The Temporal Ancestry Prefetcher

Nathan Gober*, Gino Chacon*, Daniel Jiménez', and Paul V. Gratz*
* Department of Electrical and Computer Engineering
T Department of Computer Science and Engineering
Texas A&M University, College Station, Texas
{ngober, ginochacon, djimenez, pgratz}@tamu.edu

Abstract—Typical instruction prefetchers model the con-
trol flow graph of a program, looking ahead through the
control flow graph to prefetch likely-used blocks. Blocks
in the instruction cache, however, tend to have long dead
times. Thus, looking ahead deeply into the control flow
should be desirable and moving stepwise through the
control flow graph may be sub-optimal, since it requires
many iterative steps. Iterating only through misses that
are descended from a particular instruction block provides
strong potential to pass by long chains of instruction hits
on the path through the control flow graph.

This paper introduces the Temporal Ancestry Prefetcher
(TAP), a new prefetcher designed for instruction caches.
TAP approximates the transitive closure of a program’s
control flow graph. The solution performs 23% better than
no prefetching and outperforms the next-line prefetcher
by a wide margin in server workloads. In addition, it is
simple to tune and can be adapted to a variety of hardware
budgets.

I. INTRODUCTION

Graphs, including control flow graphs (CFGs), are
often thought of in terms of an adjacency matrix. In an
adjacency matrix M, the element M;; equals the edge
weight if there is an edge connecting ¢ and j, or the zero
weight if there is no such edge.

The transitive closure of a matrix M is

A= iMi (D)
=1

The transitive closure of an adjacency matrix represents
the reachability of two nodes, that is, whether a path
exists between a node v and a node v including, if
the edges are weighted, the weight of the path between
them. For a weighted CFG, the ancestry matrix contains
weights that describe the likelihood that v succeeds u in
the control flow. In this work, we seek to build a structure
that approximates and leverages this likelihood.

The reachability metric in directed graphs is well-
studied. The naive algorithm performs a O(|V|*) depth-
first search for all nodes, [1]. The algorithm can theo-
retically be improved to O(w(|V|)([V|log|V])#) in the
random case, noting that the typical graph is strongly
connected [2].

10

0.8

Cumulative fraction of blocks

Fraction of time spent dead

Fig. 1. Fraction of time spent dead by IPC1 traces, plotted cumula-
tively. In this plot, a higher curve is better, because it indicates blocks
in the cache are evicted shortly after becoming dead.

Here, we describe A as the “ancestry matrix”. The
ancestry matrix of a random directed graph is known
to be strongly connected with high probability, but,
in addition, CFGs show a high degree of structure,
including dominance of one node over another when a
node v is present in each of the many paths descending
from w [2], [3]. Under these assumptions, the complexity
can achieve O(|E|) time [4].

Temporal prefetching has been explored in the field
of data prefetching, both at the L1 level and below [5]-
[7]. The primary drawback of temporal prefetching, it
has been noted, is that it requires a significant amount
of metadata, on the order of megabytes, which often
is stored off-chip [8], [9]. Much of the recent work
in temporal prefetching has focused on mechanisms to
reduce the off-chip state or manage its movement on
chip [5], [6].

Instruction prefetching has been studied since early
out-of-order designs, where next-line prefetchers were
found to improve performance [10]. Other prefetchers
have been proposed, many of them variations on next-
line prefetchers, such as next-N and stride prefetch-
ers [11], [12]. Many designs depend on the branch

History Buffer
\ Sw e Ancestors Descendents
. -
™ —
O\
.
“a

T re
Pc\
-
—_—>

Fig. 2. The function of the ancestry table on a cache miss

predictor or return stack for their accuracy and per-
formance [13]. Some prior works have leveraged tem-
poral prefetching for instruction steams, however these
approaches require significant L2 space [7]. In many
commercial workloads, the L1I is a bottleneck, causing
significant performance loss [14]-[16], thus developing
high performance L1I prefetchers is highly desirable.
The remainder of this paper is organized as follows:
Section II discusses the potential for deep prefetching in
CFGs and its part in the design of the Temporal Ancestry
Prefetcher, and Section III evaluates its performance
relative to no prefetching and next-line prefetching.

II. DESIGN

A cache block is considered “dead” if it will not
be re-referenced before its eviction. Figure 1 plots the
liveliness of all instruction blocks in the fifty public
traces for the First Instruction Prefetching Competition.
It shows the fraction of blocks as a function of how much
of their lifetime is spent dead, plotted cumulatively.
Traces for which blocks tend to have long dead times
will have lower curves in this graph.

