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ABSTRACT

Instruction cache misses are performance bottlenecks in
recent applications, and many prefetchers have been proposed
to hide the memory access latency. In this study, we focused on
a prefetcher that uses the history of function calls and returns.
We found that the prefetcher has various characteristics related
to the association of history and miss addresses, the length of
the history, and the distance to the prefetch target. Based on
this observation, we propose D-JOLT, which is a prefetcher
consisting of multiple prefetchers with different characteris-
tics. D-JOLT consists of long-range prefetcher, which predicts
a distant future with higher coverage, short range prefetcher,
and fallback prefetcher, which predicts a near future with
higher accuracy. We evaluated D-JOLT with distributed traces
according to the rule of IPC1, and the results show an im-
provement of 28.9% in performance compared to a processor
without instruction prefetching.

I. INTRODUCTION

In recent years, instruction-working sets have continued
to grow in server applications and client applications, and
instruction cache misses have become a performance bottle-
neck. Instruction prefetchers can effectively hide a cache miss
latency due to such instruction cache miss. To address this
issue, many prefetchers such as methods for learning stream
access [3], [4] and methods using branch target buffer [6]–[8]
have been recently proposed.

In this study, we focus on one of such prefetcher, the return-
address-stack directed instruction prefetching (RDIP) [5]. A
return address stack (RAS) is used to predict a return address
from a function call. The RDIP uses a smaller RAS than that
used in a branch predictor. It generates a signature from the
addresses recorded in the RAS, and associates cache misses
with the signature. The RDIP assumes that the same cache
misses will be reproduced, if the signature has the same value
as at the time of recording and prefetches those miss addresses.

We investigate characteristics of the RDIP using the follow-
ing three parameters shown in Fig. 1.

1) Siggen: A siggen represents an algorithm used to gener-
ate a signature. The siggen used in the RDIP (hereinafter,
referred to as RASWHOLE) generates signatures using
all the addresses recorded in the RAS for each signature
generation. By using the RAS, RASWHOLE can predict
addresses taking account in the distant past with small
cost.

2) Histlen: A histlen is the number of addresses used
to generate a signature. In the RDIP, the histlen is a
variable, and the maximum histlen is the number of
the RAS entries. In general, making a histlen longer
improves the accuracy when the miss address varies
depending on the distant past execution path, while it
decreases the capacity efficiency when the miss address
is constant, regardless of the past execution path.
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Fig. 1: Each block represents a dynamic instruction sequence
with a call/return instruction at the end. In this figure, when
fetching the call instruction of C, prefetch addresses are
obtained using h(A,B,C) and they are prefetched for a block
with H.
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Fig. 2: (a) In this figure, the size of RAS is four. In S, RASW-
HOLE generates a signature using only B and K, because N
and O are popped from the RAS and the histlen is decreased
to two. (b) In this figure, the histlen is four. In Q, R, and S,
FIFORETCNT generates different signatures while keeping use
of K, L, N, and O.



3) Distance: A distance indicates how much time has
elapsed since the signature associated with the miss
address was generated. When the distance is increased,
prefetches can be issued earlier than demand accesses,
but the prediction accuracy will decrease because the
prefetcher needs to predict a distant future. In the RDIP,
the distance is two.

For the parameters described above, we observed the fol-
lowing new points.

1) Siggen: a) With the RASWHOLE method, the number
of valid entries in the RAS decreases when the return
instruction is fetched, as shown in Fig.2 (a). This leads
to a reduction in signature variations, which reduces the
prediction accuracy. b) With the RASWHOLE method,
when the returns are fetched more than once in succes-
sion, the information about the function call immediately
before is removed from the RAS, and thus, the correla-
tion of the latest history cannot be extracted.

2) Histlen: Increasing the histlen does not lead to an
explosive increase in the variation of signatures, while
it leads to a super-linear increase in the case of branch
direction predictor.

3) Distance: Increasing the distance provides better cov-
erage because the number of signatures that reach a
certain prefetch target increases, as shown in Fig. 3. On
the other hand, the prediction accuracy decreases with
increasing the distance, as described before.

Based on the observation described above, we propose the
D-JOLT prefetcher. The D-JOLT consists of a novel siggen,
FIFORETCNT, and a hybrid configuration that takes into
account the characteristics of histlen and distance.

FIFORETCNT generates signatures using a first-in, first-out
(FIFO) that records a called address in every function call,
and a counter that counts the number of successive returns, as
shown in Fig. 2 (b). By using a FIFO, the correlations of the
last function calls can be used. In addition, it is possible to
change the signature without discarding the FIFO information
in a return.

The D-JOLT takes a hybrid configuration of the following
three prefetchers. Each of these three prefetchers intends to
prefetch the same target, and one prefetcher covers the target
where other prefetcher fails to predict.

1) Long-range prefetcher: This prefetcher has a long histlen
and distance. By using long distance, it achieves high
coverage and timely prefetch. The reduction in the
prediction accuracy is compensated for by the longer
histlen.

2) Short-range prefetcher: This prefetcher has a short
histlen and distance. Even when the long-range
prefetcher fails to predict the addresses, the short-range
prefetcher prefetches using recent history.

