the longitudinal direction.

as was also observed in the simulated images, the flash 
images [Figs. 5(a) and 6(a)] have poor image quality, es-
pecially for off-axis targets, and the sPa-0 images [Figs. 
5(c) and 6(c)] show low snr. The effect of weighting is 
not clearly seen in the sPa-W images [Figs. 5(d) and 6(d)] 
because of the low snr. However, with Hadamard cod-
ing [Figs. 5(e) and 6(e)], the snr increases up to a level 
comparable to that of cPa [Figs. 5(b) and 6(b)], and the 
effect of weighting becomes clear [Figs. 5(f) and 6(f)]. one 
point to note here is that the cPa images [Figs. 5(b) and 
6(b)] were reconstructed offline, because our data acquisi-
tion system could not handle the large number of beams 
required to scan the volume in real-time.

Table V presents the snr measured from experimental 
a-scans and images. The snr gain from beamforming 
represents how much improvement in snr is achieved by 

TaBlE IV. Experimental conditions. 

sampling frequency 45 MHz
operation frequency 10 MHz
cMUT bias voltage −50 V
Pulse amplitude ±30 V (bipolar pulse)
Phantom 10 fluorocarbon wire targets with 150-μm thickness, immersed in vegetable oil
Image voxel size 0.1 mm × 1° × 1°

cMUT = capacitive micromachined ultrasonic transducer.

Fig. 5. Experimental B-mode images of the fishing wire phantom, shown in 40 dB dynamic range: (a) flash, (b) cPa (offline) with 13 mm focal 
depth, (c) sPa-0, (d) sPa-W (norton weighting and cosine weighting with K = 0.5), (e) sPa-H, and (f) sPa-HW (norton weighting and cosine 
weighting with K = 0.5).
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beamforming, calculated by subtracting the single-element 
pulse-echo snr, from the final image snr. The measured 
snr gain from beamforming shows good agreement with 
the theoretical expectations.

normalized lateral line scans through an on-axis target 
from both simulations and experiments are plotted in Figs. 
7(a) and 7(b), respectively, for different imaging methods. 
Here, the lateral line scans were compounded over a 1-mm 

axial depth to include most of the side lobe energy. The 
main lobe widths and the side lobe levels are calculated 
from these plots and presented in Table VI. The side lobe 
level is lower in simulations than in experiments because 
an ideal point target was used in PsF simulations instead 
of a wire target. all six imaging methods show a similar 
axial resolution of 95 μm in full-width at half-maximum 
(FWHM).

Fig. 6. Experimental constant-R images of an on-axis wire target at 13 mm depth, shown in 40 dB dynamic range. (a) flash, (b) cPa (offline) with 
13 mm focal depth, (c) sPa-0, (d) sPa-W (norton weighting and cosine weighting with K = 0.5), (e) sPa-H, and (f) sPa-HW (norton weighting 
and cosine weighting with K = 0.5).

TaBlE V. summary of signal-to-noise ratio (snr, in decibels) for different Imaging Methods. 

Measured 
a-scan snra

Measured 
image snra

Measured snr gain 
from beamforming

Theoretical snr gain 
from beamforming

Flash 14 34 53 54
cPa 14 35 54 54
sPa-0 −19b 19 38 36
sPa-W −19b 18 37 35
sPa-H −6b 33 52 54
sPa-HW −6b 34 53 53

cPa = classic phased array; sPa-0 = basic synthetic phased array (sPa) without aperture weighting or multi-
element firing; sPa-W = sPa with aperture weighting; sPa-H = sPa with Hadamard coding; sPa-HW = sPa 
with both Hadamard coding and aperture weighting.
aFor snr measurements, we defined a signal window and a noise window on the a-scan or on the reconstructed 
image. The signal window enclosed the echo signal from the on-axis target at 13 mm depth, and the noise 
window was defined outside the echo signal window where the signal power is due to electronic noise alone. 
The signal and the noise amplitudes were then measured by calculating the rms of the a-scan or the image 
amplitude in the signal and the noise windows, respectively.
bsnr values smaller than 0 dB were measured after averaging over multiple data sets.
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Fig. 8 shows cross-sectional images of an ex vivo chicken 
heart, imaged using sPa-HW. To increase the snr, six 
frames were averaged without a significant loss of frame 
rate, because the sPa frame rate is mostly limited by 
the computational load, not by the data acquisition. The 
original frame rate of 10 frames per second (fps) dropped 
to 8.5 fps after averaging. The B-mode images [Figs. 8(a) 
and 8(b)] are real-time images, but the constant-R image 
[Fig. 8(c)] was processed offline for compounding over a 
1 mm axial depth, to show the tissue with better contrast. 
The supplemental video shows 80 frames of these cross-
sectional images ( ).

