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Abstract— Network survivability is the ability of a network
keeping connected under failures and attacks, which is a fun-
damental issue to the design and performance evaluation of
wireless ad hoc networks. In this paper, we focus on the analysis
of network survivability in the presence of node misbehaviors
and failures. First, we propose a novel semi-Markov process
model to characterize the evolution of node behaviors. As an
immediate application of the proposed model, we investigate the
problem of node isolation where the effects of Denial-of-Service
(DoS) attacks are considered. Then we present the derivation of
network survivability and obtain the lower and upper bounds
on the topological survivability for k-connected networks. We
find that the network survivability degrades very quickly with
the increasing likelihood of node misbehaviors, depending on the
requirements of disjoint outgoing paths or network connectivity.
Moreover, DoS attacks have a significant impact on the network
survivability, especially in dense networks. Finally, we validate
the proposed model and analytical result by simulations and
numerical analysis, showing the effects of node misbehaviors on
both topological survivability and network performance.

Index Terms— network survivability, node misbehaviors, semi-
Markov process, node behavior modeling, node isolation problem,
k-connectivity, wireless ad hoc networks

I. INTRODUCTION

Network survivability is an essential aspect of reliable com-

munication services. In literature, the network survivability has

been defined from different perspectives [2]–[10]. These network

survivability definitions provide a general intuitive notion of

the concept of survivability and are applicable for traditional

telecommunication networks, where traffic capacity and service

restorability are of main concerns. However, they do not have the

mathematical precision to lead to a quantitative characterization

and do not grasp the fundamental aspect of the survivability of

wireless ad hoc networks. Compared with traditional networks,

wireless ad hoc networks are more vulnerable to malicious attacks

as well as random failures due to their unique features, such as

constrained node energy, error-prone communication media, and

dynamic network topology. Thus, as pointed out in [11], it is

the first major goal for a survivable wireless ad hoc network

to establish and maintain a connected topology, whenever it is

practical. Based on this observation, as a fundamental topology

property and prerequisite for all networking operations, topology

connectivity is a critical index for the survivability of wireless ad
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hoc networks, especially in the presence of malicious attacks and

random failures.

We notice that network connectivity has been used as a metric

in evaluating the survivability of ad hoc networks by a number

of works [8]–[10]. In addition, extensive research efforts have

been made to understand fundamental properties for asymptotic

connectivity of wireless multi-hop networks [12]–[16]. In these

studies, a common premise is that as long as a node has active

neighbors, the node is connected to the network “physically”

via wireless links. Nevertheless, the premise can hardly hold in

real networks by considering potential node misbehaviors and

random failures. For example, selfish nodes may not forward

control and/or data packets for other nodes for the sake of

saving their own energy and malicious nodes may launch Denial

of Service (DoS) attacks, such as Jellyfish and Blackhole, to

interrupt normal routing and forwarding procedures. We notice

that substantial works have been done to characterize various node

misbehaviors and evaluate their effects on network performance

[17]–[19]. However, little research efforts were made to analyze

to what extent these node misbehaviors can impact the topological

survivability of wireless ad hoc networks quantitatively.

Therefore, the presence of node misbehaviors and multiple

failures yields new challenges to the survivability of wireless ad

hoc networks and motivates us to reveal their fundamental impacts

on network survivability. More precisely, in this paper we perceive

the survivability of a wireless ad hoc network as the probabilistic

k-connectivity and provide a quantitative analysis on the impacts

of both node misbehavior and failure on network survivability.

We summarize the contributions of this work as follows.

• A generic model based upon semi-Markov process is pro-

posed to characterize the evolution of node behaviors and

the stochastic property of the model is analyzed to disclose

the effects of node behaviors.

• The node isolation problem is revisited by examining the

cooperative degree and the probabilistic k-connectivity of

individual nodes is obtained by using the stochastic property

of node behaviors.

• The survivability of wireless ad hoc networks is analyzed

probabilistically and its theoretical bounds are derived in

closed forms, which enables us to quantify the impacts of

different behaviors.

The remainder of this paper is organized as follows. In

Section II, we classify node behaviors and define the problem

of network survivability. In Section III, we propose a semi-

Markov process model to characterize node behavior transitions.

In Section IV, we discuss node isolation problem as a case

study and derive the probability of node isolation. In Section V,

we find the closed-form approximation of network survivability

by deriving its theoretical bounds for k-connected networks. In

Section VI, we validate our findings by simulations and provide
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performance evaluations. In Section VII, we compare our work

with related works, followed by conclusions in Section VIII.

II. PROBLEM FORMULATION

A. Preliminaries

1) Network Model: In this paper, N mobile nodes in a wireless

ad hoc network are randomly and uniformly distributed over a 2-

D square with area A. The node transmission radius, denoted by

r, is assumed to be identical for all nodes. Thus, the underlying

communication graph of a wireless ad hoc network is modeled

by a geometric random graph G(N , r) [20] where N denotes

the vertex set with |N | = N and an edge exists between two

vertices only if their distance is no greater than r. Analogous to

G(N , r), a wireless ad hoc network is denoted by M(N , r) (or

M for clarity). These denotations will be used in the succeeding

definitions and analysis.

2) Node Classification: In a wireless ad hoc network, node

cooperation in routing process is an essential requirement to main-

tain protocol operations and network connectivity [21]. However,

since every node is an autonomous system, it may decide how

to act in the network by itself. Considering the potential impacts

of various misbehaviors, we extend the geometric random graph

model aforementioned by introducing an additional assumption

that all nodes operate independently in the following four states:

• Cooperative state (C): if a node complies with all routing

and forwarding rules, i.e., being able to initiate and response

route discoveries correctly and forward control and data

packets for others at the best effort;

• Selfish state (S): if a node can initiate and response route

discoveries for its own purpose but may not forward control

or data packets for others for the sake of power saving;

• Malicious state (M): if a node launches DoS attacks on the

network layer, e.g., being cooperative in the routing stage but

reluctant in forwarding data packets, or disrupting legitimate

path selections by broadcasting fake route replies;

• Failed state (F ): if a node is unable to initiate or response

route discoveries.

Particularly, we focus on two types of malicious behaviors in

this paper: Jellyfish and Blackhole attacks [19]. Slightly different

from the descriptions in literature, in this paper the Jellyfish attack

is referred as to any malicious behavior that complies with all

routing rules but reorders, delays, or drops data packets; while the

Blackhole attack is referred as to a brutal behavior that always

claims the shortest path to the destination so that path selections

and all data traffics can be trapped later on. In the succeeding

context, we refer nodes launching these two attacks as Jellyfish
and Blackhole nodes, respectively.

