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Abstract—L1 instruction (L1-I) cache misses are a source
of performance bottleneck when L1-I caches cannot hold the
instruction footprint. Several instruction prefetchers, including
Proactive Instruction Fetch (PIF), Return-Address-Stack Di-
rected Instruction Prefetching (RDIP), and Shotgun were pro-
posed to eliminate instruction cache misses as far as possible.
While these proposals use entirely different mechanisms for
instruction prefetching, we found that these proposals suffer from
one or both of the following shortcomings: (1) a large number of
metadata records to cover the potential, and (2) a high storage
cost of each record. The first problem causes metadata-miss, and
the second problem prohibits the prefetcher from storing enough
records within reasonably-sized storage.

In this paper, we make the case that the key to designing a
powerful and cost-effective instruction prefetcher is choosing the
right metadata record and microarchitecting the prefetcher to
minimize the storage cost. We find that high spatial correlation
among instruction accesses leads to compact, accurate, and
minimal metadata records. We also show that chaining these
spatial records is an effective manner to enable robust and timely
prefetching. Based on the findings, we propose MANA, which
outperforms the competitors when all of them use a 128 KB
storage budget. Moreover, we show that MANA considerably
outperforms the other approaches when a limited storage budget
is provided for the prefetchers that makes MANA a more
practical solution to be implemented in real-world processors.

Index Terms—Caching, Instruction Cache Misses, Temporal
Prefetching

I. INTRODUCTION

Instruction cache misses are a well-known source of perfor-
mance degradation when the limited-capacity L1 instruction
(L1-I) cache cannot capture a large number of instruction
blocks demanded by a processor [1]–[3]. Instruction prefetch-
ing is a technique to address this problem. The most common
instruction prefetchers are sequential prefetchers that, upon
activation, send some prefetch requests for a small number of
subsequent blocks [4], [5]. However, prior work has shown that
sequential prefetchers leave a significant fraction of instruction
misses uncovered, and hence, there is a substantial opportunity
for improvement [1], [3], [5], [6].

Sequential prefetchers’ limitations motivated researchers to
propose more sophisticated prefetchers. Proactive Instruction
Fetch (PIF) is a pioneer that showed a hardware instruc-
tion prefetcher could eliminate most of the instruction cache
misses [1]. However, the proposed prefetcher is impractical
because it requires over 200 KB storage cost per-core com-
pared to the baseline design.

The follow up work tried to reduce the required storage
cost of an instruction prefetcher. For example, Return-Address-
Stack Directed Instruction Prefetcher (RDIP) [3] takes ad-

vantage of the content of the return-address-stack (RAS) for
prefetching, and hence, lowers the per-core storage cost to over
60 KB. The latest proposal, Shotgun [2], offers instruction
prefetching with a negligible storage cost by tracking the
control flow changes that are already recorded in a branch
target buffer (BTB).

In this paper, we evaluate RDIP, Shotgun, and PIF, as
the three state-of-the-art prefetchers that use entirely different
approaches for instruction prefetching and show they are not
the final solution for instruction prefetching since they require
high storage cost to cover the available potential. Moreover, we
make a case for carefully choosing a prefetcher’s metadata to
minimize the metadata storage as well as microarchitecting the
metadata storage to further reduce the storage overhead. We
introduce MANA prefetcher that offers 26.6% speedup when a
128 KB storage budget is provided for it. Moreover, it offers
23.8% speedup when we limit its storage to only 16 KB. In this
case, MANA outperforms the state-of-the-art prior work with a
large gap. This small storage requirement empowers MANA
to prefetch for smaller L1-I caches to eliminate the storage
overhead as compared to the baseline design. We show that
MANA offers a considerable performance gain with a 16 KB
L1-I cache as compared to the competing prefetchers with a
32 KB cache.

