
The Entangling Instruction Prefetcher

Alberto Ros
University of Murcia
aros@ditec.um.es

Alexandra Jimborean
University of Murcia

alexandra.jimborean@um.es

ABSTRACT
Prefetching instructions in the instruction cache is a funda-
mental technique for designing high-performance computers.
To achieve maximum performance, there are three key prop-
erties one needs to consider in designing an efficient and
effective prefetcher: (1) timeliness, (2) coverage, and (3) ac-
curacy. Timeliness is an essential property of a prefetcher.
Bringing instructions too early increases the risk of the in-
structions being evicted from the cache before their use and
requesting them too late can lead to the instructions arriving
past their designated execution time. Coverage is essential
to effectively reduce the number of instruction cache misses
(there is enough prefetching) and accuracy to ensure that the
prefetcher does not pollute the cache or interacts negatively
with the other hardware mechanisms (there is not too much
prefetching).

This paper presents the Entangling Prefetcher for Instruc-
tions (EPI) that entangles instructions to provide timeliness.
The prefetcher works by finding which instruction should
trigger the prefetch for a subsequent instruction, accounting
for the latency of each prefetch. The prefetcher is carefully
adjusted to account for both coverage and accuracy. Our
evaluation shows that EPI increases performance by 29.5%
on average, with a coverage of 95.6% and accuracy of 77.0%.

1. INTRODUCTION AND MOTIVATION
Instruction fetch stalls block the processor pipeline, caus-

ing significant performance degradation. In particular, appli-
cations with large working instruction sets that do not fit in the
first level cache, such as server applications or applications
designed to run in the Cloud, exhibit large instruction-cache
miss rates and thus incur more stalls. In such cases, instruc-
tion fetching represents a considerable fraction of the memory
stalls, together with data accesses.

As memory latency has been recognized as a critical factor
for performance, prefetching techniques have emerged to in-
stall the data or instructions in the cache ahead of time, ready
to be used when demanded by the processor [1], [2]. Driven
by their impact on performance, prefetchers have evolved
from simple next line prefetchers [1], to complex techniques,
such as Temporal Instruction Fetch Streaming (TIFS) [3].
TIFS records the history of L1-I misses and predicts the next
miss and the number of blocks to be cached, thus being more
accurate and timely than traditional prefetchers. To capture
the context of a miss (e.g. caused by a function call), Return-
address stack-Directed Instruction Prefetching (RDIP) [4]
records the return address stack and its context as signatures

which are then consulted upon each call and return operations
to trigger prefetching. More recently, Proactive Instruction
Fetch [5] increases RDIP’s performance by capturing the
blocks accessed by the committed instructions and instruc-
tions from handlers for OS interrupts. Hence, it operates on
the correct-path, retire-order instruction stream, and records
the exact instruction fetch sequence which is then used to
compute spatial locality.

We propose a prefetcher (EPI) oblivious to the control flow
path and the instabilities introduced by predicting the correct
or wrong path, by function calls or system interrupts. It works
by estimating the latency of the cache missing operations
and entangling them with the instructions that should trigger
the prefetch to ensure the timely arrival of the requested
instructions. In this way, EPI is robust and effective, agnostic
to the application characteristics and achieves a 99.6% I-hit
rate, approaching the perfect L1-I.

2. THE ENTANGLING I-PREFETCHER
The key contribution of this proposal is the entanglement of

operations, which, intuitively, consists in pairing two instruc-
tions, the instruction isource upon whose execution should be
triggered the prefetch for the instruction idestination. In a more
concise representation, we define as source-entangled the
cache line that should trigger the prefetch of the destination-
entangled cache line such that the requested line arrives
timely.

In order to ensure the timeliness of the prefetcher, we must
first compute the latency of each cache miss. To this end,
EPI starts by recording the history of L1-I accesses and in-
flight misses which are kept in a condensed form in dedicated
data structures, as explained below. For each L1-I miss, EPI
computes the latency of fetching the requested cache line by
subtracting the timestamp of the cache miss from the time the
requested cache block enters the cache. Next, EPI tracks back
in the recorded history the instruction which was executed
at least latency number of cycles earlier than the requested
instruction and entangles the cache lines corresponding to the
source and destination instructions.

As tracking each pair of entangled cache lines would re-
quire considerable storage space, EPI only entangles heads
of basic blocks, defined as follows. A basic block repre-
sents the set of consecutive cache lines (where consecutive
refers to the program order of instructions, grouped in cache
lines [2]). The head of a basic block is therefore the first
non-consecutive cache line. The size of the basic blocks is
the number of consecutive lines. Furthermore, in order to

1



reduce the number of entangled lines, EPI merges “almost"
consecutive basic blocks (as explained below) and entangles
only the head of the first block.