B. Network Survivability Definitions

Various survivability definitions have been proposed in different

disciplines. For example, Ellison et al. defined the survivability

as the capability of a system to fulfill its mission, in a timely

manner, in the presence of attacks, failures, or accidents [2]. In

the updated Federal Standard 1037C [3], survivability is defined

as the property of a system, subsystem, equipment, process, or

procedure that provides a defined degree of assurance that the

named entity will continue to function during and after a natural

or man-made disturbance. While these definitions provide a good

description of the concept of survivability, they do not have

mathematical precision to lead to any quantitative interpretation

of survivability. It is difficult to determine whether a given system

is survivable, and it is difficult to compare the survivability of two

systems [6].

A more general survivability definition was introduced by

Knight and Sullivan [4] for critical information systems as fol-

lows. A survivability specification is a four-tuple, {E , R,P, M }
where E is the assumed operating environment for the system, R
is a set of specifications of tolerable services to be provided by

the system, P is a probability distribution across R, and M is a

finite-state machine (FSM) defining tolerable service transitions.

Although this definition provides a comprehensive framework in

defining the survivability of critical infrastructure applications,

such as banking systems, it still lacks mathematical precision

and leaves a number of open questions. For example, it did not

take into account the impact of any failures. In addition, this

definition can hardly be applied for wireless ad hoc networks since

these networks are normally highly dynamic systems without

predefined specifications of tolerable services R.

Other than above qualitative definitions, we notice that a

variety of metrics have been used to define survivability in

wireless networks. For example, the survivability of wireless

mobile networks was defined in [5] as a networks ability to per-

form its designated set of functions given network infrastructure

component failures resulting in a service outage, and measured

by traditional registration blocking probability and call blocking

probability. Obviously, this definition applies for cellular networks

but not for ad hoc networks since blocking probabilities are not

of major concern in ad hoc networks. In another recent work,

the excess packet loss due to failures (ELF) was taken as the

survivability performance measure [6], which is essentially a

traditional network performance metric for data networks and not

necessarily specific for wireless ad hoc networks.

Therefore, network survivability must be defined concretely

with mathematical precision for wireless ad hoc networks. In

general, the topology of a wireless ad hoc network keeps changing

dynamically due to various reasons, such as node mobility and

channel randomness (i.e., multipath fading, path loss, shadowing,

etc.), even when node failures or security attacks are not present.

For wireless ad hoc networks, maintaining a connected topology

is an important design issue; otherwise, no network operations

(such as routing and forwarding) can be guaranteed, not even to

say quality of service. As a result, whether a network is survivable

largely depends on whether outgoing paths are available for every

node so that they can be used for communications. Thus, we

consider the survivability of a wireless ad hoc network to be a

basic network capability to maintain a connected topology in the

presence of malicious adversaries and random failures and use

connectivity as the metric to define it as follows,

Definition 1: Given a wireless ad hoc network M, let κ(M)

denote the (vertex)-connectivity of M. The network survivability
of M, denoted by NSk(M), is defined as the probability that all

active (un-failed) nodes are k-connected, i.e.,

NSk(M) = Pr(κ(Ma) = k), (1)

where Ma is the network induced by all active nodes of M.

Note that in the definition above, we are particularly interested

in the connectedness of active nodes including cooperative, self-

ish, and malicious nodes. This is because of the fact that failed

nodes, being unable to participate in routing operations, do not
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contribute to the topological connectedness.

C. Problem Formulation

With the definition of network survivability, the problem stud-

ied in this work can be formulated as the Survivability to Node
Misbehaviors (SNM):

SNM-Problem: Given a wireless ad hoc network M with
four node behavior states described in Section II-A, find out the
quantitative relationship between four behaviors and the network
survivability, i.e., NSk(M), in closed forms.

Intuitively, the solution to the SNM-Problem should depend

on basic network properties, such as the number of nodes (N)

and transmission radius r, and stochastic (statistic) properties of

node behaviors, such as the probability of a node being in a

certain state. Nevertheless, to the best of our knowledge, little

work has been done in modeling node misbehaviors, which makes

it difficult to estimate node behavior properties. In addition,

although a few of works have studied the connectivity of ad

hoc networks by analyzing the node isolation probability where a

node is isolated because of no neighbors [15], [22], the impact of

node misbehaviors was never taken into account. Thus, it is quite

challenging to solve the SNM-Problem and provide a closed-form

approximation for survivability.

In this work, we use a two-step approach to tackle the SNM-

Problem. First, we use a semi-Markov process to characterize the

evolution of node behaviors, so that the stochastic property of

node behaviors can be estimated from both complete and incom-

plete data in Section III. Second, we reevaluate the problem of

node isolation by considering the scenario with node misbehaviors

in Section IV-A, where the node isolation probability is proved to

be a function of the stochastic property of node behaviors. Based

on our study of node isolation, we are able to reveal the impact

of node behaviors on network survivability.

III. NODE BEHAVIOR MODELING

In this section, we use a semi-Markov process to model the

evolution of node behaviors, and analyze the stochastic property

of the node behavior model.

A. Node Behavior Transitions

Wireless ad hoc networks are complex and dynamic systems

due to unexpected random node behaviors. In real networks, the

behavior of a node may change at any time due to various of

reasons. For example, a node can be failed due to energy depletion

or even a turn-off of transceivers triggered by end-users, or a

node’s security can be compromised by other attackers so that the

node is utilized to launch new attacks. In this work, we assume

that a node may change its behavior as follows.

• A cooperative node is exposed to become failed due to var-

ious reasons, such as energy exhaustion, misconfiguration,

and so on. It is also prone to be configured on purpose

as a selfish one for the sake of power saving, or to be

compromised as a malicious node.

• It is possible to convert a selfish node to be cooperative

again by means of proper configurations. A selfish node can

become malicious due to being compromised or failed due

to power depletion.

• A malicious node can become a failed node, but it will not

be considered to be cooperative or selfish any more even if

its disruptive behaviors are intermittent only.

• A failed node can become cooperative again if it is recovered

and responds to routing operations.

The above assumptions do not specify any particular reason

for a behavior transition, so they can provide a general exposure

to the most common behavior transitions and are applicable to

a wide range of network scenarios. Further, these assumptions

are simple enough for us to model both node misbehaviors and

failures in one mathematical framework, which is presented next.