II. BACKGROUND

A. Temporal Prefetchers

Temporal prefetching is based on the fact that the sequence
of instruction cache accesses or misses is repetitive, and
hence, predictable [1], [7]. Consequently, temporal instruction
prefetchers record and replay the sequence to eliminate future
instruction cache misses. PIF [1] is the state-of-the-art tempo-
ral prefetcher that uses the sequence of retire-order instruction
stream to prefetch for the L1-I cache. The main shortcoming of
temporal prefetchers is their high storage budget requirements.
As an example, PIF requires more than 200 KB storage budget
per-core to work effectively.

B. RAS Directed Instruction Prefetcher (RDIP)

Return-Address-Stack Directed Instruction Prefetcher
(RDIP) [3] observes that the current state of the return-
address-stack (RAS) can give an accurate representation of
the program’s state. To exploit this observation, RDIP XORs
the four top entries of the RAS and calls it a signature.
Then it assigns the observed instruction cache misses to the
corresponding signature. Finally, it stores these misses in
a set-associative table named Miss Table that is looked up
using the signature. RDIP reduces the per-core storage to
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over 60 KB. While RDIP requires considerably lower storage
as compared to PIF, it still needs a significant storage budget.

C. BTB-Directed Prefetchers
BTB-directed prefetchers are advertised as metadata-free

prefetchers. Fetch Directed Instruction Prefetcher (FDIP) is the
pioneer of such prefetchers [8]. The main idea is to decouple
the fetch engine from the branch predictor unit. This way,
the branch predictor unit goes ahead of the fetch stream to
discover the instruction blocks that will be demanded shortly.
Then the prefetcher checks if any of those blocks are missing
and prefetches them.

The main bottleneck of BTB-directed prefetchers is BTB
misses [2], [9]. Shotgun [2] is the state-of-the-art BTB-directed
instruction prefetcher that proposed a new BTB organization to
mitigate the BTB miss problem. However, as we will show in
this paper, this problem is still the factor limiting its efficiency.

III. MOTIVATION

A. Performance Comparison
Figure 1 compares the performance improvement of RDIP,

Shotgun, and PIF over a baseline without a prefetcher. For
RDIP and Shotgun, along with the authors-proposed con-
figuration, we evaluate a configuration with infinite storage.
Moreover, we evaluate an implementation of PIF in which
the history buffer has 4 K entries while it has 32 K entries
in the authors-proposed configuration. Results reveal three
essential facts. First, PIF outperforms RDIP and Shotgun with
a large gap. It means that the reduction in storage in RDIP and
Shotgun is achieved at the cost of losing considerable speedup.
Second, RDIP and Shotgun fill this gap when infinite storage is
available to them. Consequently, the considerable performance
gap in the original configuration is because RDIP and Shotgun
are incapable of holding the large number of records that they
require to prefetch effectively. Finally, PIF loses performance
when the history buffer size is decreased. It means that having
such a long history buffer is essential for PIF to exploit the
potential.
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Fig. 1. Speedup offered by state-of-the-art prefetchers.

B. Number of Prefetching Records
To find out why RDIP and Shotgun suffer from metadata-

miss, we should know what their prefetching records are and
how they are stored. RDIP creates signatures that are the bit-
wise XOR of the four top entries in the RAS. The signatures
are used to look up the Miss Table in which the addresses of
missed blocks are recorded. As a result, RDIP should have a
record for each observed signature in the Miss Table, and its

number of required records is equal to the number of distinct
signatures. We note that RDIP suggested a 4 K-entry Miss
Table that is organized as a 4-way set-associative structure.

On the other hand, Shotgun needs to store basic blocks in
its BTBs. As a result, the prefetching record of Shotgun is a
basic block, and BTB should be large enough to accommodate
the basic blocks. To hold these basic blocks, Shotgun uses
three BTBs that hold 2 K entries altogether. However, Shotgun
attempts to prefill its BTBs to compensate for its relatively
small BTBs. Nevertheless, Figure 1 shows that even with
the prefilling mechanism, the metadata-miss problem is still
a considerable bottleneck.

