
BARÇA: Branch Agnostic Region Searching Algorithm

Daniel A. Jiménez Paul V. Gratz Gino Chacon Nathan Gober

Texas A&M University

Abstract

We introduce BARÇA
1, a branch agnostic region searching al-

gorithm for instruction prefetching. The technique is based on

searching a control-flow graph. The nodes in the graph are

fixed-sized regions of a number of cache blocks. Each edge is

labeled with the number of times that edge was traversed in

the control-flow of the program, allowing the probability of an

edge being traversed to be calculated from among all the edges

leaving a given node. To find candidate blocks to prefetch, the

graph is searched to a given maximum depth, stopping when

the product of probabilities from the source node to a given

target reaches a minimum value defined for that depth. The

algorithm is largely agnostic of branch instructions, inferring

the flow of control from demand fetches to regions. A few opti-

mizations are applied to improve space efficiency and perfor-

mance, including using a spatial pattern within regions, han-

dling returns specially, and compression of region addresses.

BARÇA achieves a geometric mean speedup of 28.3% over a

baseline of no prefetching, comparing reasonably well to an

optimistic 35.0% speedup for an infinite-sized first-level in-

struction cache. This paper describes the algorithm, the op-

timizations, and the overhead.

1 The Algorithm

The prefetcher divides memory into multi-block groups called

regions. The number of blocks per region is a parameter

to the algorithm. Each region reached by the program be-

comes a node in the control-flow graph. When control leaves

a source region for a target region, an edge is inserted or up-

dated in the control-flow graph. On certain demand accesses,

the prefetcher begins a limited-depth search at the region that

includes that demand access. The nodes reached by that search

become candidates for prefetching. Each node includes a spa-

tial pattern, a BPR-bit array that indicates whether the corre-

sponding cache block has ever been accessed; blocks that have

never been accessed are not considered for prefetching.

The intuition behind the BARÇA algorithm is that, for large

working set programs, we would like to store relatively few

entries in the control-flow graph compared to a branch tar-

get buffer (BTB) based prefetcher. This is the same intuition

1FC Barcelona, the Barcelona football club, is colloquially known as

Barça.

behind Shotgun [4], but rather than using a hierarchical ap-

proach, we choose a simpler coarse-grained node. The algo-

rithm is mostly agnostic of branch instructions within cache

blocks or regions; a discontinuous fetch obviously implies a

branch somewhere in the region but is represented simply as

another edge in the control-flow graph. The one exception is

returns, as returns have many targets but only one that will be

fruitful on a given search, so they are handled as a special case.

1.1 Edges

Edges in the control-flow graph are weighted with a count of

the number of times that edge was traversed. They are also

augmented with a flag that indicates whether this edge can be

traversed by a return instruction. The counts of every edge

originating at a given node can be used to determine the prob-

ability that one of those edges will be traversed, which guides

the search. The counts are 18 bits to conserve space. If in-

crementing a count would exceed 18 bits, all the counts in

the control-flow graph are halved before the increment so the

counts never overflow and continue to retain their proportional

values.

1.2 The Control-Flow Graph

The control-flow graph is represented as a 256 × 64 set-

associative memory of edges. The tags are the source region

addresses. On an access to a control-flow graph edge, multiple

edges may match the tag, indicating multiple targets for the

source. Many sources may share a single set, allowing an ef-

ficient adjacency-lists graph representation. Conflict misses in

control-flow graph sets are handled by replacing edges using a

least-frequently-used policy based on the edge count.

1.3 The Search

A search may be initiated from a demand fetch, an instruc-

tion cache fill or return instruction. When a new region is

entered that has not recently been searched, a new search is

initiated. The search is a depth-limited depth-first search. We

find a maximum depth of 5 results in the best performance.

Along each path from the source, the algorithm keeps a run-

ning product of the probabilities of each edge along the path. If

the product fails to exceed a pre-determined per-depth thresh-

old, the search along that path is terminated. When the search

algorithm considers traversing an edge labeled as ‘is-return,”

meaning that it had been traversed once before as a return of a

return instruction, the edge is only traversed if the target region

can be found on the return address stack.