B. Semi-Markov Node Model
Based on the node classification described in Section II-A,

we define a state space, S � {C(cooperative), S(selfish),

M(malicious), F (failed)} and model node behavior transitions

by a stochastic process, {Z(t)} associated with space S . Because

the future behavior depends on the current behavior but not

previous behaviors, if let Xn denote the state at transition time

tn, we have,

Pr(Xn+1 = xn+1 | X0 = x0., · · · , Xn = xn)

= Pr(Xn+1 = xn+1 | Xn = xn), (2)

where xi ∈ S for 0 ≤ i ≤ n + 1. From (2), {Xn, n = 0, 1, 2, · · · }
constitutes a Markov chain with state space S . However, the

transition time from one state to another state is totally based on

random behaviors of a node and it is very difficult to characterize

transition times by exponential distributions. For instance, a node

is more inclined to fail due to energy consumption as time passes,

and the less residual energy left, the more likely a node changes

its behavior to selfish. This implies that the future action of a

node may depend on how long it has been in the current state

and transition intervals may have arbitrary distributions.
Therefore, we use a semi-Markov process (SMP) {Z(t)} to

model node behavior transitions [23], which is defined by

Z(t) = Xn, ∀tn ≤ t < tn+1. (3)

In (3), Z(t) refers to the state of the process during the period

from the most recent transition, and {Xn} is called the embedded
Markov chain (EMC) of the process {Z(t)}.

The SMP model defined above enables us to consider the

evolution process of node behaviors without the assumption of

memoryless property; additionally, this model can be used to

describe a wide variety of random threats caused by node misbe-

haviors, depending on how to diffuse data into it. Specifically, let

Tn = tn+1−tn be the sojourn time between the n-th and (n+1)-

th transition, we can define the associated (time-homogeneous)

semi-Markov kernel Q = (Qij(t)) by

Qij(t) = Pr(Xn+1 = j, Tn ≤ t|Xn = i) = pijFij(t), (4)

where pij = limt→∞ Qij(t) = Pr(Xn+1 = j|Xn = i) is

the transition probability between states i and j, and Fij(t) =

Pr(Tn ≤ t|Xn+1 = j, Xn = i) is the transition time distribution

from states i to j.

Based on assumptions in Section III-A, the transition probabil-

ity matrix (TPM) of {Xn} is given by

P =

0
BB@

0 pcs pcm pcf

psc 0 psm psf

0 0 0 1

1 0 0 0

1
CCA , (5)
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where pii = 0 is in that {Xn} only has transitions from a state

to another different state. In (5), a transition probability of 0 like

pmc = 0 or pms = 0 means a malicious node will not become

cooperative or selfish, according to our assumptions in Section

III-A. Since the summation of transition probabilities to a state

must be equal to 1 in a stochastic matrix, we know that pmf =

1 and pfc = 1 hold in (5) for this unity requirement. Recall

that {Z(t)} is also associated with a number of transition time

distributions Fij(t), which are cumulative distribution functions

of transition times from states i to j. Based on the TPM defined

in (5), we have Fii(t) = 1 and Fmc(t) = Fms(t) = Ffs(t) =

Ffm(t) = 1 since corresponding transition probabilities are 0

[23]. Nevertheless, determining other transition time distributions

is not trivial since they are dependent on further assumptions, real

applications, and transition time measurements.

Finally, the state transition diagram of the homogeneous SMP

{Z(t)} can be shown in Fig. 1. In the figure, state transitions

between states i and j for i, j ∈ S are represented by edges

associated with pij and Fij(t).

psm, Fsm(t)

pcm, Fcm(t)

pmf , Fmf(t)

pcs, Fcs(t)
pfc, Ffc(t)

psc, Fsc(t)
pcf , Fcf(t)

psf , Fsf(t)

M

C

S F

C : cooperative

F : failed

S : selfish

M : malicious

Fig. 1. The semi-Markov process for node behavior evolution.

One of the concerns for an analytic model is whether it can

be used to estimate or predict future behaviors. More important,

the model itself must be sufficiently generic for data diffusion,

given complete or incomplete data. With the consideration of

node misbehaviors, we intuitively perceive that the connectivity

of a network will be affected by how likely a node behaves

cooperatively as time goes. Hence, we will show how to use our

model to find state probabilities (especially the probability of a

node in cooperative status) at any time t > 0 for complete and

incomplete data traces next.

C. State Distributions with Complete and Incomplete Data

The transient distributions of the SMP {Z(t)}, with state space

S and semi-Markov kernel Q in (4), satisfy

Pij(t) � Pr(Z(t) = j|Z(0) = i)

= (1 − Hi(t))δij +
X
l∈S

Z t

0
Q̇il(τ )Plj(t − τ )dτ, (6)

where Hi(t) � Pr(Tn < t|Xn = i) =
P

j∈S Qij(t) is the

sojourn time distribution in state i, and δij is the Kronecker δ

function and defined by 1 for i = j and 0 otherwise.

Without losing generality, we can assume that all nodes in

the network are cooperative at the initial time, i.e., Pr(Z(0) =

c) = 1. Then the transient distribution Pcc(t) is of particular

interest, since it indicates the cooperativeness of any node at

time t > 0. To calculate Pcc(t) by using (6), the function Qij(t)

should be given in a closed form, which is, however, normally

difficult to provide in continuous time domain [24]. Nevertheless,

a numerical solution can be used to solve (6) by rewriting the

transient distributions in discrete-time domain as follows [24],

Pij(mh) = (1 − Hi(mh))δij +
X
l∈S

mX
x=1

hQ̇il(xh)Plj(mh − xh),

(7)

where h is the discretization step. In addition, Q̇il(xh) can be

further approximated by the difference quotient as,

Q̇il(xh) =
1

h

“
Q̂il(xh) − Q̂il((x − 1)h)

”
for x > 1, (8)

where Q̂il(xh) is the empirical distribution of Qil(τ ).

By using this method, when all state transitions and time in-

stants of transitions are available, the difference quotient Q̇il(xh)

can be computed by (8), then Pij(mh) can be computed by

(7). Indeed, this method has already been used in [25] to model

behaviors of user mobility based on a tremendous trace database.

Unfortunately, to the best of our knowledge, there are no

complete trace data recording user behaviors in wireless ad hoc

networks. Thus, we strive to grasp the stochastic properties of

node behaviors by utilizing any statistics available and reasonable

estimations to derive the limiting state distributions.

Let Ti be the sojourn time in state i, Tij be the transition

time from states i to j, E[·] be the conventional notation for

expectation, then we have E[Ti] =
R∞
0 (1−Hi(t))dt and E[Tij ] =R∞

0 (1 − Fij(t))dt. We have the result as follows

Theorem 1: Given the SMP {Z(t)} associated with state

space S and TPM P defined by (5), the transient distribution

Pij(t) converges to a limiting probability Pj as t → ∞; further,

Pj can be calculated by

Pj � lim
t→∞Pij(t) =

πjE[Tj ]P
l∈S πlE[Tl]

, (9)

where �π =< πi > is the stationary distribution of {Xn}.

