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Abstract
In 3-D ultrasound imaging where 2-D transducer arrays with more than hundreds of elements are
used, sparse arrays can be used to reduce the number of active ultrasound channels. Under a
restriction of desired number of active channels, we can maximize the image quality by optimally
choosing the positions of active elements. Here we use the method of simulated annealing to find
the optimal configuration of a 2-D sparse array. This algorithm tries to minimize the value of an
objective function defined as the energy ratio between the nonfocal and focal regions in the point
spread function (PSF). Optimal configurations were found for the cases of choosing 16, 20, 24, 28,
and 32 transmit and receive elements from a 16×16-element rectangular transducer array. With
only 32 transmit and 32 receive elements, we could achieve an energy ratio of 16%, compared to
6% of the full array, which is the gold standard utilizing all the 256 elements for both transmit and
receive. Using Field II, we simulated imaging with the optimal sparse arrays, for off-axis targets as
well as on-axis targets, and the resulting images were compared with those from some other
configurations, such as full-transmit full-receive, full-transmit x-receive, x-transmit boundary-
receive, and so on.

Keywords
Simulated annealing; Sparse transducer array; Optimization; Ultrasound imaging

INTRODUCTION
In 3-D volumetric ultrasound imaging where 2-D transducer arrays with more than hundreds
of elements are used, it is challenging to fabricate and interconnect as many electronic
channels as the transducer elements [1], [2]. In addition, the data processing speed required
in real-time imaging and the total power budget also make it difficult to use a large number
of ultrasound channels [3].

In many applications, sparse arrays can be used to reduce the front-end complexity and
improve the image processing speed. Since the beam pattern of an aperture is determined by
its geometry, we can maximize the image quality by optimally choosing the locations of the
active elements, under a restriction of desired number of active transmit and receive
elements.

There have been various approaches to design sparse arrays. For example, random
approaches [4]–[6], genetic algorithms [7]–[10], linear programming [11], and sparse
periodic layouts [12]–[14] have been proposed as strategies for finding optimal sparse array
configurations. Recently, Karaman et al. [15] developed a design method to eliminate
redundancies in transmit-receive element combinations, using the concept of coarray. An
alternative approach for the sparse array design is optimization by simulated annealing. This
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method is based on the analogy between the annealing in a solid material and the
multivariate or combinatorial optimization process [16], and has produced appreciable
results in previous works [17]–[21].

In this paper, we propose another application of simulated annealing algorithm for finding
an optimal 2-D sparse array configuration. We defined an objective function as the energy
ratio between the non-focal and focal regions in the point spread function, and implemented
a simulated annealing algorithm that tries to minimize it. In each iteration of simulated
annealing process, the objective function was evaluated using the Field II [22], [23]
simulation results. The optimal locations of active elements were found from a 16×16-
element transducer array, and we could achieve comparable image quality to that of other
configurations using more number of transducers. Section II describes the methods we used,
and in Section III the results of optimization are presented. The imaging simulation results
with the optimal sparse arrays we found are provided in Section IV.

II. METHODS
A. Problem Definition

In the beam pattern of a sparse array, it is desirable that most of the ultrasonic energy is
concentrated in the main lobe region. In other words, we want to have a point spread
function (PSF) with as much energy as possible inside of the focal region, and as little
energy as possible outside of that region. So our objective in this problem would be to
minimize the energy ratio between the non-focal and focal regions in the PSF, by properly
choosing the locations of limited number of transmit and receive elements. In summary, we
define our problem as,

- Find the optimal location of each transmit/receive element,

- That minimizes the objective function Eout/Ein,

- Subject to limited number of transmit/receive elements,

where Eout and Ein are the PSF energy in the non-focal region and in the focal region,
respectively.

B. Evaluating the Objective Function
With the synthetic phased array (SPA) imaging technique, where a single transmit element
is excited and all the receive elements are enabled at each firing event, an image obtained
using an array of transducer elements can be considered as a sum of sub-images contributed
by individual transmit-receive element pairs. Similarly, PSF of a transducer array can also
be constructed by superposition of sub-PSFs of individual transmit-receive element pairs.
Using Field II, sub-PSFs of all the transmit-receive element pairs from a dense 2-D
rectangular array were simulated and saved. To construct the PSF of a sparse array, the sub-
PSF data relevant to the configuration are read and added. And then we can obtain the
values of Ein and Eout by simply integrating the PSF energy inside and outside of the focal
volume, respectively, to calculate the energy ratio which is our objective function.

C. Simulated Annealing
The basic algorithm of simulated annealing used in this study is shown in Fig. 1. Starting
from an initial solution, which is an arbitrary sparse array configuration with required
number of active transmit and receive elements, it tries to improve the solution until it finds
an acceptable solution.
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In each iteration, it perturbates the current solution, by randomly selecting one transmit or
receive element, and moving it to one of its nearby positions. Since we are moving only one
element at a time, the PSF of the new aperture can be quickly calculated from the PSF of the
previous aperture, by replacing the contribution of the eliminated element with that of the
new element, instead of recalculating the PSF from scratch.

The acceptance decision is based on the objective function value calculated from the PSF,
and the current temperature. Denoting the energy ratio of the new solution by F(Sn), the
energy ratio of the previous solution by F(Sn−1), and the current temperature by T, we
defined our acceptance probability function P(ΔF(S), T) as

(1)

where

(2)

Thus, if the new solution is better than the previous solution, i.e., if the new energy ratio is
smaller than the previous one, the new solution is always accepted. On the other hand, if the
new solution has an energy ratio larger than the previous energy ratio, the new solution is
accepted with probability of P(ΔF(S), T). The smaller ΔF(S) is, and the higher the
temperature is, it is more likely that the new solution is accepted, even though it is worse
than the previous solution. So at high temperature, the algorithm can easily escape from a
local minimum.

