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David Bæk∗, Ömer Oralkan†, Mario Kupnik†, Morten Willatzen‡, Butrus T. Khuri-Yakub†, and Jørgen Arendt Jensen∗
∗Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark

†Edward L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
‡Mads Clausen Institute for Product Innovation, University of Southern Denmark, 6400 Sønderborg, Denmark

Email: db@elektro.dtu.dk,ooralkan@stanford.edu,kupnik@stanford.edu,
willatzen@mci.sdu.dk,khuri-yakub@stanford.edu, jaj@elektro.dtu.dk

Abstract—Field II has been a recognized simulation tool for
piezoceramic medical transducer arrays for more than a decade.
The program has its strength in doing fast computations of the
spatial impulse response (SIR) from array elements by dividing
the elements into smaller mathematical elements (ME)s from
which it calculates the SIR responses. The program features
predefined models for classical transducer geometries, but cur-
rently none for the fast advancing CMUTs. This work addresses
the assumptions required for modeling CMUTs with Field II. It
is shown that rectangular array elements, populated with cells,
can be well approximated by neglecting the cells. Further, it
is demonstrated that scaling of the SIR translates into better
computational efficiency.

I. INTRODUCTION

The currently released version of the ultrasound simulation
program Field II [1], [2] has been developed mainly with the
classical piezoelectric medical ultrasound transducers in mind.
Thus, all of the predefined transducer geometries in Field II
are based on flat, curved, or double-curved transducers with
rectangular elements. So far, piezoceramic transducers have
been dominating the field of ultrasound imaging. However,
for new transducer technologies, such as capacitive micro-
machined ultrasonic transducers (CMUTs) [5], the support in
Field II has been limited.

In general, it is possible to model the emitted and received
field from acoustic transducers with arbitrary geometry by
applying the SIR method [3], [4] by using Field II. In
case the geometry differs from the predefined ones, manual
programming in Field II is required.

CMUT technology has become an enabling transducer tech-
nology, which has caught significant attention not only within
the medical imaging community. CMUTs consist of multiple
capacitive cells with one movable top electrode (plate), all
electrically connected in parallel, to form transducer elements.
These elements can be used in an arbitrary array configuration.
The shape of the cells (e.g. circular, square, hexagon) and
elements is defined by lithographical methods, which, besides
high precision, provide good design flexibility and a wide
possible operation frequency range.

Each top plate of the CMUT cells deflects due to an applied
dc bias voltage and the ambient pressure. Modeling of each
deflected cell with Field II requires a dense grid of MEs. MEs

are Field II’s subdivision of the transducer surface into smaller
transducer elements of which a well known analytical solution
to the SIR exists.

This paper addresses the assumptions needed for modeling
the SIR of CMUT cells with Field II. It investigates the
possibility of using a scaling of the SIR with the ratio of
active and inactive area of a transducer element consisting of
multiple cells.

II. THEORY

The field response from any flat piston transducer with a
homogenous moving surface can be calculated with Field II
using the SIR method. The pressure is calculated by convolv-
ing the surface acceleration with the SIR in emission. The
pulse-echo SIR (PESIR) can be calculated by convolving the
SIR in emission with the SIR in receive [9]. Modeling the SIR
of curved surfaces, for which the analytical SIR is unknown,
requires a subdivision of the surface into a dense grid of
MEs. The total response is then calculated by superposition.
This method is only valid under the assumption that each ME
moves in the normal direction of the surface element that it
represents, and it is a necessity that the wave propagation is
linear. The SIR is a solution to the Rayleigh integral which
limits its validity for highly curved transducers. Therefore, the
integral does not account for the fact that a slightly curved
transducer will introduce reflections and diffraction. However,
these effects are negligible for the case of a small curvature
compared to the wavelength and transducer size [10], [11],
[12]. These are the underlying assumptions made for this work.

a) b)

Fig. 1. Cross sections of regular CMUT (a) and Piston CMUT (b).