Proof: First, for the given EMC {Xn} associated with

the state space S and t.p.m. P defined by (5), it is trivial to

prove that {Xn} is irreducible and positive recurrent. Thus, the

SMP {Z(t)} is irreducible. Second, based on our assumptions in

Section III.A, a node works in any behavior state for a finite time,

which implies E[Ti] < ∞ and
P

i∈S E[Ti] < ∞. Thus, the SMP

{Z(t)} is positive recurrent as well. Finally, by Theorem 9-3 [26],

the limiting probability exists and can be given by (9).

Theorem 1 provides us a method to estimate the probability of

a node in cooperative status when we do not have a complete

set of trace data. To calculate Pj , we only need to estimate pij

and E[Tij ], which are normally easier to obtain from the statistics,

then we can use the following equations to calculate πi and E[Ti].

�π = �πP,
X
i∈S

πi = 1, and E[Ti] =
X
j∈S

pijE[Tij ]. (10)

After πi and E[Ti] are obtained, we can use (9) to derive Pj ,

especially, the cooperative probability Pc.

In Section VI.A, we will provide a specific case study to

show how to estimate E[Tij ] and pij by using the statistics from

measurements, and by using the assumptions on the network

itself. In addition, in Section VI.C, we will demonstrate how
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transient distributions can converge to limiting probabilities by

using collected data from simulation experiments.

In summary, due to node misbehaviors, the likelihood of any

node working cooperatively varies from time to time, depending

on many factors such as resource level, movement, and attack.

By using a general semi-Markov process to model the evolution

of node behaviors, we are able to estimate either transient or

limiting probability of a node in cooperative status, which will

be shown to be a key factor impacting the connectivity of a

network. Since limiting probabilities (Pj) stand for long-term
average distributions of node behaviors and they are normally

more accessible, in the succeeding analysis, we use Pj (e.g., Pc)

directly. Nevertheless, when transient distributions Pij(t) can be

computed based on sufficient trace data, all succeeding derivations

still hold by substituting Pj with Pj(t) with the assumption on

the same initial state.

IV. NODE ISOLATION: A CASE STUDY

One immediate effect of node misbehaviors and failures in

wireless ad hoc networks is the node isolation problem due

to the fact that communications between nodes are completely

dependent on routing and forwarding packets. In turn, the problem

of node isolation is a direct cause for network partitioning, which

further affects network survivability. Traditionally, node isolation

refers to the phenomenon in which nodes have no (active)

neighbors; however, we will show that due to the presence of node

misbehaviors and failures a node can be isolated even if active

neighbors are available. In this section, we present several typical

cases for this sophistic problem first, then derive the probabilistic

connectivity of individual nodes.

A. Node Isolation Problem

A trivial case of node isolation occurs when a node becomes

failed. In this case, the failed node can be detected by routing

protocols, normally, and is said to be disconnected or isolated

from the network. We study more general cases of node isolation

by considering the following three scenarios: (i) the effect of

failed neighbors with no routing ability, (ii) the effect of selfish

neighbors with reluctance in forwarding (control) packets, and

(iii) the effect of malicious neighbors with intent of disrupting

routing operations.

1) Effect of Failed Neighbor(s): In Fig. 2(a), suppose node

x3 is a failed node. When node u initiates a route discovery to

another node v, the failed neighbor x3 is unable to forward the

route discovery. When all neighbors of u are failed, then u can

no longer communicate with other nodes. In this case, we say

that u is isolated by its failed neighbors.

u

v

x1

x2

x3

x4

x5

r1

r2

r3

(a) Failed or Selfish neighbors

� �
� �
� �
� �

Faked One−hop Path 

u

v

x1

x2

x3

x4

x5
r1

r2

Blackhole

(b) Malicious neighbors

Fig. 2. Node isolation problem.

2) Effect of Selfish Neighbor(s): In Fig. 2(a), suppose node

x3 is a selfish node. When node u initiates a route discovery

to another node v, the selfish neighbor x3 may be reluctant to

broadcast the route request from u. In this case, x3 behaves like

a failed node. It is also possible for x3 to forward control packets;

however, the situation could be worse since u may select x3 as

the next hop and send data to it. Consequently, x3 may discard all

data to be forwarded via it, then communications between u and

v cannot proceed. When all neighbors of u are selfish, u is unable

to establish any communications with other nodes at a distance

of more than one-hop away. In this case, we say that a node is

isolated by its selfish neighbors. Note that selfish nodes can still

communicate with other nodes (via their cooperative neighbors),

which is different from failed nodes.

3) Effect of Malicious Neighbor(s): Now we consider the

scenario that one or more malicious nodes in the neighborhood

of node u. Suppose that in Fig. 2(b) node x2 is a Jellyfish node.

Different from selfish nodes, Jellyfish nodes are always active

in forwarding control packets; however, if Jellyfish nodes are en-

route, they will selectively or randomly drop data packets, reorder

packets, or increase jitters, which is especially harmful to TCP

traffics. Thus, if u has x2 as the next hop, then u will eventually

lose communications with the nodes at least two-hop away. In

the case that all neighbors are Jellyfish nodes, node u is said to

be isolated by malicious neighbors, which is similar to the case

of having selfish neighbors.

As mentioned in Section II-A, we further consider Blackhole
attacks in this paper due to their severe impact on network

survivability. For example, as illustrated in Fig. 2(b), suppose

AODV is used as the routing protocol, when node u discovers the

route to node v by broadcasting RREQ messages, a Blackhole
neighbor, say node x2, can response u with a fake RREP

message immediately claiming that it is in the optimal path or

only one-hop away to node v. Consequently, u selects x2 as the

next hop and sends data to it, but x2 will just dump all packets.

Without proper countermeasures, just a single Blackhole node

may trap all traffic initiated from u whenever the destination is

beyond its one-hop neighborhood. Moreover, the Blackhole node

may be able to trap all traffics of its neighbors, which implies

multiple node isolations in the worst case.

Based on above analysis, we know that node misbehaviors and

DoS attacks make node isolation a more complicated problem

and may affect the connectedness of every node. Next, we utilize

the analysis above and the state distributions derived in Section

III to derive the probabilistic connectivity of individual nodes.

B. Probability of Node Isolation

Based on the investigation of node isolation problem, we have

an immediate observation that if a node does not have cooperative

neighbors or have at least one Blackhole neighbor then the node

is isolated from the network beyond its neighborhood. To present

this observation in a formal way and facilitate the derivation on

the node isolation probability, we first define the outgoing path
for a node.