1

1.4 Shadow Cache

BARÇA keeps a shadow cache that mirrors the tags in the L1

i-cache. It is updated on every fetch as well as on every i-

cache fill. The shadow cache is used to filter prefetch candi-

dates as well as to identify useful and useless prefetches. For

each block, it contains a tag, a valid bit, replacement state

for the LRU policy, a bit indicating whether the block was

prefetched but not yet used, and a pointer to the control-flow

graph node responsible for issuing the prefetch if that block

had been prefetched.

1.5 Selecting and Issuing Prefetch Candidates

For each region encountered along the search, BARÇA consid-

ers all the blocks in that region. If the block is not found in the

shadow cache, it is added to a list of prefetch candidates. Then,

the list is traversed in order of the probability of the node from

which the candidate originated. Up to a fixed number of can-

didates are added to a prefetch queue (not ChampSim’s queue)

on each search. On every cycle, a number of prefetch candi-

dates will be dequeued and issued from the prefetch queue.

2 Optimizations

We employ a number of optimizations to improve performance

and space efficiency of BARÇA:

2.1 Compression of Region Addresses

With 64-byte blocks and 2 blocks per region, distinctly iden-

tifying each region requires 57 bits. Each control-flow graph

node has two region addresses: a source and a target. A naive

representation would consume 114 bits per node just for region

addresses. Thus, we use a compressed representation. We di-

vide region numbers into 45 upper “area bits” and 12 lower

“offset bits.” We keep a table called the “area table” of 128

distinct 45-bit areas. A compressed region number consists of

the 7-bit index into the area table where the area bits can be

found and the 12 offset bits, for a total of 19 bits per region ad-

dress. The control-flow graph is indexed by taking the source

address modulo the number of sets in the structure, i.e. 256, so

the lower 8 bits of the source address need not be stored in a

control-flow graph node. Thus, source addresses consume 11

bits and target addresses consume 19 bits.

The area table is initialized to contain an invalid value that

has not been encountered in the traces. An area table entry is

filled the first time a region from that area is encountered. If

the table is full of valid entries, random replacement is used.

The area table allows covering 64MB of program text simul-

taneously. In practice we find that area table never requires

replacement. Similar address compression schemes were used

in previous work on indirect branch prediction [8, 1].

2.2 Special Treatment of Returns

We tried a number of ways to improve the accuracy of the

prefetcher. We found that, generally, letting it be as aggres-

sive as possible led to better performance than trying to re-

duce useless prefetches. One exception was that following

all possible targets of returns led to too many harmful use-

less prefetches. So we made an optimization to attempt to fol-

low only the correct return target. We implemented a return

address stack, pushing return addresses of calls and popping

the stack on returns. We labeled edges originating from re-

turns, discovered through the operation of branches, with an

“is-return” flag. When searching the graph, we allow an “is-

return” edge to be followed only if the target of that edge is on

the return address stack.

We would have liked to have done the same sort of opti-

mization for indirect branches, only following the correct tar-

get, but to do so would require implementing a highly accurate

indirect branch predictor that could speculate through several

levels of the search. We determined that doing that was not

worth the extra hardware required.

2.3 “Would Be Nice” Queue

The results of the search are ordered by the probabilities of

the associated edges. The algorithm only allows a certain

number of these prefetches into the prefetch queue so as not

to overwhelm the prefetcher and possibly delay subsequent

prefetches. However, we find that during a large portion of

most programs’ execution, the prefetch queue is empty. Thus,

we maintain another queue of lower probability prefetches that

“would be nice” to issue if there is available bandwidth. If

the main prefetch queue filled by the search becomes empty

on some cycle, this alternate prefetch queue is used to issue

prefetches.

2.4 Recently Searched List

We keep a list of regions from which searches were recently

initiated, maintained in first-in-first-out order. If a region is on

this list, it is will not be searched. Thus, we avoid issuing some

superfluous prefetches.