3) Fallback prefetcher: This is a modest stream prefetcher.
When the former two prefetchers fail in address pre-
diction and cache misses occur, the fallback prefetcher
prefetches later.
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Fig. 3: (a1) When distance=2, missed addresses in T are recorded
only associated with a signature at D. (a2) When distance=7, those in
T are recorded associated with signatures at A, B, and C. (b) There
are other paths from A, B, and C to reach T without going through
D (e.g., “if(..){D();}T();”). In these cases, distance=2 cannot
issue prefetches for T, but distance=7 can issue them, and thus, the
coverage is improved.

The D-JOLT is not a TAGE-like predictor. In D-JOLT, the
prefetchers with each different histlen runs in parallel, and
does not form a cascade connection. Conversely, in TAGE the
cascade of prediction tables with different histlens is aimed at
capacity efficiency and/or rapid learning. In D-JOLT, the long-
range prefetcher increases the coverage and the more accurate
prefetcher that predicts the nearest future assists the long-range
prefetcher.

We evaluated D-JOLT using the traces provided on the IPC1
web-site [2], and demonstrated that D-JOLT achieved 28.9%
IPC speedup compared to no instruction prefetching.

II. DESIGN

A. Structure

The long-range prefetcher and the short-range prefetcher in
D-JOLT have the same structure. These prefetchers mainly
consist of tables to record cache misses and components to
generate signatures.

The tables for recording cache misses consist of the follow-
ing three kinds of components.

1) Miss table: This table records the association between a
signature and the line address of a cache miss. The table
is a set-associative structure accessed by the signatures.
The addresses of nearby lines are recorded together: the
miss bit vectors containing the first address and the bits
corresponding to each line are recorded. To improve the
capacity efficiency, the upper bits of the line address are
recorded in the upper bit table, described below, and the
indices are recorded in the miss table. The D-JOLT has
two miss table, one each for the long-range prefetcher
and the short-range prefetcher.

2) Upper bit table: This table records only the upper bits
of the miss line address to be recorded in miss table.
The table is a fully-associative structure. The D-JOLT
shares one upper bit table with two miss tables.

3) Extra-miss table: When an address of a cache miss is
outside the range of a single bit vector corresponding
to a signature, the extra-miss table is used to record the
address. The table is a set-associative structure accessed
by the signatures same as miss table. The D-JOLT shares
an extra-miss table with two miss tables.
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Fig. 4: Behavior of D-JOLT. The miss table is simplified in
this figure and actually consists of the three kinds of tables.

FIFORETCNT RASWHOLE

PC Ins. State Signature State Signature

A Call
h(X,Y,Z,A,0) h(X,Y,Z,A)

B Call
h(Y,Z,A,B,0) h(Y,Z,A,B)

- Return
h(Y,Z,A,B,1) h(Y,Z,A,B)^1

C Call
h(Z,A,B,C,0) h(Y,Z,A,C)

- Return
h(Z,A,B,C,1) h(Y,Z,A,C)^1

- Return
h(Z,A,B,C,2) h(Y,Z,A)^1

- Return
h(Z,A,B,C,3) h(Y,Z)^1

D Call
h(A,B,C,D,0) h(Y,D)

Fig. 5: Behavior of FIFORETCNT and RASWHOLE. In this
figure, the histlen is set to four.

The components for generating the signatures consist of the
following components.

1) FIFORETCNT: To implement FIFORETCNT, the long-
range prefetcher and the short-range prefetcher each
have their own FIFO. In addition, they include head
pointers and counters that count the number of consec-
utive returns.

2) Signature queue: The signature queue records past sig-
natures, and it is used to reference signatures in the
past for distance. Because the long-range prefetcher and
the short-range prefetcher have different signatures, they
each have a signature queue.

The fallback prefetcher has several tables for detecting the
streams used by the stream prefetcher [9].

B. Behavior

The long-range prefetcher and the short-range prefetcher
work similarly. Fig. 4 shows the behavior of the learning
and issuing prefetches in these prefetchers. In addition to the
above prefetchers, the fallback prefetcher works based on the
stream prefetcher described in [9]. In the following section,
we describe the behavior of the long-range prefetcher and the
short-range prefetcher.

1) Issuing prefetch: When a call/return instruction is
fetched, D-JOLT calculates new signatures for each prefetcher.
The details of the algorithm to generate the signature are
discussed later. The obtained signature is pushed into the
signature queue. Then, D-JOLT accesses the miss table, upper
bit table, and extra-miss table with the updated signature.
D-JOLT reconstructs raw prefetch line addresses from the
obtained data, and issues prefetches.

2) Learning miss addresses: When a cache miss occurs,
D-JOLT records missed line addresses into the tables using
a signature obtained from the signature queue. This signature
is one that was pushed to the queue distance times ago. A
missed line address is divided into the upper and lower bits,
and the bits are recorded into each table. If a signature hits on
the miss table and the missed line address is not within the
range of the bit vector in the entry, the missed line address is
recorded in the extra-miss table.

3) Signature generation algorithm: Fig. 5 shows the be-
havior of FIFORETCNT and RASWHOLE. When a call/return
instruction is fetched, FIFORETCNT calculates a new signature
as follows.