Definition 2: For a pair of nodes (u, v), if the length of the

shortest path between them is no less than two, i.e., u and v are

at least two hops away, then all paths connecting u and v are

called as the outgoing (u, v)-paths for u or v.

Fig. 3 illustrates this definition, where Fig. 3(a) shows three

outgoing (u, v)-paths. The reason for having outgoing path lengths
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Fig. 3. Samples of outgoing paths of node u.

larger than one hop is that the path with only one hop may not

make a node able to communicate with other nodes beyond its

neighborhood. For example, when a node u has selfish neighbors

only, it is actually isolated by its selfish neighbors and thus having

no outgoing (u′, v′) paths, as shown in Fig. 3(b).

With the definition of outgoing path, we further define the the

cooperative degree, denoted by Dc(u), of node u as the maximum

number of outgoing paths of u. Note that the cooperative degree

does not necessarily equal to the number of cooperative neighbors,

due to the effect of Blackhole attacks; while, when Blackhole
nodes are not present, the maximum number of outgoing paths

for a node is equivalent to the number of cooperative neighbors,

so is the cooperative degree.

Next, let ni(u) be the number of node u’s neighbors at state

i (i ∈ S), and let nJ (u) and nB(u) be numbers of u’s Jellyfish
and Blackhole neighbors, respectively, then we can formulate the

observation on node isolation problem as follows,

Proposition 1: Given node u with degree d, i.e., D(u) = d, if

ns(u) + nf (u) + nJ (u) = d or nB(u) ≥ 1, then the cooperative

degree is zero, i.e., Dc(u) = 0, and u is isolated from the network.

Now, Proposition 1 provides us a direct method to find the

probability of node isolation in a network with misbehaving

nodes, which is calculated as follows.

Pr(Dc = 0|D = d)

= Pr(nB ≥ 1|D = d) + Pr(ns + nf + nJ = d|D = d)

= 1 − (1 − PB)d + (1 − Pc − PB)d, (11)

where Pc is the probability of a node in cooperative state defined

in Section III and PB is the probability of a node launching

Blackhole attack. Note that we omit the notation u since the

derivation applies to any generic node u.

From (11), we see the direct impact of node misbehaviors

on the node isolation probability: the severer node misbehaviors

present in a network, the less likely a node’s neighbors are

cooperative, thus the more likely the node is isolated from the

network. For a given PB , the cooperative probability Pc plays an

important role in determining the connectivity of individual nodes.

For example, when Pc = 0, Pr(Dc = 0|D = d) = 1, which

means a node isolation because of no cooperative neighbors, and

when Pc = 1, Pr(Dc = 0|D = d) = 0, which means node

isolation is not caused by any node misbehaviors and failures.

In fact, besides representing the node isolation probability,

the cooperative degree can be used to define the connectivity

of individual nodes. Since a network is composed of individual

nodes and its survivability is largely dependent on the connect-

edness between nodes, evaluating the probabilistic connectivity

of a generic node will be one more step towards the analysis of

network survivability, described right next.

C. Probabilistic k-connectivity of Individual Node

In this paper, a node is said to be k-connected to a network

if its cooperative degree is k. The physical meaning of this

definition is that if a node’s cooperative degree is k then it may

communicate with the nodes other than its neighborhood via k

disjoint outgoing paths. Thus, we have the following conclusion

for the k-connectivity of individual nodes.

Proposition 2: Given node u with degree d, i.e., D(u) = d, u

is said to be k-connected to the network if its cooperative degree

is k, i.e., Dc(u) = k, which is satisfied only if u has no Blackhole
neighbor and has exact k cooperative neighbors, i.e., nB(u) = 0

and nc(u) = k.

Proposition 2 enables us to derive the probability of a node u

being k-connected conditional on D(u) = d.

Pr(Dc = k|D = d) � Pr(nc = k, nB = 0|D = d)

= Pr(nc = k, nB = 0, ns + nf + nJ = d − k). (12)

Since the events of any node being in a certain behavior state

are mutually independent, by the multinomial probability law,

then (12) can be rewritten as:

Pr(Dc = k|D = d) =

 
d

k

!
(Pc)

k(1−Pc−PB)d−k, k ≥ 1. (13)

Note that (13) holds for d ≥ k ≥ 1 only. When d < k, Pr(Dc =

k|D = d) obviously is 0 since the cooperative degree cannot be

more than the degree.

Until now, we have analyzed the node isolation problem and

revealed the direct impact of node misbehaviors on the connec-

tivity of individual nodes. Since node isolation is a direct cause

for network partitioning, we can use the results in (11) and (13)

as cornerstones to derive the network survivability.

V. NETWORK SURVIVABILITY ANALYSIS

After modeling the evolution of node behaviors by a semi-

Markov process and analyzing the impact of node misbehaviors

on the connectivity of individual nodes, we are ready to solve the

SNM-Problem defined in Section II-C. In this section, we present

how to approximate the topological survivability of a wireless ad

hoc network in a closed form by using theoretical upper and lower

bounds when node misbehaviors and failures are present in the

network. Before we present our main result, we introduce the

methodology of our solution first.

A. Methodology of Derivation

Let δ(G) denote the minimum vertex degree of a graph G,

then it is well known that κ(G) ≤ δ(G) [27], which implies that

the connectivity of a network is no greater than the minimum

number of neighbors of any node. Nevertheless, in the random

graph theory, it was proved in [28] that

Pr(κ(G) = δ(G)) → 1. (14)

The moral of this result is that a random graph G becomes k-

connected at the instant when it achieves a minimum degree of k

with high probability (w.h.p.) [29]. However, (14) holds for non-
geometric random graphs, in which links may exist between any

pair of nodes regardless of node distances. This results cannot be

directly applied to wireless ad hoc networks.

Fortunately, a few recent literatures shown that the similar result

also holds for geometric random graphs [12], [14], [15], [20],
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[29]–[31]. Let �(N , κ ≥ k) and �(N , δ ≥ k) be the minimum

(transmission radius) r at which G(N , r) is at least k-connected

and has minimum degree at least k, respectively. Then it is proved

in [30] that for an arbitrary constant k (1 ≤ k < N) we have

lim
N→∞

Pr(�(N , κ ≥ k) = �(N , δ ≥ k)) = 1. (15)

The above result implies that w.h.p. a network becomes k-

connected when the minimum node degree in the communication

graph becomes k [29] and N goes to infinity. Based on this

seminal result, it was shown that

Lemma 1: ( [14, Theorem 3]) For a geometric random graph

G with N vertices, the probability that G is k-connected approx-

imately equals to the probability that every vertex has at least k

neighbors, i.e.,

Pr(κ(G) = k) ≈ Pr(δ(G) ≥ k), (16)

when N is sufficiently large and Pr(δ(G) ≥ k) is almost one.

