
PIPS: Prefetching Instructions with Probabilistic Scouts

Pierre Michaud
Inria, Univ Rennes, CNRS, IRISA

pierre.michaud@inria.fr

Abstract
A new instruction prefetching method is proposed, called prob-
abilistic scouting, based on the concept of Control Flow Graph
(CFG). Each node of the CFG is a distinct memory line, and
a directed edge from node X to node Y means that line Y is a
possible successor of line X. Each edge is annotated with the
probability for the edge to be taken. The hardware discovers
the CFG progressively while the program executes, by mon-
itoring instructions retiring from the processor in program or-
der. CFG information is stored in a Line History Table (LHT).
Starting from the line currently being fetched, aka front line,
the prefetcher sends scouts to explore the CFG. A scout goes
from node to node in a semi-random fashion, according to
the edge probabilities stored in the LHT. The scout prefetches
the nodes encountered along the followed path. A scout dies
after a certain number of steps. After a scout dies, a new scout
is sent from the front line. This process repeats indefinitely.
For higher prefetch coverage and timeliness, several parallel
scouts may be sent to explore the CFG simultaneously.

This paper describes probabilistic scouting and a prefetcher
using it, called PIPS, which is submitted to the championship.
PIPS is tuned for the championship’s simulated microarchitec-
ture and public traces. Besides the 128 KB storage limit, the
LHT of PIPS is ideal, as allowed by the championship rules.

1 Probabilistic scouting
1.1 Some definitions
Line. In this paper, by a convenient abuse of language, the
term line may have three different meanings: it can mean (1)
the information content of a cache line (aka cache block), or
(2) the line’s address, or (3) the range of byte addresses corre-
sponding to the line. Hopefully, when the meaning is not made
explicit, it should be easy to disambiguate it from the context.

Front line. The front line is the line where the program
counter (PC) currently lies in. While the PC has a clear
definition in the instruction-set architecture, its embodiment
in a pipelined microarchitecture is more equivocal. One may
define distinct microarchitectural PCs at distinct pipeline
stages, leading to different definitions of the front line. In

this paper, the front line is the line most recently read by the
instruction fetch stage.1

Control-flow graph (CFG). What is called control-flow
graph (CFG) in this paper is a graph whose nodes are distinct
lines (i.e., different line addresses) and where a directed
edge X→Y from line X to line Y means that Y is a possible
successor of X, that is, line Y might be fetched and executed
just after line X. A line cannot be its own successor, that
is, Y is distinct from X. For example, if line X contains a
branch instruction whose target lies in another line Y , then Y
is a possible successor of X. A sufficient (but not necessary)
condition for line X+1 to be a successor of X is that line X
do not contain any unconditional jump.

Each edge X → Y of the CFG is annotated with a
probability P(Y |X) which is the probability that the line
fetched and executed after an instance of X is line Y . For each
node, the sum of all outgoing edges probabilities is equal to 1.

In the remaining, the terms line and node are used
interchangeably. In particular, the front node is the node
corresponding to the front line.

Line-history table (LHT). The hardware discovers
the CFG progressively, at run time, by monitoring the
addresses of retiring instructions, in program execution
order, accumulating information about the CFG in a Line
History Table (LHT). That is, the LHT provides a dynamic
approximation of the CFG.

Edge probability can be estimated dynamically with
frequency counts. When the previous and current retired
instructions belong to distinct lines X and Y respectively, Y
is recorded as a possible successor of X in the LHT entry for
X (if this is the first occurrence of X→Y) and the frequency
count associated with Y in that entry is incremented.

Frequency counts are coded with a limited number of
bits, e.g., 4 bits per counter. When, for a given node, one
frequency count cannot be incremented because it has reached
the maximum counter value (15 for 4-bit counters), then all
the frequency counts for that node are halved.

1At the moment of writing this, it is not clear to me how to best define the
front line. A microarchitecture simulator modeling wrong-path instruction
fetching is needed to answer this question.

1

1.2 Probabilistic scouting
As the program executes, the PC moves in the CFG, from
node to node. Without any other information but edges
probabilities, the exact path that the PC will follow in the
near future is not known with 100% certainty in general.
Nevertheless, the PC is less likely to take edges that have a
low probability. The probability that a given path is taken is
the product of the probabilities of all the edges on that path.
One possible prefetching method would be to prefetch all the
nodes on paths whose probability exceeds a fixed threshold,
for instance by a depth-first traversal of the CFG, starting from
the front node. However, such method would be complex to
implement in hardware. Probabilistic scouting emulates that
prefetching method, but with relatively simple hardware.