2.5 Tweaking Probability Counts

Each control-flow graph edge keeps a count of the number

of times that edge was traversed. The count is used to com-

pute the probability that a given edge will produce a fruitful

prefetch. We bias these probabilities to produce more useful,

fewer useless prefetches, and late prefetches.

Each time the shadow cache evicts a block that was

prefetched but never accessed, the count for the edge respon-

sible for that useless prefetch is decremented by 2. Each time

the shadow cache accesses a prefetched block indicating the

prefetch was useful, the count for the corresponding edge is

incremented by 3. Each time a demand fetch misses but the

2

fetch block is recorded as prefetched in the shadow cache, in-

dicating a late prefetch that was requested but has not yet found

its way into the cache, the corresponding edge is incremented

by 5. This way, the next time the same block is put onto the

prefetch queue, it will have a higher probability and thus a

more favorable position in the schedule of prefetches. Now

the values computed no longer reflect the true probability of

encountering an edge, but take into account the usefulness and

timeliness of the edge together with its frequency.

2.6 Tuning of Parameters

We empirically explored the design space of parameters to

the algorithm. Table 1 shows the values that resulted in the

best performance. With the large control-flow graph afforded

by the 128KB championship budget, we find that BPR=2 is

a good trade-off between region granularity and prefetch ac-

curacy. With a smaller budget we would likely use a coarser

granularity.

Parameter Value

Blocks per region 2 blocks

of prefetches to dequeue 4 per cycle

Prefetch queue size 14 entries

Max. # prefetches to queue per search 5

“Would be nice” queue size 10 entries

Edge counter width 18 bits

Recently searched list size 5 entries

Max. depth of search 4

“Real” maximum depth of search 5

Min. probability to search depth 1 0.046

Min. probability to search depth 2 0.001

Min. probability to search depth 3 0.0275

Min. probability to search depth 4 0.007

Counter increment on useful prefetch 3

Counter increment on late prefetch 5

Counter decrement on useless prefetch 2

Table 1: Best values of parameters to the algorithm

3 Overhead

3.1 Space Overhead

There are several structures in the prefetcher:

The area map is a direct-mapped memory of 128 58-

bit entries mapping areas of memory to regions to support

compression of node numbers in the control-flow graph. The

area map is 7,424 bits.

The control-flow graph is a 256 × 64 set-associative mem-

ory. Nodes in the graph use a compressed representation

as a pair of 7-bit area number and 12-bit offset within the

area, giving a region number. Each control-flow graph entry

has the following fields: an 18-bit counter, a source node,

a target node, a 2-bit spatial pattern, and an “is-return” bit

that is true if this edge is traversed by a return instruction.

Recall that compressed region addresses consume 19 bits,

and that since the structure is indexed by source node using

modulo indexing as in a set-associative cache, the lower 8

bits of the source node’s area offset need not be represented.

Thus, total number of bits in the control-flow graph is

256× 64× (1 + 2 + 18 + 19 + 11 + 1) = 851, 968 bits.

The shadow cache is a 64 × 8 set-associative memory.

Each entry has the following fields: a 1-bit valid bit, a 1-bit

prefetched bit indicating whether an entry has been prefetched

but not yet demand-accessed, a 24-bit partial tag, a 3-bit

LRU position, and a pointer to a control-flow graph edge

that would consume an 8-bit row and 6-bit column in a real

implementation. Thus, the total number of bits in the shadow

cache is 22,016 bits.

The recently-searched list keeps recently searched regions

that should not be searched again. It has 5 57-bit entries,

consuming 285 bits.

The prefetch candidates list keeps prefetch candidates

identified by the depth first search. It has 56 entries. Each

entry has a 58-bit block address, a 64-bit probability, a 3-bit

depth, and an 8+6 bit pointer to a control-flow graph edge.

Thus the list consumes 7,784 bits.

The prefetch queue is a queue apart from ChampSim’s

internal prefetch queue that stores candidate prefetches to be

dequeued as most one per cycle. It has 14 entries, each the

same size as the entries in the prefetch candidates list above.

Thus it consumes 1,946 bits.