This result has been verified by extensive simulations in [12], [14],

[15], [31]. Especially, it was shown in [12] that Pr(δ(G) ≥ k) is

a good estimation for Pr(κ(G) = k) even if N is in the order of

50. Further, even when Pr(δ(G) ≥ k) is not close to one, it still

provides a close approximation for Pr(κ(G) = k).
The seminal results aforementioned offer us a methodology in

finding the topological survivability of wireless ad hoc networks.

However, due to the presence of node misbehaviors, not every

neighbor provides effective outgoing paths, as discussed in Section

IV-B. Hence, a necessary condition for a network to be k-

connected is that every node has at least k cooperative degree

(or disjoint outgoing paths). Let θ(M) denote the minimum

of the cooperative degrees of all nodes in a network M, i.e.,

θ(M) � min{Dc(u), ∀u ∈ M}, we have

Lemma 2: For a wireless ad hoc network M of N nodes in

the presence of node misbehaviors, if M achieves the minimum

cooperative degree at least k and N is sufficiently large, then M
is k-connected asymptotically, i.e.,

Pr(κ(M) = k) ≈ Pr(θ(M) ≥ k). (17)

Proof: Since Dc(u) ≤ D(u) ∀u ∈ M, then θ(M) ≤ δ(M),

which indicates Pr(θ(M) ≥ k) ≤ Pr(δ(M) ≥ k). Further,

the connectivity cannot be greater than the minimum cooperative

degree, i.e., κ(M) ≤ θ(M), thus, κ(M) ≤ θ(M) ≤ δ(M). Thus,

Pr(κ(M) = k) ≤ Pr(κ(M) ≥ k) ≤ Pr(θ(M) ≥ k) holds in

general. Based on (1) given in Lemma 1, the lemma follows.

Recall that the network survivability has been defined in (1) as

the probability that all active nodes are k-connected to a network.

By Lemma 2, the survivability of a network M can be given by

the probability that all active nodes have at least k cooperative

degree, i.e.,

NSk(M) ≈ Pr(θ(Ma) ≥ k), (18)

where Ma is the sub-network of M induced by all active nodes.

Based on above equation, we are ready to derive the bounds for

network survivability next.

B. Bounds of Network Survivability

Although (18) offers a guideline on deriving NSk(M), it

is quite challenging to find the distribution of θ(Ma). Indeed,

Pr(θ(Ma) ≥ k) is equivalent to the joint probability of every

active node being at least k-connected to the network, i.e.,

NSk(M) ≈ Pr
“ \

u∈Ma

Dc(u) ≥ k
”
. (19)

We notice that it has been shown that some random graph models

do not generate the correlation of the degrees in a pair of adjacent

nodes [32]; however, this non-correlation does not imply the

independence of node degrees and even cooperative degrees. Con-

sidering that deriving the joint probability is actually intractable,

we approximate the survivability by finding its asymptotic upper

and lower bounds.

To provide an upper bound, recall that out network model

described in Section II-A is a geometric random graph G(N , r), in

which N vertices are uniformly and randomly distributed on a 2-D

square with area A. The vertex set can actually be represented by a

(homogeneous) Poisson point process Hλ with density λ = N/A.

Based on the definition of (homogeneous) Poisson point process,

the numbers of points within disjoint subareas are mutually

independent random variables (with identical distribution). Thus,

we can find N/(λπr2) (active) points, denoted by ND , so that

their transmission ranges (πr2) are disjoint (non-overlapped)

subareas (disks). As a result, the degrees of two nodes u and

v are mutually independent as u, v ∈ ND. Similarly, Dc(u) and

Dc(v) are mutually independent as well. Based on the explanation

above, we have an upper bound for NSk(M) given by

NSk(M) ≤ Pr
“ \

u∈ND

Dc(u) ≥ k
”

=
“
1 − Pr(Dc(u) < k)

” N
λπr2

. (20)

Thus, once we obtain the distribution function of cooperative

degree, we can calculate the upper bound of survivability.

Next, we explain how to obtain a lower bound for survivability.

We first rewrite (19) as

NSk(M) ≈ 1 − Pr
“ [

u∈Ma

Dc(u) < k
”
. (21)

Let Na denote the number of active nodes in the net-

work, 1{E} denote the indicator function, then we can bound

Pr(∪u∈Ma
Dc(u) < k) from above by using Boole’s inequality,

Pr
“ [

u∈Ma

Dc(u) < k
”

= E
h
E
h
1{SNa

u=1 Dc(u)<k}|Na

ii

≤ E

"
NaX
u=1

E
h
1{Dc(u)<k}

i#

= E[Na] · Pr(Dc(u) < k). (22)

Notice that the expected value of Na is actually equal to N(1 −
Pf ), i.e., E[Na] = N(1 − Pf ), where Pf is the (limiting)

probability of a node in the failed state, defined in (9). We obtain

a lower bound for NSk(M) as

NSk(M) ≥ 1 − N(1 − Pf ) · Pr(Dc(u) < k). (23)

Again, to solve (23), we need to determine Pr(Dc < k).

By the total probability law, Pr(Dc < k) is given by,

Pr(Dc < k) =

∞X
d=0

Pr(D = d)Pr(Dc < k|D = d). (24)

Now, we need to find Pr(D = d) and Pr(Dc < k|D = d).

First, to derive Pr(D = d), we use the (de)Poissonization

technique presented in [20], [30]. As we mentioned previously,

the communication graph of a network M is associated with a

homogeneous Poisson process Hλ with density λ = N/A. Since

we are particularly interested in the topological survivability of
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active nodes, let A0 = πr2 denote the area covered by a node’s

transmission range, it is known that the number of active nodes

within A0 is a Poisson random variable with density A0 ·(Na/A).

Thus, Pr(D = d) can be approximated by

Pr(D = d) =
μd

a

d!
e−μa , (25)

where μ = πr2N(1 − Pf )/A is the Poisson density. A similar

result was also presented in [15], in which more general results

were presented for non-uniform node distributions.

Second, we derive Pr(Dc < k|D = d). Since the cooperative

degree cannot be greater than the degree for any node, Pr(Dc <

k|D = d) is always equal to 1 when d < k. When d ≥ k,

Pr(Dc < k|D = d) (k ≥ 1) can be calculated by

Pr(Dc < k|D = d) =

k−1X
m=1

Pr(Dc = m|D = d)

+ Pr(Dc = 0|D = d), (26)

in which Pr(Dc = 0|D = d) is the node isolation probability

given by (11), and Pr(Dc = m|D = d) is the probability of a

node being k-connected given by (13). By substituting (11) and

(13) into (26), we can re-write (26) as

Pr(Dc < k|D = d) = 1 − (1 − PB)d

+

k−1X
m=0

 
d

m

!
Pm

c · (1 − Pc − PB)d−m. (27)

Thus, by utilizing (25) and (27), Pr(Dc < k) can be obtained

from (24), and the upper and lower bounds of the network

survivability can be further obtained from (20) and (23). We

present our main result next.