Finally, PIF benefits from spatial regions. Each spatial
region consists of a block address, called a trigger, and a
footprint that shows the bitmap of accessed blocks around
the trigger. In consequence, spatial regions are the prefetching
records that PIF should successfully hold. PIF writes these
spatial regions in a 32 K entry circular history. Moreover, it
uses an 8 K entry index table that records the latest appearance
of a specific spatial region in which entry of the circular history
is recorded.

Figure 2 shows the number of distinct records that are
observed for each prefetcher. It can easily be inferred that
RDIP and Shotgun have a significantly larger number of
distinct prefetching records that cannot be held in their Miss
Table and BTBs, respectively. Moreover, we observe that PIF
has a significantly smaller number of distinct records. The
absolute value is less than 4 K on average, and an 8 K-entry
index table can accommodate the records.

While Figure 2 suggests that PIF has fewer distinct prefetch-
ing records, its design cannot exploit this advantage. Figure 1
shows that by decreasing the number of history-buffer entries
from 32 K to 4 K, the obtained speedup shrinks from 26% to
20%. The reason is that multiple instances of a spatial-region
record may be written in PIF’s history buffer. Consequently,
while the number of distinct records is less than 4 K, an
appropriate history buffer should be much larger to hold all
of the records successfully.
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Fig. 2. Number of distinct prefetching records.

IV. MANA PREFETCHER

In this section, we describe how MANA prefetcher works.
Abstractly, MANA creates the spatial regions using a spatial
region creator and stores them in a set-associative table named
MANA Table. Each spatial region is also associated with a
pointer to another MANA Table entry in which its successor
is recorded. To reduce the storage cost, MANA exploits this
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observation that there are a small number of distinct high-
order-bits patterns. Consequently, instead of recording the
complete trigger address that is the largest field of spatial
regions, MANA uses the pointers to the observed high-order-
bits patterns that need a considerably fewer number of bits.

A. Recording
1) Spatial Region Creator: Spatial Region Creator

(SRC), is responsible for creating MANA’s prefetching
records. Spatial regions consist of a trigger address and a
footprint that shows which instruction blocks are observed
in the neighborhood of the trigger address. SRC tracks the
demanded instruction stream and extracts its instruction
blocks. If the current instruction block is different from
the last observed instruction block, SRC attempts to assign
this new instruction block to a spatial region. SRC has a
queue of spatial regions named Spatial Region Queue (SRQ).
After detecting a new instruction block, SRC compares this
instruction block with SRQ entries. If this block falls in the
address space that is covered by one of the SRQ entries, SRC
sets the corresponding bit in that spatial-region footprint.
Otherwise, SRC dequeues an item from SRQ, creates a new
spatial region whose trigger address is the new instruction
block, resets the footprint, and enqueues it in the SRQ.

2) MANA Table: When SRC dequeues an entry from
SRQ to enqueue a new spatial region, the evicted spatial
region is inserted into MANA Table. MANA Table stores
the spatial regions and uses a set-associative structure with
Least Recently Used (LRU) replacement policy that is looked
up by the trigger address of the spatial region. Upon an
insertion, if a spatial region hit occurs, the spatial region’s
footprint is updated with the latest footprint. Otherwise, the
LRU entry is evicted, and the new spatial region is inserted
into MANA Table.

3) Finding the Next Spatial Region: We include in
MANA Table’s prefetching record a pointer to another entry
of MANA Table. Whenever a spatial region is inserted into
MANA Table, MANA records its location. By knowing this
location, when MANA records a new entry in the table, the
pointer of the last recorded spatial region is set to the location
of the new entry. Using these pointers, MANA can chase the
spatial regions one after another by iteratively going from a
spatial region to its successor.