The prefetching engine is then triggered upon every cache
access and if already tracked it will fetch the entire basic
block of the current cache line, all the destination-entangled
cache lines, and their corresponding basic blocks.

2.1 Implementation
We proceed by describing the registers and data structures

employed by EPI.

Registers.
Current represents the first cache line (head) of the current

basic block.
Counter indicates the current size of the basic block, that is,

the number of consecutive cache lines accessed from current.

Tables.
History buffer records the history of basic blocks heads

(i.e. the first non-consecutive cache line), together with the
timestamp of the triggering instruction (i.e. the instruction
whose execution led to installing the block in the cache).

Basic block size table is associated to the History buffer.
We keep a small structure that records the size of the youngest
basic blocks in the History buffer. This table is employed to
merge previous basic blocks with the current one.

Timing table records I-cache misses and prefetches. An
entry consists of the tag of the cache line, the timestamp
when the miss/prefetch is triggered, an access bit (indicat-
ing if it has been a demand access for this line), a valid bit
(indicates whether the entry is used or the table is underuti-
lized), and the corresponding source-entangled cache line
(when applicable). The access bit and the destination are used
to update accordingly the confidence in the entangled pair
source-destination.

Cache extension models the addition of two extra fields
to each cache entry. In addition to the line address and the
valid bit, it records an access bit which indicates whether the
line has been accessed or not and the corresponding source-
entangled line (when applicable). Upon a cache fill, the
access bit and the entangled source-destination pair is moved
from the Timing table to the Cache extension.

Entangled table is the core structure of this proposal and
encodes the entangled basic block heads. Note that in an
effort to keep the structure within a limited size, entangling
is rather coarse-grain, i.e. only head basic blocks are en-
tangled, not all cache lines. An entry contains the source-
entangled cache line, its basic block size, a compressed array
of destination-entangled cache lines (currently up to 6 desti-
nations), and their associated confidence. Each destination-
entangled is associated a confidence field initialized to the
maximum value (since it was just computed prior to inserting
it in the table and therefore expected to be accurate). The
confidence is increased by timely prefetchers and decreased
by late and wrong prefetchers. When confidence reaches 0,
the destination-entangled becomes invalid (no prefetch is
triggered).

Extended prefetch queue stores prefetches that cannot be
sent due to a full prefetch queue, in a compressed manner.

Figure 1: Actions taken on prefetches (pref), cache ac-
cesses, cache fills, and cache evictions. Entanglements
are added for misses and late prefetches by looking for
the source in the History buffer. The confidence counter
is increased on prefetch hits and decreased on late and
wrong prefetches.

2.1.1 Populating the tables
To populate the Entangled table, we insert each new basic

block head (Current) together with its size (Counter), and add
destinations as explained in the following. Figure 1 illustrates
the actions taken upon each cache event and how the tables
are populated.

Step 1. Upon a cache miss or prefetch issued, insert in
the Timing table the address of the requested cache line and
the timestamp of the triggering instruction. Misses mark the
entry as accessed.

Step 2. Upon a cache fill, find the corresponding entry
in the Timing table and compute the latency of the current
memory access.

Step 3. Based on the latency, find the source-entangled
cache line for misses and late prefetches, i.e. when should
the prefetch be triggered such that the data is brought in time.

Step 3.1. For misses (demand accesses), search in the
History buffer whether the cache line was recorded as the
head of a basic block.

• If found, subtract from the timestamp of that basic
block its latency and find the timestamp correspond-
ing to the source-entangled cache line. Remove the
entry from the Timing table and move it to Cache ex-
tension. Update the Entangled table by adding to the
source-entangled entry the corresponding destination-
entangled and its confidence. If the array of destinations
is full, the destination-entangled with the lowest confi-
dence is replaced.

• If not found, no action is taken. Such misses will be
covered by prefetching the full basic block starting from
the head, as explained in the summary for triggering
the prefetch.

2



Step 3.2. For prefetches: if in the time window between
inserting the prefetch in the Timing table and the correspond-
ing cache fill there is a cache miss (Acc) to the same cache
line (i.e. the prefetch was not timely), there is an attempt
to insert Acc in the Timing table upon the miss. Since the
address of the corresponding cache line is already present
in the Timing table, the only action is to change the access
bit from 0 to 1 (i.e. from prefetch to demand access). When
the cache fill happens, the latency of the fill is calculated
with respect to its timestamp in the Timing table. If the line
has been accessed, then the corresponding source-entangled
cache line is identified in the History buffer. The source-
entangled entry and the corresponding destination-entangled
are stored in the Entangled table with the confidence set to
the maximum value. Again, if the array of destinations is
full, the destination-entangled with the lowest confidence is
replaced.