We observe that, in an instruction cache, blocks spend
much of their lifetime dead, in fact, in most traces, over
80% of blocks are dead for half of their lifetime or longer
and the majority of blocks are dead on arrival into the
cache.

The length of dead times implies that there is signif-
icant room in the cache for prefetches to live. Even if
prefetches are not useful, it is highly unlikely that the
prefetch will evict a block that is alive.

Next-line prefetching is a strong first step towards
this. Next-line prefetching will often fetch blocks that
will eventually be useful and that will be long-lived in
the cache. However, it is not sensitive to the control
flow of the program. To augment next-line prefetching,
we introduce the Temporal Ancestry Prefetcher (TAP),
which runs alongside next-line prefetching and which
looks deeply beyond difficult-to-predict branches for
prefetch candidates.

A. Temporal Prefetching

Temporal prefetching attempts to cover future cache
misses by replaying old cache misses. In TAP, we
approximate the ancestry matrix in the ancestry table
by including old misses as descendents of addresses.

TAP maintains a history of the last 14 PC values.
This value was empirically chosen to produce the highest
performance on our traces. On a miss, TAP visits the
rows of the ancestry table that correspond to each of
these history values and adds the current miss address
as a descendent, inserting it if it is absent or incrementing
its weight if it is present. This function is shown in
Figure 2. The ancestry table, then, focuses on replaying
the misses along arbitrary paths, without concern for the
hits that may occur along the path or the particular path
that is followed. Because TAP runs alongside next-line
prefetching, we never add the next line to the ancestry
table, entrusting that prefetch to the next-line prefetcher.

On any cache access, the row of the ancestry table
corresponding to the current PC is checked and each
of the descendents, as well as the next line of the
cache access, are prefetched. The operation is recursively
performed on each of the prefetches in order to anticipate
future path accesses. Recursion terminates once the con-
fidence, defined as the path product of the item weights
(normalized within the row), drops below a threshold.
As an optimization, recursion terminates if the row of
the ancestry table has already been visited. Because
blocks in the instruction cache tend to be long-lived,
the confidence threshold can be very small.

To prevent excess prefetching, the threshold is scaled
by the current accuracy of the prefetcher. As the
prefetcher performs more accurately, the threshold is
scaled to promote deeper prefetching. To temper the
weights and prevent them from saturating, the weights
are decremented whenever a prefetched block is evicted
from the cache without becoming useful.

B. The Ancestry Table

The primary mechanism in TAP is the ancestry table,
which correlates cache blocks with upcoming misses.
The anticipated upcoming misses are present in the rows
of the table with their corresponding weight, incremented
whenever the miss occurs again.

The table is organized into 2'2 rows with up to 9
descendents, replaced on a low-confidence basis. If the
CFG is sparse, or contains many low-likelihood entries,
this will be a strong approximation that can easily be
updated when a program’s phase changes. The large
number of rows also allows the ancestry table to be
designed in a way that permits multiple parallel accesses.

TABLE I
METADATA COST OF TAP

TABLE I
MACHINE PARAMETERS FOR CHAMPSSIM MODEL

Structure Entry Total Core 6 :1 00;2724 C;Hzi{OB
Valid (1 bit) “wice, So--entry
PTB Index (11 bits) . Branch Predictor Hashed Perceptron, 16 tables
.) 12
Ancestry Table | 2759 | pyoe Offset (6 bitsy) | 113 KiP 1 Inoraction Cach 32 KiB, S-way, LRU,
Weight (6 bits) DStruction L-ache - g MSHRs, 4-cycle latency
Visited Flags 212 1 bit 0.5 KiB 48 KiB, 12-way, LRU,
Valid (1 0i) L1 Data Cache 16 MSHRs, 5-cycle latency
Page Translation 11 . . Next-Line Prefetcher
2 NRU (1 bit) 13.5 KiB :
Buffer Page (52 bits) 512 KiB, 8-way, LRU,
_ £ D Unified L2 Cache | 32 MSHRs, 10-cycle latency
History Buffer 14 56 bits 98 B Signature Path Prefetcher
Valid (1 bit) 2 MiB, 16-way, LRU,
Useful (1 bit) Shared L3 Cache 64 MSHRs, 20-cycle latency
Shadow Cache S12 Prefetch (1 bit) 960 B No Prefetcher
- Tag (12 bits) DRAM Memory | 4 GiB, 1 channel, 3200 MT/s
cenracy 2 11 bits 22 bits
Counters
Total 123.227 KiB

C. Shadow Caching

The TAP mechanism produces many prefetch hits be-
cause of the long-livedness of blocks in the L11. In order
to conserve space in the prefetch queue, we implement
an approximation of the cache’s tag dictionary, which we
term the shadow cache. The shadow cache stores 12 bits
of tag, enough to examine the tags cheaply and quickly
with high accuracy. The partial tags have more than
99% fidelity to the actual tags in the cache. Because the
shadow cache is small in size, no more than a kilobyte,
the structure can be duplicated easily, allowing many
accesses per cycle.