Analytical solutions to the SIR of curved transducers are
very limited in literature. To the authors best knowledge, only
for the special case of a circular cell shape with a spherical
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Fig. 2. SIRs for a square element, square, a flat circular cell, cell,
and a scaled version of square, scaled. SF 104 GHz. Only each 12th
point is shown.
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Fig. 3. The mean RMS of the pressure pulses for 20 random points,
each solved 1000 times. The error is calculated relatively to a high
resolution solution at 104 GHz and n = 30.

plate deflection can a simple analytical solution for the SIR
be found see Arditi et al.[12].

Figure 1 shows the plate deflection for two types of CMUTs.
One for regular CMUT cells and one for a CMUT that features
a center mass in each plate, i.e., a piston CMUT, see [6]. Note
that the plate material at the center of the regular CMUT
cell is moving a larger vertical distance compared to the
plate material closer to the post region. In addition, only
the plate material right at the center of the cell features an
entire perpendicular movement. Thus, we assume that during
excitation, the ME representing the plate material closer to the
post region, moves perpendicular to the surface segment that
it represents. In the very near-field of the cell this assumption
will not hold, thus, piston CMUT cells are more suitable for
the SIR modeling approach. This is because a large fraction
of the plate is moving as a real piston, and the rest of
the plate will have a relatively small contribution to both
the acoustic pressure field and the electrical field inside the
vacuum sealed cavity. Hence, the validity of the Rayleigh
integral is not so much compromised as for the regular CMUT
cell. In general, the validity of the aforementioned assumptions
becomes even more critical for other specific conditions or
modes of operation. For example, CMUT plates that exceed
a static deflection-to-thickness ratio of 20%, i.e. when also
in-plane stress starts to matter in terms of static and dynamic
response of the plate [7]. Another example are CMUT cells
that are biased beyond the pull-in point, i.e., when the plate
experiences contact with the bottom of the cavity (collapse
mode of operation) [8].

However, for cells that are arranged in a pattern to form
a large aperture size transducer, the above-mentioned as-
sumptions and approximations become less of a source of
error, in particular at larger distances from the transducer
surface. Hence, for medical imaging applications one can
expect that the influence of the non-ideal radiation pattern
from each individual cell will be very small. Further, note
that acoustic cross-talk cannot be modeled for either CMUTs
or piezoceramic transducers with Field II. Setting up Field II
manually for modeling each cell can be a cumbersome proce-
dure for complicated geometries. A significant simplification
is possible under the assumption that the cell deflections are
of minor influence to the superposition and that each cell

can be considered as a plane piston. Further, this is valid for
the assumption that the only physical difference between a
full transducer element with each cell modeled (ECM) and
a single square model (SSM), where no cells are considered,
is the active area. The active area for a SSM is bigger than
the one for an ECM. If it is further assumed that the cells
are distributed with a pitch equal twice the cell radius, i.e.,
the boundary rims being in contact, the fraction between the
active areas will be

f =
Asquare

Acell
=

2rc2rc
πr2c

=
4

π
, (1)

where Asquare is the active area of the SSM, and Acell is
the active area of an ECM. For cell-to-cell pitches larger than
the cell diameter the areas to be calculated and the fraction
becomes Asquare

Acell
. A good approximation of the SIR for an

ECM can be made with a SSM if the SIR is scaled with the
area fraction.

A few pitfalls in relation to this method have to be ad-
dressed. First, the start and the end times of the two different
SIRs will be different, depending on the location of an
observing point relative to the transducer. This has a significant
influence if the exact time of flight is required. Second, the
exact same energy of the SIR pulses is rarely achieved, i.e. this
can only be an approximation. Third, near-field simulations are
indeed invalid when using such an approximation.

III. SIMULATION

A program that defines CMUTs in Field II terminology was
created. The program sets a user-defined number of circular
cells in either a linear one-dimensional or two-dimensional
grid to form a square-shaped transducer element. An arbitrary
number of elements can be defined to form a transducer
array. The plate deflection is set equal the solution of a static
deflection model [13]. The cells can be placed with a minimum
pitch corresponding to the diameter of the cells. All cells
in a particular element are assumed to experience a uniform
excitation. The number of MEs required to resolve a single
cell is controlled with a resolution factor, n. This factor is an
integer number and corresponds to the number of MEs that fit
across a cell’s radius.