4) High-Order-Bits Patterns: Considering a 64-bit address
space1 and a 4 K-entry 4-way set-associative MANA Table,
each record requires a 48-bit trigger-address tag, an 8-bit
footprint, and a 12-bit pointer to the successor. The 8-bit
footprint is derived from prior work [1], [2], [12]. To further
reduce the storage cost, we observe that there is a considerable
similarity between the high-order bits of the instruction blocks,
and there are a few distinct patterns due to the high spatial
locality of the code base of programs. As a result, we divide
the trigger address tag into two separate parts, a partial tag,
and the rest of the high-order bits.

1We assume a 64-bit address space because of the restrictions in the IPC-
1 [10]; however, the actual physical address space requires fewer bits [11].

We store the partial tag in MANA Table and the rest of
the bits in a separate structure. The division of tag should be
done in a way to minimize the storage overhead. If we devote
more bits for the partial tag, we will have fewer high-order-bits
patterns (HOBPs), but we need to store longer partial tags in
MANA Table. On the contrary, if we devote a smaller number
of bits to the partial tag field, we will encounter more distinct
HOBPs.

MANA stores HOBPs in a set-associative table named
high-order-bits patterns’ table (HOBPT). Every new observed
HOBP is inserted in HOBPT. Moreover, each MANA Table
record has a HOBP index, which points to a HOBPT entry in
which the corresponding HOBP is recorded.

B. Replaying

MANA uses the recorded spatial regions to prefetch for
the L1-I cache. For this purpose, MANA takes advantage of
the stream address buffer (SAB) that is previously used by
prior temporal prefetchers [1], [12], [13]. SAB is a fixed-length
sequence of spatial regions that are created by chasing the
spatial regions one after another from the pointers that are
stored in MANA Table. Moreover, SAB has a pointer to the
MANA Table entry that the last spatial region is fetched from
and inserted into SAB.

MANA uses SABs to prefetch using the following proce-
dure. MANA attempts to have a fixed lookahead ahead of
the fetch stream to issue timely prefetches. This lookahead
is defined as the number of spatial regions that MANA
prefetches ahead when it observes an instruction cache block.
MANA tracks the fetch stream and extracts its instruction
block addresses. If the block address falls in the address space
that is covered by a spatial region in a SAB, MANA checks
the number of spatial regions that are prefetched after the
matched spatial region, and hence, are inserted into SAB. If
this number is lower than the lookahead, MANA chases the
spatial regions using SAB’s pointer to MANA Table to have
sufficient lookahead. If MANA finds no SAB associated with
the block address, it considers the instruction block as the
trigger address of a spatial region and looks up MANA Table
to find the corresponding spatial region. If MANA Table
finds a match, MANA evicts the LRU SAB entry (if it has
multiple SABs) and creates a new SAB by inserting the found
spatial region into SAB and chasing its successor pointer
to find the next spatial region. MANA repeats this process
until the number of inserted spatial regions into SAB reaches
the predefined lookahead depth. Finally, MANA extracts the
instruction blocks that are encoded in the footprint of the
inserted spatial regions and prefetches them.

C. Multiple Successors

MANA Table can record a single successor for each spatial
region. However, some spatial regions may have multiple
successors because they may be called from different points.
To take care of such spatial regions, we divide MANA Table
to two distinct tables. MANA Table (single) holds a single
pointer to the successor region. Once MANA finds that the
new successor of a spatial regions is not the last recorded one,
it moves this spatial region to the MANA Table (multiple)
that holds multiple pointers to the successor spatial regions.
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These pointers are organized as a circular history. For pointer
chasing, MANA finds the last inserted successor into the
history, then finds the second last insertion of that successor,
and chases its subsequent entry in the circular history.