At the end of each iteration, we decrease the temperature, making it harder for a worse
solution to be accepted. The cooling schedule is determined by the cooling factor, α. With
the initial temperature T0, the temperature becomes, after i iterations,

(3)

We can give more chances of finding the global optimum by cooling down slowly, but it
also slows down the convergence of the solution. So the cooling schedule must be chosen
carefully.

III. RESULTS
Assuming a 2-D 16×16-element rectangular transducer array, we implemented the simulated
annealing algorithm to find the optimal sparse array configurations with 16, 20, 24, 28, and
32 active transmit and receive elements. The parameters used in the PSF simulation are
listed in Table I. To simplify the problem, the symmetry of the aperture was assumed in both
horizontal and vertical directions. Also, in order to reduce the front-end electronics
complexity, we required that no element is used for both transmit and receive.

For the case of choosing 16 transmit and 16 receive elements out of 16×16 locations, the
solution converges within 500 iterations (Fig. 2), with initial temperature of 1.0 and cooling
factor of 0.99. The solution found in the first run of simulated annealing may not be, and
usually is not, the best solution. However, it provides us a reasonably good solution in a
short time, and this configuration can be used as a good starting point for another run of
simulated annealing. We ran the optimization process multiple times for each problem,
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using the last solution as the initial configuration for the next run, and found that the solution
does not improve after only a few runs. The optimal configurations found using this method
are summarized in Fig. 3. It required 3 to 5 runs to reach each of these configurations. The
energy ratios of these apertures are listed in Table II.

In Table III, the energy ratios of some other apertures introduced in [15] are shown for
comparison. To make the comparison fair, the same synthetic phased array (SPA) imaging
technique was used for all of these apertures. So, the full transmit and full receive (FT–FR)
aperture here differs from the CPA or CSA in [15], using a different imaging technique. The
apertures with –NC in their names are those with no common elements between the transmit
and the receive apertures.

IV. IMAGING SIMULATIONS
Using Field II program, we simulated imaging with the optimal sparse array configurations
found by our method. Three phantoms (Fig. 4), each with 5 point targets in a lossless
medium, were used to see the imaging capability of these apertures for both on-axis and off-
axis targets. For comparison, the same simulations were also done with the other apertures.

The simulation results show that our optimal configurations have comparable imaging
capability, in a noiseless environment, to the other apertures using more number of active
elements. Some of the simulation results are presented in Fig. 5.

V. CONCLUSIONS AND FUTURE WORKS
Using the method of simulated annealing, we implemented an optimization algorithm for
choosing the locations of a limited number of active elements to obtain beam profiles that
are comparable to those of other configurations that use a larger number of transducers. The
optimal sparse array configurations were found for the cases of choosing 16, 20, 24, 28, and
32 transmit and receive elements from a 16×16-element 2-D array, and their imaging
capability was examined by Field II simulations. The imaging simulation results showed
that, in a noiseless environment we can achieve acceptable image quality while using only a
small number of transducers.

Although sparse arrays and synthetic beamforming techniques help with the frame rate and
hardware complexity, it is well known that they suffer from low SNR. One way of
improving the SNR is using coded excitation [24], [25]. Currently, we are extending the
presented approach to an overall system optimization for 2-D sparse arrays by including
element apodization and coded excitation into consideration.
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Figure 1.
The basic simulated annealing algorithm.
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Figure 2.
Convergence of the solution. In a problem finding 16 transmit and 16 receive elements, it
converges within 500 iterations.

Choe et al. Page 8

Proc IEEE Ultrason Symp. Author manuscript; available in PMC 2011 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Optimal sparse array configurations (left: TX apertures, right: RX apertures) found by
simulated annealing.
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Figure 4.
Three phantoms used in imaging simulations.
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Figure 5.
Some of the imaging simulation results. (e) and (f) are the images obtained with the optimal
configurations found by simulated annealing, and (a)–(d) are from the other apertures. The
display dynamic range is 40 dB.
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TABLE I

Simulation Parameters

Parameter VALUE

Array size 16×16 elements

Center frequency 10 MHz

Fractional bandwidth (FBW) 80%

Element pitch 60 µm

Element size 50 µm × 50 µm

Kerf 10 µm

Excitation pulse Gaussian pulse with 80% FBW

Sampling frequency 100 MHz

Point target location On axis, with F number of 4 (3.8 mm)

Scan volume 9 mm × 9 mm × 4.2 mm

Focal volume 1.1 mm × 1.1 mm × 0.18 mm

Voxel size 100 µm × 100 µm × 20 µm

Ultrasound velocity 1540 m/sec
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TABLE II

Energy Ratio of the Optimal Sparse Arrays

Aperture Number of
TX elements

Number of
RX elements

Energy
Ratio

16TX–16RX 16 16 0.4427

20TX–20RX 20 20 0.3331

24TX–24RX 24 24 0.2450

28TX–28RX 28 28 0.2123

32TX–32RX 32 32 0.1613
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TABLE III

Energy Ratio of the Apertures from [15]

Aperture Number of
TX elements

Number of
RX elements

Energy
Ratio

FT–FR 256 256 0.0563

FT–XR–NC 224 32 0.0955

XT–BR 32 60 0.1712

XT–BR–NC 28 60 0.1870

XT–PR 32 60 0.2117

XT–PR–NC 32 56 0.3113

BRT–BCR 32 32 0.3252

BRT–BCR–NC 28 32 0.3736

–NC: No common element between TX and RX
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