The “would be nice” queue has 10 entries the same size as

the prefetch queue entries, so it consumes 1,390 bits.

The search results map of regions is filled by the depth-first

search. The map contains up to 56 entries. The key is an 8+6

bit pointer to a control-flow graph edge, and the value is a

pair of a 64-bit probability and a 3-bit depth, for a total of

4,536 bits. The depth-first search frontier list contains the

contents of the search results map sorted by probability. It has

56 entries of the same type as the prefetch queue entries, so it

consumes 7,784 bits.

The distinct candidates map is an associative map that aids

in filling the prefetch candidates list by making sure there

are no duplicate entries. It has 56 entries of 58-bit block

addresses, consuming 3,248 bits.

The return address stack is a 64-entry memory of 64-bit

return addresses maintained with stack discipline. It consumes

4,096 bits.

Adding the bits for all structures, we get 912,477 bits, or

111.4KB. There are various bits of state in the code the evalu-

ators might wish to consider, e.g. scalar variables for counting

etc. We are confident that these variables would form a negli-

gible fraction of the 16.6KB we leave on the table.

3

4 Scalability

10K
B

 (B
PR

=29)
13K

B
 (B

PR
=31)

20K
B

 (B
PR

=22)
33K

B
 (B

PR
=10)

59K
B

 (B
PR

=4)
111K

B
 (B

PR
=2)

215K
B

 (B
PR

=2)
423K

B
 (B

PR
=2)

839K
B

 (B
PR

=2)
1671K

B
 (B

PR
=2)

Hardware Budget

1.0

1.1

1.2

1.3

G
eo

m
et

ri
c

M
ea

n
Sp

ee
du

p

Figure 1: BARÇA scales to a wide range of hardware budgets. BPR

is blocks per region. (Red and blue are the colors of the Barça football

club, and maroon represents Texas A&M.)

The idea of BARÇA is to give a compact metadata represen-

tation by aggregating multiple blocks into a single CFG node.

It is hard to demonstrate the value of the idea with the con-

test’s large 128KB hardware budget. The optimal number of

blocks per region (BPR) is only 2. Figure 1 shows the geomet-

ric mean speedup over no prefetching given at budgets from

10KB to 1671KB. The number of CFG sets ranges from 8 to

4,096, doubling the number of sets for each point on the x-

axis. For each budget, we find the optimal number of blocks

per region (BPR). At 10KB budget, the best BPR is 29, giving

a region size of 1856 bytes. At this budget, BARÇA delivers a

geometric speedup of 10.2%. At 33KB budget, about the same

capacity as the L1 i-cache, BARÇA yields a speedup of 25.2%

with a BPR of 10. Our IPC1 entry uses a hardware budget

of 111KB, giving a 28.3% speedup. At larger budgets, there

is not much improvement. At a 4KB budget, the speedup is

28.7%, only 1.4% better than the 111KB version.

4.1 Logical Complexity

The prefetcher state easily fits into the hardware budget of

128KB. The hardware structures used are well-understood in

front-end microarchitecture: set-associative SRAM arrays and

small fully-associative arrays. The most challenging task is the

depth-first search. An efficient parallel depth-first search has

been demonstrated in the network-on-chip literature [7]. That

work showed a practical low-latency implementation of the

Bellman-Ford algorithm that could be adapted for our work.

Although we focus on the algorithm in this paper, we

believe a reasonable implementation is possible by pipelin-

ing the search and taking advantage of the slack time be-

tween prefetches. For example, we measured that, on average,

ChampSim’s prefetch queue is empty for more than 50% of

simulated cycles even with our “would be nice” list of poten-

tial prefetches. We limit the number of prefetches that will be

inserted into our prefetch queue from the search to 5. How-

ever, on average far fewer prefetch candidates are generated

per search. On average, each search results in 0.84 prefetch

candidates over the 50 traces, with a maximum of 1.7 average

prefetches candidates per search for one benchmark. We also

limit the number of searches by only searching when entering

a region that has not been recently searched, so most demand

fetches do not result in invoking the search algorithm at all.