C. Main Result and Implications

Theorem 2: For a wireless ad hoc network M in the presence

of node misbehaviors and failures, when the number of nodes N

is sufficiently large, the network survivability defined in (1) is

upper bounded asymptotically by

NSk(M) ≤
„

e−μaPB

„
1 − Γ(k, μaPc)

Γ(k)

«« N
λπr2

, (28)

and lower bounded asymptotically by

NSk(M) ≥ 1 − N(1 − Pf )

„
1 − e−μaPB

„
1 − Γ(k, μaPc)

Γ(k)

««
,

(29)

where μa = N(1 − Pf )/(λπr2) and λ is the node density, and

Γ(h) = (h − 1)! and Γ(h, x) = (h − 1)!e−xPh−1
l=0 xl/l! are the

complete and incomplete Gamma functions, respectively.

Proof: By considering Pr(Dc < k|D = d) = 1 for k > d

and substituting (25) and (27) into (24), Pr(Dc < k) is given by

Pr(Dc < k)

=

k−1X
d=0

Pr(D = d) +

∞X
d=k

Pr(Dc < k|D = d)Pr(D = d)

=

∞X
d=0

μd
a

d!
e−μa −

∞X
d=k

(μa(1 − PB))d

d!
e−μa

+
∞X

d=k

k−1X
m=0

 
d

m

!
Pm

c (1 − Pc − PB)d−m μd
a

d!
e−μa . (30)

The first item on the right hand side (RHS) of (30) equals to one.

By using the complete Gamma function Γ(h) and incomplete

Gamma function Γ(h, x), the second item on the RHS of (30)

can be simplified as:

∞X
d=k

(μa(1 − PB))d

d!
e−μa = e−μaPB

„
1 − Γ(k, μa(1 − PB))

Γ(k)

«
.

(31)

The third item on the RHS of (30) is given by

∞X
d=k

k−1X
m=0

 
d

m

!
Pm

c (1 − Pc − PB)d−m μd
a

d!
e−μa

= e−μaPB Γ(k, μaPc)

Γ(k)
− e−μaPB Γ(k, μa(1 − PB))

Γ(k)
.(32)

By combining (31) and (32), we have (30) simplified as

Pr(Dc < k) = 1 − e−μaPB

„
1 − Γ(k, μaPc)

Γ(k)

«
(33)

Finally, by substituting (33) into (20) and (23), we obtain the

asymptotic upper and lower bounds of network survivability given

by (28) and (29), respectively.

The above theorem answers the SNM-Problem defined in

Section II-C and quantifies the impact of different node behaviors

on survivability directly. From the upper and lower bounds given

in (28) and (28), respectively, we have the following observations

by numeric analysis.

1) In general, the survivability is increasing in the cooperative

probability Pc, which is accordant with our intuition. When

the network area A is fixed, the higher the number of nodes

N is, the higher the survivability is, due to the increased

density. While if the density is fixed, increasing N will

reduce the survivability. This implies that it will become

more difficult to achieve the same survivability level as a

network scale gets larger without increasing node density

accordingly.

2) Given two networks M1 and M2 with the same N , λ,

and Pc, besides cooperative nodes, suppose that M1 has

failed nodes only and M2 has misbehaving (selfish and

Jellyfish) nodes only, then NSk(M1) < NSk(M2) always

holds. The severer impact of node failures is due to the fact

that node failures are also isolated from the network, which

reduces the density of active nodes (e.g., μa).

3) For given N , Pf , and Pc, both upper and lower bounds of

the survivability decreases almost exponentially in μaPB .

An interesting observation is that when PB is not zero, a

network with higher density can have a lower survivability.

Recall that in Section IV-A we have mentioned that a Black-
hole node may mislead path selections of its neighborhood

and trap surrounding traffics, thus the negative impact of

Blackhole nodes will be exaggerated if they are located in

the area with high density.

Note that in real networks the nodes at the vicinity of the

network (simulation) boundary have less (active) neighbors and

thus become isolated easily, which is known as the border effect.
As pointed out in [31], the border effect is negligible in analysis

if the network area is much larger than the transmission coverage

area of a single node and the node density is not high. Since the

survivability bounds given in (28) and (29) are all asymptotic for

sufficiently large N and we are particularly interested in large-

scale extended networks (with fixed density) [31], the border
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effect is not considered in our derivation. For further discussions

on the border effect, readers are suggested to refer to [15], [31]

and the references therein.

Remark 1: It is a premise that Pr(Dc < k) < 1/N(1 − Pf )

should hold to guarantee a positive lower bound given in (29);

otherwise, the lower bound is zero. When Pr(Dc < k) = o(1/N),

we have the following approximation

1 − N(1 − Pf )

„
1 − e−μaPB

„
1 − Γ(k, μaPc)

Γ(k)

««

≈
„

e−μaPB

„
1 − Γ(k, μaPc)

Γ(k)

««N(1−Pf )

, (34)

and the left hand side (LHS) is always less than the RHS in

the above equation as N · Pr(Dc < k) 
 1. Since the upper

bound given in (28) is quite loose, we conjecture that the RHS

of (34) is a tight upper bound for network survivability. Indeed,

if cooperative degrees, Dc(u), are assumed to be independent (as

independent degrees assumed in [14]), the RHS of (34) becomes

the closed-form approximation for network survivability.

Remark 2: A special case of our result in Theorem 2 is

that all nodes are cooperative and node isolations are due to

the lack of neighbors only. In this case, the survivability of a

network can be simplified to (1 − Γ(k, λπr2)/(k − 1)!)N by

considering (29) and (34), which is the exact probabilistic k-

connectivity approximation given in [14]. This indicates that our

result provides a more generalized quantitative evaluation on

the topological survivability. Moreover, our result, especially the

lower bound, is of interest not only for theoretical analysis but

also for practical design of survivable wireless ad hoc networks.

For example, if the statistics of user behaviors are available, we

can use the methods proposed in Section III to estimate state

probabilities. Then given a desired survivability preference (e.g.,

> 0.9), the minimum cooperative degree or the number of nodes

can be calculated as theoretical guidances to determine a proper

network deployment so that the survivability preference can be

achieved with high probability.