The shadow cache also maintains metadata on whether
a block in the cache is a prefetch and if the prefetch is
useful. This information is used to train the prefetcher
by decrementing weights on a useless prefetch.

D. Page Compression

The instruction footprint of programs tends to be
smaller than its data footprint. Figure 3 shows our
observation that no more than 2!! pages are used in total
in the traces used to test our design. We can compress
pages by adding them to a page translation buffer and
use the index to this buffer as a proxy for the page
number. The size of this buffer is 2'! entries, which
holds all pages used in the traces, so the index is 11
bits, resulting in a high degree of metadata compression
in the ancestry table. This approach is similar to the
ISB proposed by Jain and Lin [6], but without the intent
to order the pages in time. The page translation buffer
is associative with NRU replacement. As submitted, the
page translation buffer is fully associative, but our tests
show that the performance is not significantly sensitive
to the associativity of this structure.

E. Implementation

The metadata cost of TAP is listed in Table I. TAP
uses 123.227 KiB of metadata, most of which is in the
ancestry table. The ancestry table size is highly flexible.
The number of descendents and ancestors in the table can
be varied to suit many different hardware budgets and
can be tuned easily. This flexibility makes TAP a very
feasibly constructible system. The page compression
scheme used produces a considerable improvement in the
metadata size due to the small instruction footprint of the
traces, leading to a metadata budget that is considerably
less than the budgets of other temporal prefetchers.

IIT. RESULTS

Our design was tested on the ChampSim simulator
in accordance with the configuration for the First In-
struction Prefetching Competition. ChampSim is a trace-
based cache simulator designed for prefetcher evaluation.
It models an out-of-order processor (possibly multicore)
with 3 cache levels. The L2 cache is a private, unified
instruction and data cache, and the L3 is shared. The
machine parameters for the competition are specified in
Table II

The simulations were evaluated on 50 public traces,
including 8 client workloads, 35 server workloads, and 7
SPEC benchmarks. Simulations were warmed up for 50
million instructions and evaluated for an additional 50
million, repeating the trace if its end was reached. The
prefetcher was designed to run entirely in the virtual
address space, though the design does not prohibit use
in the physical address space.

The prefetcher was evaluated against the next-line
prefetcher in terms of speedup over no prefetching
Figure 4 shows the performance of both prefetchers.
TAP achieves a geometric mean 23% speedup over
no prefetching, outperforming or matching the next-
line prefetcher except in one case, the first simpoint

1800

1600

1400

1200

1000

Page Count

Fig. 3. The page count of the public IPC1 traces. Traces with large instruction footprints are more difficult to prefetch and offer less potential

for address compression.

21
mnext_line
uTAP
19
1.7
o
o 15
[}
=3
)
a
= 13
b=
L)
()
o
ol mEaull B N B |
0.9
A L T - . VIR, T, I TS T et T T . TR TR N T T~ O VI o - T N T~ B A L T S T I N - TS - T T VR
FE&FFSFeSIdddSddedddddddd dddddddddddddddd eSSy
S S S S o S S e i S S e S S S P S S X X S P P PSP
T S S T T T T T T T T 8 T T T T T T ST T FTFFFTTSTFTsgs vy
FEF I I FF I IS FIITFFETeeeEyFSeeISyIygeeyIgs g dF5ESTEFTE
é‘z‘,‘é‘;‘g’q:”é{“
& &

Fig. 4. The speedup of next_line and TAP over no prefetching. TAP achieves a 23% improvement over no prefetching and strongly outperforms

next_line on server workloads.

of the SPEC gcc benchmark. In particular, TAP per-
forms well on server workloads, but struggles to get
significant improvement on client and SPEC workloads.
These workloads are well-studied in the domain of data
prefetching, and they find their bottlenecks in the data
portion of the processor. As a result, because our so
improved instruction prefetching shows only mild gains
in general.