Probabilistic scouting consists in sending scouts to explore
the CFG, taking into account edges probabilities. As a scout
follows a path in the CFG, it prefetches the lines encountered
along the path. Concretely, a scout is just a line address.
The scout starts from the front node. At each step, the scout
accesses the LHT with the address of the node X where it
currently is, retrieves the possible successors Y1,...,Yn of X,
with their frequency counts, selects one successor Yk with
probability P(Yk|X), moves to node Yk and prefetches the
corresponding line. This step is repeated until the scout dies.
The scout dies when a certain ending condition is met, e.g.,
after a fixed number of step.

When the scout dies, a new scout is sent from the front
node. The new scout will perhaps take a different path in
the CFG than the previous scout. The process of sending
a new scout when one dies repeats indefinitely. If the LHT
provides enough bandwidth, it is possible to have multiple
scouts exploring the CFG simultaneously.

For prefetching to be effective, the number of LHT entries
should be greater (if possible, much greater) than the instruc-
tion cache capacity in number of lines. Hence in practice, the
LHT is a relatively large table. However, some workloads
may exceed the LHT capacity. In case of LHT miss for node
X, the scout moves to node X+1 (and prefetches it) provided
X is not too far from the front node F, say X∈ [F,F+3].

1.3 Scouting cache (SCC)
Scouting should be done fast enough for high prefetch
coverage and timely prefetches. The LHT is relatively large,
and its latency may limit scouting speed. This problem can
be mitigated by introducing a scouting cache (SCC). An SCC
entry is identical to an LHT entry, However the SCC is much
smaller, hence faster than the LHT.

The SCC works like a cache: the scout first accesses the
SCC, and accesses the LHT only upon an SCC miss. Upon
an SCC miss, the missing node is copied from the LHT to the
SCC, evicting one SCC entry. The SCC’s effectiveness rests

tag rp offset 1 offset 2 offset 3 C1

16 422
C2 C3 C4

422 422 43

Figure 1: One LHT entry of PIPS. The entry size is 101 bits, count-
ing the tag (16 bits) and the replacement policy state (rp, 3 bits). The
SSC entry is identical to the LHT entry, but with 2 rp bits instead of 3.

on temporal locality, which mostly comes from loops. When
a scout moves onto a node, there is some chance that this
node has been visited recently by the same or another scout.

The SCC brings two other benefits besides accelerating
scouting. One benefit is that the SCC can serve as a filter to
reduce redundant prefetches. Indeed, an SCC hit means that
the scout is on a node that has already been visited recently.
If the SCC capacity is less than that of the instruction cache
(in number of lines), a scout needs issuing prefetches only
upon SCC misses.

Another benefit of the SCC is that it allows an alternative
method for selecting a node’s successor, easier to implement
than probabilistic selection. A possible algorithm for
probabilistic selection is to sum the node’s frequency
counts Ci, i.e., S = ∑

n
i=1 Ci, take a uniformly distributed

random integer R ∈ [0,S), and select the successor Yk such
that ∑

k−1
i=1 Ci ≤ R < ∑

k
i=1 Ci. This algorithm is probably

cumbersome to implement in hardware.
Instead, a pseudo-probabilistic method can be used, which

is to select the successor with the greatest count Ck in the
SCC entry, that is, Ck≥Ci for all i∈ [1,n]. If Ck is null, the
scout dies. Otherwise, successor Yk is selected, and Ck is
decremented (Ck := Ck − 1) only in the SCC. It should be
noted that, once all the counts in an SCC entry have been
decremented down to zero, the corresponding node kills any
scout reaching it, i.e., it is a barrier. However, the node’s
LHT entry still holds the up-to-date frequency counts. The
node remains a barrier until it is evicted from the SCC and is
reaccessed, which creates a new SCC entry with replenished
frequency counts. Simulations show that pseudo-probabilistic
selection yields practically the same IPC as probabilistic
selection while reducing over-prefetching.

2 Submitted prefetcher
The prefetcher submitted to the championship, called PIPS
(see the paper title), is one possible implementation of
probabilistic scouting, taking into account the championship
rules and the characteristics of the championship’s simulator
and public traces. As the championship rules do not require
to simulate the latency of accessing large hardware arrays,
I made the LHT as large as possible (within the 128 KB
budget) for good prefetching performance on workloads
having a large instruction footprint.