V. real-Time Imaging considerations

Besides the ultrasound time of flight, there exist prac-
tical limitations which lower the achievable frame rate. 
They dominate the image acquisition time of our current 
system, and the actual frame rate we obtain is far slower 
than the theoretical limit.

data transfer rate is one limitation that affects all of 
the imaging methods. With 45-MHz sampling from 64 
channels and 2 bytes per sample, 5.76 GB of data are ac-
quired every second. However, the data transfer rate of 
the PcI-Express interface connecting the Verasonics data 
acquisition system to the host Pc is only 1.2 GB/s. It 
lowers the achievable frame rate by a factor of 4.8 from 
the numbers in Table II.

The frame rate of sPa is further limited by its com-
putational load. The gold-standard beam pattern of sPa 
with dynamic focusing in both transmit and receive is 
obtained at the expense of immense computational load, 
dominated by delay-and-sum operations and Hilbert 
transforms. They represent 75% and 25% of the whole 
computation time, respectively, in reconstructing the 
three cross-sectional images in Fig. 8. Both Hadamard de-
coding and aperture weighting take negligible time. our 
software consumes 3 clock cycles for a delay-and-sum op-
eration, and it results in 10 fps for the three cross sections, 
using two quad-core (8 virtual cores with hyper-threading) 
3-GHz cPUs (Intel Xeon Processor X5570, Intel corpora-
tion, santa clara, ca).

Fig. 7. (a) simulated lateral point spread functions for an on-axis point 
target at 10 mm depth. (b) lateral line spread functions (lsFs) from 
experiments, for the on-axis wire target at 13 mm depth. Because Ha-
damard coding does not affect the image other than lowering the noise 
floor, the lsFs for sPa-0 and sPa-W are not included in (b) to simplify 
the figure. The image data were compounded over 1 mm axial depth in 
both (a) and (b), to include most of the side lobe energy.

TaBlE VI. lateral resolutions and side lobe levels (calculated from lateral line scans  
compounded over 1 mm axial depth). 

Imaging method

simulation (point target) Experiment (wire target)

FWHM 
(°)

averaged 
side lobe level (dB)a

Peak of the 
first side lobe (dB)

FWHM 
(°)

averaged 
side lobe level (dB)a

Peak of the 
first side lobe (dB)

Flash 3.81 −11.17 −7.34 3.70 −9.99 −4.60
cPa 2.58 −25.06 −16.19 2.81 −17.99 −8.36
sPa-0 and sPa-Hb 2.67 −24.04 −15.03 2.85 −19.20 −9.73
sPa-W and sPa-HWc 3.00 −27.32 −23.01 3.39 −22.62 −17.71

FWHM = full-width at half-maximum; cPa = classic phased array; sPa-0 = basic synthetic phased array (sPa) without aperture weighting 
or multi-element firing; sPa-H = sPa with Hadamard coding; sPa-W = sPa with aperture weighting; sPa-HW = sPa with both Hadamard 
coding and aperture weighting.
aaveraged from the first side lobes to ±45°.
bsPa-0 and sPa-H give identical results in simulation without noise. In the experiment, the numbers are from sPa-H.
csPa-W and sPa-HW give identical results in simulation without noise. In the experiment, the numbers are from sPa-HW.
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reconstructing fewer voxels helps reduce the compu-
tational load in delay-and-sum, but results in a reduction 
in the image resolution or the field of view. We can also 
decrease the number of a-scans involved in beam synthe-
sis to proportionally reduce the number of operations in 
both delay-and-sum and Hilbert transforms. a method 
implemented in our software is to discard a-scans with 
low weights. Table VII summarizes the improvement in 
frame rate achieved by reducing the number of a-scans 
and the number of voxels. By discarding 2536 a-scans out 
of 4096, with weights below 0.5 after norton weighting 
and cosine weighting with K = 1.0, the main lobe width 
in lateral PsF widens by 10% in terms of FWHM and the 
integrated side lobe level increases by 2 dB. However, it 
more than doubles the frame rate when displaying three 
cross-sectional images, each with 22 801 voxels. The snr 
loss resulting from discarding those a-scans is about 2 dB. 
another approach which finds an optimal set of even fewer 
a-scans based on the spatial frequency of transmit-receive 
pairs has also been proposed [1].