IV. CONCLUSION

The Temporal Ancestry Prefetcher models the transi-
tive closure of the control flow graph’s adjacency matrix.
Rather than attempt to model each step along the path,
TAP focuses on blocks that will be eventually reached,
without concern for how soon the block will be used. In
TAP, it is more significant that a block will be eventually
reached than that a particular path is taken to arrive
there. This technique is justified by the long dead times

of blocks in the L1 instruction cache. Ultimately, it
results in a 23% improvement over no prefetching, with
particularly strong performance in server workloads.

ACKNOWLEDGEMENTS

This paper is the result of research sponsored by
the National Science Foundation through grants CCF-
1912617, I/UCRC-1439722 and CCF-1823403, a con-
tract from the Semiconductor Research Corporation, and
generous gifts from Intel Corporation. Portions of this
research were conducted with the advanced computing
resources provided by Texas A&M High Performance
Research Computing.

[1]

[2]

[3]

[5]

[6]

[8]

REFERENCES

R. Jin, N. Ruan, Y. Xiang, and H. Wang, “Path-tree: An
efficient reachability indexing scheme for large directed graphs,”
ACM Transactions on Database Systems (TODS), January
2011. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/path-tree-an-efficient-reachability-
indexing-scheme-for-large-directed-graphs/

R. M. Karp, “The transitive closure of a ran-
dom digraph,” Random Structures & Algorithms,
vol. 1, no. 1, pp. 73-93, 1990. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240010106
M. Weiss, “The transitive closure of control dependence:
The iterated join,” ACM Lett. Program. Lang. Syst.,
vol. 1, no. 2, p. 178190, Jun. 1992. [Online]. Available:
https://doi.org/10.1145/151333.151337

G. Bilardi and K. Pingali, “A framework for
generalized control dependence,” SIGPLAN Not., vol. 31,
no. 5, p. 291300, May 1996. [Online]. Available:

https://doi.org/10.1145/249069.231435

M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Domino temporal data prefetcher,” in 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 131-142.

A. Jain and C. Lin, “Linearizing irregular memory accesses
for improved correlated prefetching,” in Proceedings of
the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-46. New York, NY, USA:
Association for Computing Machinery, 2013, p. 247259.
[Online]. Available: https://doi.org/10.1145/2540708.2540730
M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Temporal instruction fetch streaming,” in 2008
41st IEEE/ACM International Symposium on Microarchitecture,
2008, pp. 1-10.

T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi, “Temporal streaming of shared memory,” in
Proceedings of the 32nd Annual International Symposium
on Computer Architecture, ser. ISCA 05. USA: IEEE
Computer Society, 2005, p. 222233. [Online]. Available:
https://doi.org/10.1109/ISCA.2005.50

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Practical off-chip meta-data for temporal memory
streaming,” in 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, 2009, pp. 79-90.

T.-Y. Yeh, D. T. Marr, and Y. N. Patt, “Increasing the instruction
fetch rate via multiple branch prediction and a branch address
cache,” in Proceedings of the 7th International Conference on
Supercomputing, ser. ICS 93. New York, NY, USA: Association
for Computing Machinery, 1993, p. 6776. [Online]. Available:
https://doi.org/10.1145/165939.165956

G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in MICRO-32. Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, 1999,
pp. 16-27.

A. Ramirez, O. J. Santana, J. L. Larriba-Pey, and M. Valero,
“Fetching instruction streams,” in 35th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2002. (MICRO-35).
Proceedings., 2002, pp. 371-382.

A. Kolli, A. Saidi, and T. FE. Wenisch, “RDIP: Return-address-
stack directed instruction prefetching,” in 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2013, pp. 260-271.

L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory sys-
tem characterization of commercial workloads,” in Proceedings.
25th Annual International Symposium on Computer Architecture
(Cat. No.98CB36235), 1998, pp. 3-14.

J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. S. Parekh, “An analysis of database workload
performance on simultaneous multithreaded processors,” in Pro-
ceedings. 25th Annual International Symposium on Computer
Architecture (Cat. No.98CB36235), 1998, pp. 39-50.

L. Spracklen, Yuan Chou, and S. G. Abraham, “Effective in-
struction prefetching in chip multiprocessors for modern com-
mercial applications,” in 11th International Symposium on High-
Performance Computer Architecture, 2005, pp. 225-236.

O. Tange, “Gnu parallel - the command-line power tool,” ;login:
The USENIX Magazine, vol. 36, no. 1, pp. 42-47, Feb 2011.
[Online]. Available: http://www.gnu.org/s/parallel