2

The LHT and the SCC are both organized like set-
associative caches. The LHT entry is depicted in Figure 1.
The maximum number n of recorded successors for a node
X is set to n = 4, one of the four successors being X + 1.
For successors Y other than X + 1, which correspond to
branch targets, a signed target offset is calculated as Y −X
and truncated to 22 bits.2 If the offset cannot be represented
in 22 bits, it is ignored. Note that, as a node cannot be its
own successor, Y−X cannot be null. So a null offset field
means that the offset field is currently empty. When the offset
corresponding to Y is not already present in the LHT entry,
a null offset field is searched to record the new offset. If there
is no null offset field, one of the 3 offset fields is overwritten:
the smallest frequency count among C1, C2 and C3 is selected
(C4 is for X+1), and the corresponding offset is the victim.
When a new offset is recorded, its frequency count Ci is
initialized to one. Otherwise, if the offset is already present or
if the successor is X+1, the corresponding Ci is incremented.
If Ci cannot be incremented because it is already equal to the
maximum value (15), then C1, C2, C3 and C4 are all divided
by two. Tags, offsets and frequency counts are initially set
to zero at the start of the simulation.

The LHT has 1024 sets and 10 ways of associativity
(10,240 entries). The set index is obtained as the 10 least
significant bits of the line address. The next 16 bits of the
line address constitute the tag.3 The replacement policy is
a 3-bit SRRIP [8]. The total storage used by the LHT is
10,240×101=1,034,240 bits, i.e., 126.25 KB.

The SCC has 32 sets and 4 ways (128 entries). The set
index is obtained as the 5 least significant bits of the line
address. The next 16 bits of the line address constitute the tag.
The replacement policy is a 2-bit SRRIP. The total storage
used by the SCC is 128×100=12,800 bits, i.e., 1.56 KB.

PIPS maintains 4 parallel scouts. Each scout moves to a
new node every clock cycle. When the front node changes,
one scout is killed (chosen in a round-robin fashion) and a
new scout is sent from the front node. The ending condition
is that the prefetch queue contain more than 7 not-yet-issued
prefetch requests. That is, if the prefetch queue occupancy
exceeds 7, all four scouts die.

As shown in Figure 2, the speedup obtained with PIPS
approaches that of the ideal prefetcher. On the 50 public
traces, inside the region of interest (i.e., after warmup),
PIPS’s over-prefetching varies between +7% and +400%
(median +85%) more cache insertions than when instruction
prefetching is disabled.4 On average, about 90% of instruction

2On the public traces, 20 offset bits are enough. I use 22 bits as allowed
by the 128 KB storage budget, just in case some of the private traces need
slightly more than 20 offset bits.

3It is a partial tag. False hits happen but are rare.
4Over-prefetching can be reduced by reducing the number of parallel

scouts and/or by using a more restrictive ending condition.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 5 10 15 20 25 30 35 40 45 50

sp
e
e
d
u
p

benchmarks

ideal
PIPS

Figure 2: Speedup for the 50 public traces, relative to no prefetching.
Ideal-prefetch speedup is obtained by turning each instruction-cache
miss into a hit, but sending the miss request to the level-two cache
anyway. Traces are sorted by increasing ideal-prefetch speedup.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

1 2 4 8

sp
e
e
d
u
p

LHT latency (cycles)

scout-1 scout-2 scout-4 scout-8

Figure 3: Effect of LHT latency and bandwidth on speedup
(geometric mean on the 50 traces). LHT bandwidth is assumed
proportional to the number of parallel scouts.

cache insertions are prefetch requests, and 60% of these
prefetch requests are useful, i.e., prefetch hits (between 40%
and 85% useful prefetches depending on traces).

3 LHT latency and bandwidth
As permitted by the championship rules, the LHT in PIPS
is ideal in the sense that its latency and bandwidth are the
same as those of the SCC. However, in a real hardware
implementation, the LHT would be slower than the SCC.

Figure 3 shows how LHT latency and bandwidth impacts
IPC speedup on the championship simulated microarchitec-
ture. The number of parallel LHT accesses equals the number
of parallel scouts, i.e., LHT bandwidth is proportional to the
number of scouts. As expected, the IPC drops as LHT latency
increases. The IPC drop can be compensated, to a certain
extent, by having more parallel scouts. However, when the
LHT latency exceeds 4 cycles, the IPC drop is significant,
even with 8 parallel scouts.

3

4 Related work
This section mentions some hardware instruction-prefetching
methods.5

Smith and Hsu proposed in 1992 to combine next-line
prefetching and target prefetching (using a BTB-like structure)
[15]. In particular, both directions of conditional branches
are prefetched. Pierce and Mudge proposed that the BTB-like
structure in Smith and Hsu’s prefetcher be removed. Instead,
next-line prefetching is used at the fetch stage and target
prefetching is deferred to the decode stage [13]. Spracklen
et al. described a prefetcher combining next-line prefetching
and target prefetching, but working at line granularity and
prefetching deeper than Smith’s and Pierce’s prefetchers [16].
More precisely, Spracklen’s prefetcher prefetches the next
few sequential lines after the current PC, and the target line
of each of these sequential lines (plus a few sequential lines
for each target line).