To study the error in approximating the ECM with the SSM,
a single cell with a radius rc = 18 µm and the simulation



Points Solver Deviation
Area deviation {0, 0, 4.7} mm Lines 0.02 %
Pressure deviation {0, 0, 4.7} mm Lines 0.032 %
Pulse-echo deviation {0, 0, 4.7} mm Lines 0.064 %
Mean area deviation 20 points Lines 0.021 %
Mean pressure deviation 20 points Lines 0.05 %
Mean pulse-echo deviation 20 points Lines 0.10 %
Mean area deviation 20 points Rect 0.022 %
Mean pressure deviation 20 points Rect 0.051 %
Mean pulse-echo deviation 20 points Rect 0.103 %

TABLE I
DEVIATION OF THE AREA OF SIRS, PRESSURE PULSES, AND

PESIRS BETWEEN A FLAT CELL AND A SCALED VERSION OF THE
RESPONSE FROM A SQUARE TRANSDUCER ELEMENT. TWO

DIFFERENT FIELD II SOLVERS WERE APPLIED.

Points Solver Deviation
Mean area deviation 20 points Lines 1.85 %
Mean pressure deviation 20 points Lines 5.62 %
Mean pulse-echo deviation 20 points Lines 11.12 %
Mean area deviation 20 points Rect 1.87 %
Mean pressure deviation 20 points Rect 3.99 %
Mean pulse-echo deviation 20 points Rect 7.92 %

TABLE II
DEVIATION OF THE AREA OF SIRS, PRESSURE PULSES, AND

PULSE-ECHO PULSES BETWEEN A DEFLECTING CIRCULAR CELL AND
A SCALED VERSION OF THE RESPONSE FROM A SQUARE

TRANSDUCER ELEMENT.

Vbias 36 V
Young’s module 169 GPa
Poison ratio ν 0.29 []
Gap height g0 150 nm
Plate thickness t 1.125 µm
cv 0.43
rcell 18 µm
Exterior pressure 101.3 kPa

TABLE III
SIMULATION PARAMETERS USED FOR CALCULATING THE CELL

DEFLECTION.

parameters given in Table III is considered. The SIR, the
pressure, and the PESIR are calculated with a flat square
model of size 2rc times 2rc, a circular model without any
plate deflection, and a circular model with calculated plate
deflection.

A single square transducer element with the size of 5x150
cells in the lateral and the elevation plane is modeled as well.
Each cell has a radius of rcell = 18 µm, and the cell-to-cell
pitch is cellp = 38 µm. A corresponding rectangular element
is assumed to have the dimensions 5 · cellp x 150 · cellp.

IV. RESULTS

SIRs calculated at a point {xp, yp, zp} = {0, 0, 4.7} mm
relative to a single flat cell and a corresponding flat rectangular
cell with the height and the width of twice the cell radius are
shown in Fig. 2. The simulations are conducted at a sampling
frequency (SF) of 104 GHz and with the bounding line solver
of Field II. In Fig. 2 cell, square, and scaled are the responses
from the circular cell, the square element, and the square
element scaled with f , respectively.

As seen in Fig. 2, the response from a square element
is, as expected, spread along a longer time interval. If the
pulses hcell and hscaled are integrated and the difference in
percentage relative to hcell is found, then the error amounts
to 0.02 %.

Table I lists the area error for the situation depicted in Fig. 2,
together with a RMS comparison between the scaled and the
cell SIRs convolved with a 10 MHz pulse and relative to the
RMS of the cell model. The RMS of the PESIR pulses are
shown as well. The same study with 20 randomly distributed

points within a space of 10 · rcell x 10 · rcell x 0.01 m in front
of the cell is shown as the mean of the deviations. Results
of using the rectangular ”Rect” solver or the bounding line
solver ”Lines” of Field II is shown.

The same study as for Table I but with the ”cell” model
deflecting (33.4 nm) is shown in Table II. Notice that the
deviations are significantly different for the two solvers,
”Lines” and ”Rect”. The higher deviations compared to the
flat cell simulation are because of the cells’ focus point which
in this simulation with high resolution influences the phase
summation.