We are aware of timing issues when e.g. accessing a large

structure such as the control-flow graph and making several

accesses to the shadow cache. Having worked with an indus-

trial RTL team on very complex front-end designs, we believe

that with clever pipelining and aggressive SRAM macros these

issues can be resolved with minimal impact on performance.

5 Related Work

Our scheme bears strong resemblance to BTB-directed

prefetching approaches. It is also similar to Markov-based

prefetchers [2] as it uses a graph labeled with weights that

represent probabilities that the next step in the graph will be

reached. The idea of prefetching through branch targets be-

gan with Smith and Hsu [9]. Recently, BTB-directed prefetch-

ing has been enhanced by using a stream-based prefetcher to

do both instruction and BTB prefetching [3]. A more effi-

cient instruction prefetcher, Boomerang [5], reduces the meta-

data required for branch-predictor-directed BTB and instruc-

tion prefetching, followed up by Shotgun [4] which uses a hier-

archical approach to further relieve the metadata problem. Our

idea can be seen as a simplified take of Shotgun; rather than ex-

plicitly acknowledging program structure through procedures

and branches, we divide the program into equal-sized coarse-

grained regions. Our spatial patterns that indicate whether a

given block in a region has been touched is inspired by spa-

tial footprints [6], an idea that has found its way into several

modern prefetchers including spatio-temporal streaming [10].

6 Acknowledgements

This paper is the result of research sponsored by the National

Science Foundation through grants CCF-1912617, I/UCRC-

1439722 and CCF-1823403, a contract from the Semiconduc-

tor Research Corporation, and generous gifts from Intel Cor-

poration. Portions of this research were conducted with the

advanced computing resources provided by Texas A&M High

Performance Computing Research.

4

References

[1] Elba Garza, Samira Mirbagher-Ajorpaz, Tahsin Ahmad Khan,

and Daniel A. Jiménez. Bit-level perceptron prediction for in-

direct branches. In Proceedings of the 46th International Sym-

posium on Computer Architecture, ISCA ’19, page 27–38, New

York, NY, USA, 2019. Association for Computing Machinery.

[2] D. Joseph and D. Grunwald. Prefetching using markov predic-

tors. IEEE Transactions on Computers, 48(2):121–133, 1999.

[3] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence:

Unified instruction supply for scale-out servers. In Proceed-

ings of the 48th International Symposium on Microarchitecture,

MICRO-48, page 166–177, New York, NY, USA, 2015. Asso-

ciation for Computing Machinery.

[4] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. Blasting

through the front-end bottleneck with shotgun. In Proceedings

of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems,

ASPLOS ’18, pages 30–42, New York, NY, USA, 2018. ACM.

[5] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Na-

garajan. Boomerang: A metadata-free architecture for con-

trol flow delivery. In High Performance Computer Architecture

(HPCA), 2017 IEEE International Symposium on, pages 493–

504. IEEE, 2017.

[6] S. Kumar and C. Wilkerson. Exploiting spatial locality in

data caches using spatial footprints. In Proceedings. 25th An-

nual International Symposium on Computer Architecture (Cat.

No.98CB36235), pages 357–368, 1998.

[7] Mukund Ramakrishna, Vamsi Krishna Kodati, Paul V. Gratz,

and Alexander Sprintson. Gca: Global congestion awareness

for load balance in networks-on-chip. IEEE Trans. Parallel Dis-

trib. Syst., 27(7):2022–2035, July 2016.

[8] André Seznec. A 64-kbytes ittage indirect branch predictor. In

Proceedings of the JWAC-2: Championship Branch Prediction,

June 2011.

[9] J. E. Smith and W. . Hsu. Prefetching in supercomputer in-

struction caches. In Supercomputing ’92:Proceedings of the

1992 ACM/IEEE Conference on Supercomputing, pages 588–

597, 1992.

[10] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki,

and Babak Falsafi. Spatio-temporal memory streaming.

SIGARCH Comput. Archit. News, 37(3):69–80, June 2009.

5

