

MANA: Microarchitecting an Instruction Prefetcher

Ali Ansari (Sharif) Fatemeh Golshan (Sharif) Pejman Lotfi-Kamran (IPM) Hamid Sarbazi-Azad (Sharif, IPM)

Instruction Cache Misses

• Server applications

Multi-megabyte instruction footprint
25% increase in size per year [Kanev, ISCA'15]

• Limited capacity L1 instruction cache 0 512 blocks, 32 KB

Frequent L1i misses hurt performance!

Prior Work

3 / 18

Contributions

- Storage cost is important o Unlimited storage results in high speedup
- Prefetching records
 - 0 A few distinct records
 - 0 Low storage demand per record
- MANA
 - 04 K distinct prefetching records, on average
 - \circ Each record \approx 4 bytes
 - $\odot\,24\%$ and 26.6% speedup with 16.3 and 122 KB

MANA offers considerable speedup with a limited storage! 4 / 18

Outline

- Introduction
- Motivation
- Our Proposal, MANA Prefetcher
- Methodology
- Evaluation
- Conclusion

Motivation

• Spatial region

0 Trigger address + a footprint

- Advantages
 - 0 Covering a large address space
 - Few distinct prefetching records
 - Easily detectable
 - Simple design
- Widely used in prior work
 - 0 PIF [Ferdman, MICRO'11]
 - O RDIP [Kolli, MICRO'13]
 - 0 Shotgun [Kumar, ASPLOS'18]

Spatial region is a good prefetching record!

Motivation (cont.)

- Spatial region's challenges:
 - oFinding the successor, why?
 - Prefetching the trigger block
 - Timeliness

oStorage cost

- Trigger address = block address!
- Prior work cannot solve these challenges effectively
- MANA offers simple solutions for them

MANA microarchitects the use of spatial regions!

MANA

- Spatial region is the main prefetching record • No association with other events
- MANA_Table
 - o A set-associative table to hold spatial regionso Looked up by trigger addresses
- Finding the successor
 - The sequence of spatial regions is repetitive (PIF)
 - o Use a pointer to the successor spatial region
 - 0 Chase the pointers to discover successor spatial regions

MANA: (Spatial region + a pointer) in a set-associative table! 8 / 18

MANA: High-Order Bit Patterns

MANA: High-Order Bit Patterns

MANA: High-Order Bit Patterns

11 / 18

MANA: Recording

MANA: Replaying

Methodology

- ChampSim Simulator
- Default parameters
- 32 KB, 8-way, L1 instruction cache
- 50 public traces
- Warmup: 50 M instructions
- Evaluation: 50 M instructions
- Competitors: RDIP, Shotgun, and PIF

Evaluation

Better performance in all given storage budgets!

15 / 18

Evaluation (cont.)

MANA can effectively prefetch for small cache sizes! 16 / 18

Conclusion

- MANA uses spatial regions
- Spatial regions are chained with pointers to each other
- HOBP is used to reduce the storage cost
- 24% speedup with only 16.3 KB

 Significant gap with prior work
 More practical design
- 26.6% speedup with 122 KB

Thank You!

Any Questions?