Another approach to instruction prefetching, called branch-
predictor-directed (BPD) prefetching [5], consists in hav-
ing a branch predictor featuring a large branch target buffer
(BTB) and working in an autonomous fashion. In this way,
instruction-cache misses can be pipelined, which alleviates
the cache miss penalty when the predictor stays on the correct
path [4, 14, 12]. The BTB size requirement can be reduced by
prefetching BTB entries [3, 2, 9, 12]. The prefetcher proposed
by Annavaram et al. is a sort of BPD prefetcher, using a coarse-
grained control-flow predictor predicting calls and returns only,
next-line prefetching being used for function bodies [1].

Another approach to instruction prefetching is to observe
instruction-cache accesses and to associate one or several
accesses to a triggering event. The information is stored
in a history table and the accesses are replayed (as prefetch
requests) when the same triggering event reoccurs. This
approach might be called replay prefetching. The triggering
event can be a branch [17], an instruction-cache access
[7, 6], a hash of the call stack [10], for instance. Kumar
et al. proposed an instruction prefetcher combining replay
prefetching and BPD prefetching [11].

To the best of my knowledge, probabilistic scouting is
a new idea. Its general philosophy puts it in the lineage of
Smith, Pierce and Spracklen [15, 13, 16]. It should be noted
that, unlike some instruction prefetchers such as [6, 11], PIPS
does not exploit spatial locality.

5 Conclusion
In the submitted prefetcher, the front line is the line currently
being fetched, which, in the championship’s trace-driven

5Some data-prefetching methods can be adapted for prefetching
instructions (see [5] for an overview of hardware prefetching). Nevertheless,
instruction prefetching is a distinct problem.

simulator, is always on the correct path. Understanding how
to best define the front line requires a simulator modeling
wrong-path fetching.

The submitted PIPS prefetcher is somewhat idealized and
does not take into account the LHT latency and bandwidth.
Some research is needed to understand how probabilistic
scouting can be implemented without losing the potential
speedup offered by an ideal LHT. Exploiting spatial locality
might help here.

References
[1] M. Annavaram, J. M. Patel, and E. S. Davidson. Call graph

prefetching for database applications. In HPCA, 2001.

[2] J. Bonanno, A. Collura, D. Lipetz, U. Mayer, B. Prasky, and
A. Saporito. Two level bulk preload branch prediction. In
HPCA, 2013.

[3] I. Burcea and A. Moshovos. Phantom-BTB: a virtualized
branch target buffer design. In ASPLOS, 2009.

[4] I-C. K. Chen, C.-C. Lee, and T. N. Mudge. Instruction prefetch-
ing using branch prediction information. In ICCD, 1997.

[5] B. Falsafi and T. F. Wenisch. A primer on hardware
prefetching. Morgan & Claypool Publishers, 2014.

[6] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive instruction
fetch. In MICRO, 2011.

[7] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Temporal instruction fetch streaming. In
MICRO, 2008.

[8] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In ISCA, 2010.

[9] C. Kaynak, B. Grot, and B. Falsafi. Confluence: unified
instruction supply for scale-out servers. In MICRO, 2015.

[10] A. Kolli, A. Saidi, and T. F. Wenisch. RDIP: return-address-
stack directed instruction prefetching. In MICRO, 2013.

[11] R. Kumar, B. Grot, and V. Nagarajan. Blasting through the
front-end bottleneck with Shotgun. In ASPLOS, 2018.

[12] R. Kumar, C. C. Huang, B. Grot, and V. Nagarajan.
Boomerang: a metadata-free architecture for control flow
delivery. In HPCA, 2017.

[13] J. Pierce and T. Mudge. Wrong-path instruction prefetching.
In MICRO, 1996.

[14] G. Reinman, B. Calder, and T. Austin. Fetch directed
instruction prefetching. In MICRO, 1999.

[15] J. E. Smith and W.-C. Hsu. Prefetching in supercomputer
instruction cache. In Supercomputing, 1992.

[16] L. Spracklen, Y. Chou, and S. G. Abraham. Effective
instruction prefetching in chip multiprocessors for modern
commercial applications. In HPCA, 2005.

[17] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney, and
T. R. Puzak. Branch history guided instruction prefetching. In
HPCA, 2001.

4