If in the time window between insterting the prefetch in the
Timing table and the corresponding cache fill there has been
no other access to the same line, it means that the prefetch
is either timely or wrong and no entangled pair needs to be
added. We simply remove the entry from the Timing table
and move it to the Cache extension.

Step 4. Upon a cache hit, set the access bit.

Step 5. Upon a cache line evict, check the corresponding
source-entangled entry. If this is non-empty, it indicates that
the evicted cache line has been brought through a prefetch.
Next, check the access bit.

• If the access bit is not set, the line was unnecessarily
brought to the cache, which indicates a wrong prefetch
(early or unnecessary). Update the Entangled table
decreasing the confidence of the destination-entangled
corresponding to the evicted cache line.

• If the access bit is set, it indicates a timely prefetch
and in consequence we update the Entangled table in-
creasing the confidence of the destination-entangled
corresponding to the evicted cache line.

2.1.2 Updating the basic block size
When a non-consecutive cache line accesses the cache,

we start tracking a new basic block. Before that we store
its basic block size in the Entangled table. If the block to
be added is already recorded in the table, we update its size
to the maximum between the old size (of the already stored
basic block) and the new size.

2.1.3 Triggering the prefetches
For every cache access we check the Entangled table. If

the current cache line is recorded in the Entangled table (1)
fetch the entire basic block that starts with that cache line
(fetch size lines starting from the basic block head); (2) for
each destination-entangled with confidence > 0, prefetch the
entire basic block starting from destination-entangled (for
finding its size we parse the Entangled table one more time).

Prefetches are stored in a extended prefetch queue that is
drained when the processor prefetch queue has space for new
prefetches.

2.1.4 Compression mechanisms
While several compression mechanisms have been em-

ployed in EPI, we describe in what follows the ones that are
less standard and specialized for its data structures.

Furthermore, the Entangled table uses different modes for
encoding the array of destination-entangled entries (destination-
entangled block and confidence) on 63 bits, as follows: 3
bits for the mode + 60 bits of the destination-entangled block
and the confidence. The bits reserved for the destination one
need to encode the less significant bits (signi f B) that vary
between source-entangled and destination-entangled cache
lines. The most significant bits can be taken from the source.
Since the distance between source-entangled and destination-
entangled is typically small, the destinations can be highly
compressed.

The mode is a value between 1 and 6 which indicates how
many destinations can be kept in the 60 bits of the array of
destination-entangled blocks and the associated confidence.
Depending on how many significant bits are required, the
number of destinations can vary. For the confidence we al-
ways use a 2-bit saturated counter. Next we detail the used
modes:

Mode 1: signi f B requires up to 58 bits→ (58+2)×1
Mode 2: signi f B requires between 19 and 28→ (28+2)×2
Mode 3: signi f B requires between 14 and 18→ (18+2)×3
Mode 4: signi f B requires between 11 and 13→ (13+2)×4
Mode 5: signi f B requires between 9 and 10→ (10+2)×5
Mode 6: signi f B requires between 1 and 8→ (8+2)×6

All entries of the same destination-entangled array must
be represented in the same mode. Hence, every time a
new destination-entangled entry is inserted, we compute
the maximum between its mode and the mode of the pre-
viously recorded destinations. To improve compression, we
re-compute the mode of the recorded destinations upon the
eviction of a destination-entangled, to ensure that the mode is
not unnecessarily set to a restricting value due to a destination
that no longer exists.

Finally, we aim to maximize the utilization of the Entan-
gled table by first trying to fill the destination-entangled
arrays for the sources that are already inserted. More pre-
cisely, if the selected source-entangled is not present in the
Entangled table, we look for the next best source-entangled
entry, namely a cache line with the timestamp earlier than the
one searched for. We try up to six times and if there is no free
destination entry, we evict one.

3. MEMORY REQUIREMENTS
Table 1 shows the memory requirements of EPI (less than

128KB of memory).
The History buffer is a circular queue. The cache line

address is represented using 58 bits. The timestamp is stored
as the difference with respect to the time of the previous entry
in the buffer, using 20 bits. It also needs a pointer to the head
(11 bits) and the timestamp of the last entry in the buffer (64
bits), in order to compute the timestamp of each entry in the
buffer.