The above cells were resolved with a high number of MEs
and SF, to ensure exactness of the results. In realistic Field II
simulations a SF around 200-400 MHz would have been
chosen, which is because of Field II’s energy preservation of
the pulses. The lowest possible number of MEs is preferred.

Figure 3 shows the mean RMS deviation of the pressure
calculated for 20 random points as a function of n, SF, and
cell radius. The rectangular solver of Field II was used. The
figure reveals that the responses have stabilized after n = 5,
and that the slope of the errors are constant for larger numbers
of n. Further, it can be identified that the 200 MHz SF yields
a relatively large deviation compared to the 400 MHz SF.
The latter indicates the importance in considering the relation
between ME size and SF, but also the fact that the number of
MEs does not have to be large.

The mean times for solving the SIR and the pressure of the
20 random points, each solved 1000 times, can be found in
Figs. 4 and 5. From these figures it can be identified, that the
solving time is exponentially increasing, but the difference in
solving time between 200 MHz and 400 MHz is not significant
at low n.

A. Simulating a populated transducer element

Ultrasound imaging simulation requires at least one trans-
ducer element fully populated with cells. Consider a single
transducer element populated with 5x150 cells. It was previ-
ously shown that the response from the rectangular element
can be scaled with (1). It is therefore assumed that within
certain limitations this will be applicable for an entire element,
where the cell-to-cell spacing prevents the cell boundaries
from touching each other, as well. The scaling factor used is



5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

1.4

Mean calculation time for h

Resolution factor n

T
im

e 
[s

]

 

 
400 MHz, 18µm
400 MHz, 30 µm
200 MHz, 18 µm
200 MHz, 30 µm

Fig. 4. Mean calculation time of the SIRs of
20 random points. Each point is solved 1000
times.
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Fig. 5. Mean calculation time for pressure
pulses of 20 random points. Each point is solved
1000 times.
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Fig. 6. PESIR of a single point calcu-
lated with the rectangular transducer, Square,
5x150 CMUT cells, Cell, and a scaling of the
”Square” response, Scale a) full pulse shapes.
b) zoom onto (a).

Points Solver Sampling Deviation
Mean area deviation 200 points Rect 5 GHz 1.78 %
Mean pulse-echo deviation 200 points Rect 5 GHz 3.19 %
Mean area deviation 200 points Rect 400 MHz 3.89 %
Mean pulse-echo deviation 200 points Rect 400 MHz 5.29 %
Mean area deviation 200 points Rect 200 MHz 4.07 %
Mean pulse-echo deviation 200 points Rect 200 MHz 4.83 %

TABLE IV
TABLE SHOWING THE DEVIATIONS CALCULATED FOR 200 RANDOM

POINTS WITH AN ELEMENT POPULATED WITH 5X150 CELLS.

given by the fraction between active areas, which is different
from (1) because of cellp > 2rc.

A configuration of Field II to model a single element with
and without cells was set up. 200 random points were used
to calculate the SIR and the PESIR. Integrations of the SIRs
were performed and a RMS deviation between PESIRs were
calculated. The cell resolution was set to n = 6, which is
based on the results in Fig. 3, and a SFs of 5 GHz, 400 MHz,
and 200 MHz were investigated. The results are presented in
Table IV.

Table IV reveals that a deviation ranging from 1.7 % to
5.29 % can be found between the two modeling principles.
It also reveals that an increase in deviation from lowering the
SF from 5 GHz to 400 MHz is relatively small.

Fig. 6 shows the response from a single point and it further
reveals the difference between the models. Figure 6a shows
the pulse shapes of the three calculation methods, and Fig. 6b
shows a zoomed-in version of (a). The ripple response found
is a result of the superposition.

V. CONCLUSION

Modeling CMUT cells with Field II is feasible if it is as-
sumed that the CMUT plate moves uniformly and perpendicu-
lar to its initial deflection. Circular-shaped cells with spherical
deflection can be approximated with flat square elements when
each SIR convolution is scaled with the ratio between active
areas. An array transducer populated with many cells can be
well approximated with a square element, neglecting the cells.

In proximity to the transducer, time of flights will become of
visible influence on images for high frequency excitation and
good care has to be taken on convergence of the solution in
the very near-field if the cell responses are approximated.
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