
Pierre Michaud

Inria / IRISA

First Instruction Prefetching Championship

May 31, 2020

1

PIPS: Prefetching Instructions
with Probabilistic Scouts

Control Flow Graph (CFG)

• each node of the CFG is a distinct 64-byte line

• directed edge from line X to line Y if Y is a possible successor of X
o example: if line X contains no unconditional branch, line X+1 is a possible successor of X

• a line cannot be its own successor (Y ≠ X)

2

example of CFG

3

X+1X X+2 X+3 X+4

X+3X+2 X+4X X+1

conditional branch

unconditional branch

front line

• front line = line where the program counter (PC) currently is

• which PC?
o at branch prediction?

o at instruction fetch?

o at decode?

o at retirement?

• in PIPS, front line updated at instruction fetch
onon-speculative, by the magic of trace-driven simulation

4

5

X+3X+2 X+4X X+1

front line moves with PC

6

X+3X+2 X+4X X+1

front line moves with PC

7

X+3X+2 X+4X X+1

front line moves with PC

8

X+3X+2 X+4X X+1

front line moves with PC

9

X+3X+2 X+4X X+1

front line moves with PC

10

X+3X+2 X+4X X+1

front line moves with PC

11

X+3X+2 X+4X X+1

front line moves with PC

initial idea

• some edges more likely to be taken than others

• estimate edge probability P(Y|X) at runtime
omaintain frequency counts

• prefetch all paths whose probability exceeds a threshold
opath probability = product of edge probabilities on that path

odepth-first traversal of the CFG, starting from front line

• seems too complex for a hardware implementation

12

!
" ∈ $%&&(()

*(+|-) = 1

probabilistic scouting

• send scouts to explore the CFG, starting from the front line
omultiple scouts alive at the same time

• a scout follows one path in the CFG, prefetching lines on that path

• scout moves from node X to successor Y with probability P(Y|X)

• scout dies when ending condition is met (e.g., after fixed time)

• when scout dies, new scout is sent from front line
o this process repeats indefinitely

13

Line History Table (LHT)

• accumulates CFG information

• each LHT entry stores information about one node

• organized like a set-associative cache

• accessed with line address

• ideally, want LHT large enough to hold the whole CFG

14

LHT entry

• 4 successors per node X
o4 frequency counts C1, C2, C3, C4

oX+1 is an implicit successor

o3 successors Y stored as 3 signed offsets Y-X

• when PC takes edge XèY, increment the Ci corresponding to Y
owhen one Ci exceeds 15, halve C1, C2, C3, and C4

15

tag rp offset 1 offset 2 offset 3 C1

16 422

C2 C3 C4

422 422 43

101 bits

Scouting Cache (SCC)

• SCC acts like a cache for the LHT
omuch smaller than LHT

• scouts access SCC
oupon SCC miss, access LHT and copy node info into SCC

• temporal locality è scouting speed less impacted by LHT latency

• scout issues prefetch only upon SCC miss
o reduces redundant prefetches

16

probabilistic selection?

17

C1

C2

C3

C4

probably too complex for a hardware implementation....

pseudo-probabilistic selection

• use SCC information only

• select successor with greatest frequency count

• decrement selected frequency count in the SCC
onot in the LHT

• when SCC entry has all its frequency counts zeroed, entry kills scouts
reaching it
o reduces over-prefetching

18

submitted prefetcher: PIPS

• 4 parallel scouts

• scouts die when prefetch queue occupancy > 7

• when front line moves, kill one scout
o victim scout chosen in round-robin fashion

• LHT & SCC latency < 1 cycle
o allowed by championship rules

19

1024

32

10 126.25

4 1.56

LHT

SCC

SRRIP

SRRIP

ways KBsets rp

LHT latency and bandwidth

20

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

1 2 4 8

s
p
e
e
d
u
p

LHT latency (cycles)

scout-1 scout-2 scout-4 scout-8

• IPC drops when LHT latency increases

• can be mitigated, somewhat, by increasing number of parallel scouts and LHT
bandwidth

How far from ideal prefetch?

• how to estimate ideal-prefetch IPC with simulator?

• huge IL1 cache? è overestimates ideal-prefetch IPC
o reduced pressure on L2 cache and LLC è fewer data misses

• better: magically turn IL1 misses into hits, but send miss requests to L2
o approximate upper bound (prefetching changes order of memory accesses)

21

PIPS vs. ideal prefetch

22

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 5 10 15 20 25 30 35 40 45 50

s
p
e
e
d
u
p

benchmarks

ideal
PIPS

!

post-deadline experiment

• PIPS does not exploit spatial locality...

• let’s try an SMS-like prefetcher
o “Spatial Memory Streaming”, Somogyi et al., ISCA 2006

o SMS + tuning + predict next spatial region to become active

• probably easier to implement in hardware
o LHT latency problem in PIPS

• probably more energy-efficient
o less over-prefetching than PIPS

23

!

SMS almost as good as PIPS

24

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 5 10 15 20 25 30 35 40 45 50

s
p
e
e
d
u
p

benchmarks

ideal
PIPS
SMS

!

SMS almost as good as PIPS

25

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 5 10 15 20 25 30 35 40 45 50

s
p
e
e
d
u
p

benchmarks

ideal
PIPS
SMS

spec_gcc, sensitive to LLC

replacement policy

Conclusion

• PIPS is for trying to win the championship, not for real processors
omaybe there is something to learn from it though...

• suggestion for next championship: provide SRAM model
o accessing a large table with zero latency is not realistic

26