The Basic Block Size table stores the size of the last basic
blocks inserted in the History buffer. Therefore, it does not

3



Table 1: Memory requirements
Structure Number of entries bits per entry Other Total (bits)
History buffer 1072 58+20 11+64 83691
Basic block size buffer 4 7 2 30
Timing table 42 1+42+58+12+1 4788
Cache extension 512 1+36+58+1 49152
Entangled table 34×256 34+3+60+7 6×256 906752
Extended prefetch queue 32 58+58+7 6 3942
Global registers 1 58+7+7 72
EPI (< 128KB) 1048425

need to store the address of the block. The maximum block
size allowed is 127 (7 bits for storing the basic block size).

The Timing table stores the in-flight misses and prefetches
and it can be implemented along with the miss status holding
register (MSHR). The cache line address is represented using
its 42 least significant bits. The table uses 12 bits to record
the time the request was sent in order to compute its latency
when it is resolved. It also stores an access bit and the source
of entanglement (58 bits), in order to update the confidence.
This is a fully associative structure.

The Extended cache keeps memory blocks that are in the
cache and copies the access bit and the source of entangle-
ment from the Timing table upon a cache fill. It can be
implemented either as part of the cache or as a separate struc-
ture. The cache line address is represented using its 36 bits,
as it is not required to store the 6 least significant bits of the
cache line address that are used to index the cache.

The Entangled table is a large set-associative cache that
stores sources along with their maximum basic block size and
destinations. It employs a FIFO replacement policy (6 bits
per set). It has 256 sets and 34 ways per set. The destinations
and the confidence bits are encoded on a total of 60 bits.
The cache line address is stored using 34 bits. The format is
represented with 3 bits and the basic block size using 7 bits.

The Extended Prefetch queue stores prefetches that do not
fit in the prefetch queue and acts as a spill structure. It stores
the first address to prefetch (58 bits), its source-entangled (58
bits), and the total number of consecutive lines to prefetch (7
bits).

Finally, there are three global registers that keep the head
of the current basic block (56 bits), a count of the number of
consecutive lines seen (7 bits), and the new basic block size
if the basic block will merge (7 bits).

4. EVALUATION RESULTS
We evaluate our prefetcher on the provided applications,

executing on a single core. Applications run for 50M instruc-
tions after a 50M instructions warm-up.

The baseline is the original configuration, without any in-
struction prefetcher (No-IPref). We also compare our prefetcher
with a next-line prefetcher (NextLine) [1]. Table 2 shows
the three versions (No-IPref, NextLine, and EPI) and reports
the number of instructions per cycle (IPC) as the geometric
mean normalized to the baseline, and the arithmetic mean for
Coverage, Accuracy, and I-HitRate, across all applications.
EPI achieves 29.5% speedup with respect to the baseline con-

Table 2: Evaluation results
Prefetcher Norm. IPC Coverage Accuracy HitRate
No-IPref 1.000 0 0 0.813
NextLine 1.069 – – 0.848
EPI 1.295 0.956 0.770 0.996

figuration without instruction prefetching and increases the
cache hit ratio up till 0.996 with a 95.6% coverage.

5. DISCUSSION AND FUTURE WORK
As the championship rules prevent accessing cache and

MSHR information, both the Timing table and the Cache ex-
tension are standalone in the code implementation. However,
in a real implementation these structures can be coupled with
the MSHR and the L1I cache respectively.

The largest associative structure is the History buffer and
it is iterated entry by entry to compute the timestamp. Other
implementations could store the actual time and hence be
searched more efficiently.

Finally, EPI does not use confidence counters for merg-
ing the basic blocks, as other I-prefetchers based on branch
predictors [2]. We will consider adding confidence coun-
ters for basic block merging to increase the accuracy of the
prefetcher.

6. ACKNOWLEDGMENTS
This work has received funding from the European Re-

search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 819134).

7. REFERENCES
[1] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip

Multiprocessors. Cambridge University Press, 1st ed., 2009.

[2] B. Falsafi and T. F. Wenisch, A Primer on Hardware Prefetching.
Synthesis Lectures on Computer Architecture, Morgan & Claypool
Publishers, 2014.

[3] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in 41th IEEE/ACM Int’l Symp.
on Microarchitecture (MICRO), pp. 1–10, Nov. 2008.

[4] A. Kolli, A. G. Saidi, and T. F. Wenisch, “Rdip: Return-address-stack
directed instruction prefetching,” in 46th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), pp. 260–271, Dec. 2013.

[5] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
44th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
pp. 152–162, Dec. 2011.

4


	Introduction and motivation
	The Entangling I-Prefetcher
	Implementation
	Populating the tables
	Updating the basic block size
	Triggering the prefetches
	Compression mechanisms


	Memory requirements
	Evaluation results
	Discussion and future work
	Acknowledgments
	References