D. Storage Requirements

We have carefully analyzed different configurations for
MANA to propose the best performing one. We find that a
2-bit partial tag appropriately solves the trade-off between
the storage requirements of the HOBPT and MANA Table.
Moreover, a 128 entry 8-way set-associative HOBPT is suffi-
cient to hold all observed HOBPs. Consequently, HOBP index
requires seven bits. Footprints are 8-bit long that show which
instruction blocks are accessed in the eight blocks ahead of
the trigger block. We set the lookahead to three, SRQ size to
8, and use a single SAB that tracks 5 spatial regions. If we use
this configuration along with a 4 K entry MANA Table that
holds a single successor pointer, this configuration requires
16.3 KB storage cost that will be evaluated in Section VI.
However, to exploit all 128 KB storage budget that is given
in the IPC-1 [10], we use a 1 K entry, 8-way set-associative
HOBPT that is 5 KB. Moreover, we utilize a 16 K entry, 4-way
set-associative MANA Table (single) along with a 4 K entry,
4-way set-associative MANA Table (multiple) that require
74 and 43 K, respectively. SRQ and SAB need 0.1 KB
altogether. Finally, we use a 64-entry prefetch queue to hold
the prefetch candidates that needs 0.45 KB. Consequently, the
whole storage cost of this MANA configuration is 122.55 KB
that fits in the given storage budget.

V. METHODOLOGY

To evaluate our proposal, we use the simulation framework
provided by the first instruction prefetching championship
(IPC-1) [10]. We use ChampSim [14] simulator with the
configurations provided by IPC-1 [10]. Each benchmark is
executed for 50 million instructions to warm up the system,
including the caches, the branch predictor, and prefetchers’
metadata. The subsequent 50 million instructions are used to
collect the evaluation metrics, including Instruction Per Cycle
(IPC).

We use public benchmarks that are provided by IPC-1 [10].
While we execute all 50 benchmarks, as it is not possible to
show all the results, we selected ten benchmarks that represent
various observed behaviors. Moreover, we report the average
of the ten selected benchmarks as well as the average of all
50 benchmarks.

We compare our prefetcher, MANA, with RDIP [3], Shot-
gun [2], and PIF [1] to show how much these proposals are
effective to eliminate the instruction cache misses.

VI. EVALUATION RESULTS

A. Performance Improvement

We evaluate the obtained speedup by competing prefetchers
when we provide 128 KB storage budget for the prefetchers
according to the competition rules as well as when we limit
their storage budget to 8 KB and 16 KB to represent their
behavior when a more practical storage budget is provided for
them. Figure 3 shows that when we exploit all 128 KB storage
budget, Shotgun, PIF, and MANA offer near the same level

of performance. However, MANA outperforms both of them
by providing 26.6% speedup on top of the baseline. When
we limit the storage budget to 8 and 16 KB, we see that
MANA has a large gap with its competitors offering 18.7 and
23.8% speedup on top of the baseline. Its clearly an advantage
for MANA that covers a considerable part of the available
potential with a small storage requirement that makes it a
suitable design to be used in real-world processors.
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Fig. 3. Speedup of competing prefetchers with various storage budgets.

B. MANA with a Smaller Cache Size
MANA’s good speedup with a small storage budget mo-

tivates us to use it to prefetch for smaller cache sizes to
completely eliminate the storage cost compared to the baseline
design. Figure 4 shows that when we decrease the L1-I cache
size and use MANA prefetcher with 16 KB storage budget
to prefetch for it, MANA still offers good speedup. Speedup
is 22% and 20% for 16 KB and 8 KB caches, respectively.
Note that MANA is designed to be independent of what
is going on L1-I caches. In other words, MANA does the
same independent of the L1-I cache. The offered speedup
on 16 KB cache is very close to the speedup obtained by
the conventional 32 KB cache. So, we can use MANA with
a 16 KB cache to avoid storage overhead. This way, the
design imposes no storage overhead while offers almost the
same performance as MANA with a 32 KB cache. We have
also evaluated the impact of cache size reduction on the
external bandwidth usage. However, the external bandwidth
usage increases proportionally to the L1-I capacity reduction
factor. The external bandwidth usage of 16 K and 8 K L1-I
caches increases by 2.3× and 3.4×, respectively. While the
external bandwidth increases, as it is the bandwidth between
L1 and L2 within the chip, depending on the specifics of
processors, it may be beneficial to trade it for significant
performance improvement.
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