When a call instruction is fetched, the address is pushed
into the queue and the return counter is reset to zero. When
a return instruction is fetched, the queue is not updated, and
the return counter is incremented. After fetching a call/return
instruction, it calculates a new signature from the histlen
addresses obtained from the queue head and the return counter.

C. Implementation in a real design

The configuration of the D-JOLT used for the evaluation in
this paper uses a large capacity to achieve high performance
in the championship, but about 25 KiB is sufficient to achieve
a similar performance in practical use.

III. EVALUATION

A. Methodology

We evaluated D-JOLT using ChampSim [1] according to
the IPC1 rules with the traces on the IPC1 web-site [2]. The
parameters of D-JOLT used in the evaluation are as follows. In
the long-range prefetcher, the histlen is seven and the distance
is fifteen. In the short-range prefetcher, the histlen and the
distance is four. Table I lists the storage breakdown.

To compare with D-JOLT, we also evaluated next-three-
lines prefetcher, RDIP1 [5], Boomerang1 [7], and Shotgun1

[6]. In addition, to investigate the theoretical limit of the
performance improvement by the L1I prefetcher, we imple-
mented and evaluated an ideal model, where the memory
access latency below the L1I cache in the instruction fetch
is always one cycle. We did not use a perfect L1I cache as
an ideal model, because the perfect L1I cache does not take
into account the impact on the L2 cache, which is shared for
instruction data and non-instruction data.

1We implemented and tuned these prefetchers with some parameter search-
ing, but their parameters may not be the best.
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Fig. 6: IPC speedup over no instruction prefetching. Note that the vertical axis is in log scale.
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Fig. 7: L1I Miss per kilo instructions (MPKI)

TABLE I: Storage computation

Long-range

Prefetcher

Signature Generator
FIFO (7x32+3 bits),

return counter (32 bits)
259

Signature Queue Signature (23 bits) 15 entries + misc. 349

Miss Table
Tag (12 bits), LRU (2 bits),

miss vectors* (2x31 bits)

2048 Sets, 4-way

(8192 entries)
622592

Short-range

Prefetcher

Signature Generator
FIFO (4x32+2 bits),

return counter (32 bits)
162

Signature Queue Signature (23 bits) 4 entries + misc. 94

Miss Table
Tag (13 bits), LRU (2 bits),

miss vectors* (2x31 bits)

1024 Sets, 4-way

(4096 entries)
315392

Extra-miss Table
Tag (15 bits), LRU (2 bits),

miss vectors* (2x31 bits)

256 Sets, 4-way

(1024 entries)
80896

Fallback

Prefetcher

Stream Train Table

Valid (1 bit), LRU (4 bits),

line address (58 bits),

counter (2 bits)

16 entries 1040

Stream Monitor Table
Valid (1 bit), LRU (4 bits),

line address (58 bits)
16 entries 1008

Upper Bit Table Valid (1 bit), upper bit (40 bits) 31 entries 1271

Storage overhead 1023062 bits (125 KiB)

* A miss vector (31 bits) = compressed upper address (5 bits) + lower address (18 bits) + bit vector (8 bits)

TABLE II: Simulation parameters

Memory Capacity Hit Latency Prefetcher

L1I Cache 32KiB 4 cycle Evaluation Target

L1D Cache 48 KiB 5 cycle Next Line Prefetcher

L2 Cache 512 KiB 18 / 20 cycle Signature Path Prefetching (5.4 KiB)

L3 Cache 2 MiB 48 / 50 cycle N/A

Main Memory 4 GiB >118 cycle N/A

Front-end Module Parameter

Fetcher 6-way, 12 entries fetch buffer

Branch direction predictor 64 KiB hashed perceptron, ghist 232 bits

Branch target predictor Oracle

Decoder 7-way, 3 cycle, non-pipelined

All simulation results are warmed up with 50 M instructions
and simulated for additional 50 M instructions. The simulation
parameters are shown in Table II.

B. Performance

Fig. 6 shows the IPC speedup of all the evaluated models
and the ideal model over a no-instruction-prefetching base-
line. This result shows that D-JOLT achieved performance
improvement close to the ideal model in almost all traces.
In geomean, D-JOLT achieved a 28.9% improvement, which
is 4.8% higher than that of RDIP. In client 04, client 05, and
gcc 01, D-JOLT has room for performance improvement. In
these traces, D-JOLT generated many kinds of signatures and
the storage capacity was not enough to record the signatures.

Fig. 7 shows the L1I cache miss per kilo instructions
(MPKI) of all the evaluated prefetchers. The D-JOLT signifi-
cantly reduced the L1I MPKI to 3.0 or less for the all traces.

IV. CONCLUSION

We propose D-JOLT, consisting of multiple prefetchers with
different characteristics. The long-range prefetcher predicts
a distant future with higher coverage, while the short-range
prefetcher predicts a near future with higher accuracy. We
evaluated D-JOLT with distributed traces according to the
IPC1 rule, and the results show a 28.9% improvement in
performance compared to a processor without instruction
prefetching.
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