To save the time taken in the Hilbert transform, which 
involves a direct and an inverse Fourier transform, we can 
choose a faster approximate algorithm for obtaining in-
phase and quadrature components of the signal, such as 
the direct sampling process [23], Hilbert filter method, or 
the quadrature demodulation method [24]. In two sPa 
experiments reconstructing one image plane and three im-
age planes, with about 20 000 voxels per plane, adopting 
the direct sampling process increased the frame rate by 
25% and 10%, respectively. The improvement is greater 
when fewer voxels are reconstructed, because the Hilbert 
transform represents a larger part of the total computa-
tion time.

a more straightforward way to speed up the computa-
tion is to use more powerful hardware. It has been re-
ported that beamformers implemented with a GPU [25] 
or an FPGa [26] improve the ultrasound imaging system 
performance. new software performing computations on a 
GPU platform is under development, and an FPGa-based 
beamformer is also under consideration for our system.

as mentioned in the previous section, the experimental 
cPa images were reconstructed offline. standard cPa im-
aging requires 16 471 beams to cover a 90° viewing angle 
with 1° resolution in both θ- and φ-directions. With this 
many beams and an imaging depth of 2.6 cm, the raw 
a-scan data amount to 3.24 GB per frame and the maxi-
mum achievable frame rate is limited by data transfer 
rate to 0.375 fps, which is already too slow for real-time 
imaging. In addition, the sequencer memory of our data 
acquisition system limited the maximum number of beams 
we can transmit to about 2000. consequently, in cPa 
experiments, we divided the data acquisition into 9 sets, 
stored the a-scans in files, and then processed the data 
offline for image reconstruction. Multi-line acquisition and 
parallel beamforming techniques can be adopted to over-
come these limitations in cPa imaging [27]–[29].

In Table VIII, maximum achievable frame rates of 
flash, cPa, and sPa imaging limited by individual fac-
tors are calculated for reconstructing three cross-sectional 
images with total of 60 333 voxels and a 2.6-cm imaging 
depth, as in Fig. 8.

VI. conclusion

In this study, we demonstrated volumetric ultrasound 
imaging with a cMUT ring array using various imaging 

Fig. 8. Three cross-sectional images of a chicken heart, imaged using sPa-HW. six frames were averaged to improve signal-to-noise ratio. (a) and 
(b) Two B-mode images orthogonal to each other. (c) constant-R image compounded over 1 mm axial depth, from R = 10.0 mm to R = 11.0 mm.

TaBlE VII. Measured Frame rates (in Frames per second) for synthetic Phased array Imaging. 

22 801 voxels per plane 10 201 voxels per plane

3 planes 2 planes 1 plane 3 planes 2 planes 1 plane

not discarding any a-scans (using all 4096 a-scans) 9 12 20 17 21 28
discarding 1568 a-scans with weights less than 0.1 13 18 27 23 28 35
discarding 2048 a-scans with weights less than 0.3 16 21 31 27 33 40
discarding 2536 a-scans with weights less than 0.5 20 26 35 32 38 45

In these experiments, norton weighting and cosine weighting with K = 1.0 were applied.
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methods. Flash, cPa, and sPa with and without Had-
amard coding and aperture weighting were simulated and 
experimentally implemented. The experimental results are 
in good agreement with simulations, as well as with the 
theory. Flash imaging results in a poor image quality, but 
it is fast and might be useful in some applications, includ-
ing on-axis target detection and depth measurement. cPa 
is the most widely used method in commercial systems, 
with good resolution and snr. However, it suffers from 
high side lobes as a result of the ring geometry. also, the 
large number of beams required in volume scan makes 
real-time imaging difficult, unless we adopt a technique 
such as parallel beamforming to reduce the number of 
beams. sPa has an advantage in that norton and cosine 
weighting schemes can be applied to improve the beam 
profile and suppress the side lobes. The low snr is a 
critical drawback of this method, but spatial coded excita-
tion can help increase the snr of sPa. In this paper, we 
experimentally demonstrated that an snr comparable to 
that of cPa can be achieved using the Hadamard coding 
technique on sPa.

sPa imaging, when combined with Hadamard coding 
and aperture weighting, gives the best option for real-time 
volumetric imaging with a ring array. compared with 
cPa, it yields a comparable snr and a better beam pro-
file, with suppressed side lobes and dynamic focusing in 
both transmit and receive, at a significantly higher frame 
rate. Using this method, we successfully displayed three 
cross-sectional images of a chicken heart at 10 fps, and 
could achieve up to 45 fps without significant loss of im-
age quality for displaying one cross-sectional image with 
a reduced number of voxels and a-scans. In sPa imag-
ing with the described system, the bottleneck limiting the 
frame rate is the immense computational load required 
in synthetic beamforming. our current efforts to improve 
the computational speed include utilizing a GPU and an 
FPGa for beamforming operations [25], [26]. new imaging 
methods for faster imaging, for example, cPa with multi-
line acquisition (cPa-Mla) [27]–[29] and flash imaging 
with multiple angles [30], are also being implemented.
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