Up to now, we have solved the SNM-Problem by providing the

loose upper and tight lower bounds to approximate the network

survivability in closed forms, in which the impacts of node

misbehaviors and failures can be evaluated directly. Next, we

conduct exhaustive simulations to confirm our analytical result.

VI. SCENARIO STUDY AND SIMULATION RESULTS

In this part, we provide simulation results of limiting proba-

bility estimation, bounds of network survivability, and impact of

misbehaviors on network performance.

A. Scenario Study

Recall that we have proposed a semi-Markov node behavior

model and provided (9) as the solution for the limiting state

probability (Pj for j ∈ S = {C, S, M, F}) in Section III.

Even with this formula, calculating Pj is a non-trivial task due

to the difficulty in determining the transition probabilities (pij)

and expected sojourn times (E[Ti]). Since these parameters are

dependent on specific application scenarios, we first establish an

example network scenario and incorporate the following policies

in our case study and succeeding simulations.

• Every node has the same initial energy Einit; and may turn

off packet forwarding functionality once its residual energy

(normalized by Einit) belows a threshold ξ.

• A simplified version of nuglet counter [21] scheme is imple-

mented to stimulating selfish nodes to be cooperative again.

In this scheme, each node possesses a positive number of

tokens Iinit initially, earns tokens when it forwards packets

for other nodes, and spends tokens when it sends or receives

its own packets. We assume every selfish node spends ΔĪ

tokens in average per unit time (e.g., 1 s).

• Each cooperative or selfish node has an equal probability

to be compromised by an exterior attacker, which can start

to compromise a node at any (random) time. The time to

compromise a node is assumed to be T̄a in average. Once a

node is compromised, it becomes malicious.

• The time that any node resides in the network (called resi-

dence time) is random, depending on the movement pattern

of individual nodes, but with a finite expected value T̄in. A

node is claimed to be failed once it leaves the network.

• At last, we assume an average recovery time T̄R so that failed

nodes can become operative again (e.g., by recharging the

battery or rejoining the network).

Remark 3: The above network scenario is simple enough for

us to validate our analytical models; while it is general enough to

represent a wide range of network scenarios by tuning parameters

properly and can be extended to more complicated scenarios by

adding more factors.

Given the above scenario, two methods are used in this paper

to estimate pij and E(Ti) (or E[Tij ]).
1) Empirical Estimation: The empirical estimation largely

depends on the statistics of the data collected from real mea-

surements or simulation experiments. First, we use the method

proposed in [24] to determine pij as follows: given the time

period [0, t], record the total number of transitions from state

i to all other states k and denote it by nik (i, k ∈ S , k �= i),

then pij is approximated by nij/
P

k∈S nik. Next, we estimate

the expected transition time E[Tij ] by using the average value

of all observed transition time (from states i to j) of all nodes.

Note E[Ti] is derivable from pij and E[Tij ] by using (10),

i.e., E[Ti] =
P

j∈S pijE[Tij ]. Obviously, the accuracy of this

empirical method depends on the size of data set; in other words,

the more nodes and the longer time we can observe, the closer

the obtained average values can approach to their expectations.
2) Heuristic Estimation: In this method, we determine pij by

using the same way described in the empirical estimation since

no heuristic is known so far to provide an analytical solution

of transition probabilities. Nevertheless, given the above network

scenario, we can estimate expected transition times by using

following heuristics. First, we estimate E[Tcf ] by considering

two factors: energy consumption and node mobility. Let TcL

and Tin be the lifetime and residence times of a cooperative

node, respectively, then the actual time that a cooperative node

participating in network activities is the minimum of its lifetime

and residence time, i.e., Tcf = min(TcL, Tin). Thus E[Tcf ] can

be upper bounded by

E[Tcf ] = E[min(TcL, Tin)] ≤ min(T̄cL, T̄in), (35)

where T̄cL is the mean of node lifetime and T̄in is the average

residence time aforementioned. We can further quantify T̄cL by

T̄cL ≈ Einit

αPTx + (1 − α)PRx
, (36)

where PT and PR denote the average transmitting and receiving

power, respectively. And α denotes the ratio between the number
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of transmitted packets and that of processed packets. To estimate

E[Tsf ], it is noticed that a cooperative node becomes selfish if

its residual energy is below ξ · Einit according to our scenario

settings aforementioned. Further, considering that a selfish node

does not forward packets, if let β denote the ratio between the

number of forwarded packets and that of processed packets, we

can have the average lifetime of a selfish node approximated by

ξEinit

(1 − β)(αPTx + (1 − α)PRx)
=

ξ

1 − β
T̄cL.

With a similar reasoning, we have E[Tsf ] upper bounded by

E[Tsf ] ≤ min(
ξ

1 − β
T̄cL, T̄in). (37)

To estimate E[Tmf ], recall that a node can be compromised at

any time and become malicious after an average (attack) period

T̄a, thus we can bound E[Tmf ] from above as

E[Tmf ] ≤ min(
T̄cL

2
− T̄a, T̄in). (38)

Other expected transition times are approximated by:

E[Tcm] = E[Tsm] ≈ T̄cL

2
+ T̄a,

E[Tcs] ≈ (1 − ξ)T̄cL,

E[Tsc] ≈ Iinit

ΔĪ
, E[Tfc] ≈ T̄R. (39)

At last, E[Ti] can be calculated by using (10), similarly.

Now we give an example to show how to calculate Pj by using

the heuristic estimation. First, all parameters aforementioned are

assigned with the following values, shown in Table I, in order for

us to conduct simulation experiments (shown in Section VI-C)

and estimate E[Ti] heuristically.

TABLE I

DEFAULT VALUES OF PARAMETERS.

Parameter Einit α β PTx PRx ξ
Value 100 Ws 0.5 0.5 0.705 W 0.385 W 0.25

Parameter T̄a Iinit ΔĪ T̄in T̄R

Value 40 s 1500 50 150 s 60 s

In reality, typical batteries of current laptops can have much

higher energy than Einit (e.g., the battery for IBM X41 provides

4.4 Ampere Hour with 14.4 Volts output, which supports the

energy consumption of all parts including CPU and display).

In our work, Einit is referred to as the energy consumed by

wireless transceivers only. Consequently, T̄in and T̄R are set to

small values in accordance with the short “lifetime”. The value

for T̄a is borrowed from the statistics of worm infections (e.g., the

Slammer worm can infect about 75000 hosts within 30 minutes

[33]). The values for PTx and PRx are actually derived from the

the per-packet energy consumption model proposed in [34].

Next, we obtain the TPM of our semi-Markov model as follows

by using the data collected from our simulations:

P ≈

0
BB@

0 0.525 0.071 0.404

0.756 0 0.022 0.222

0 0 0 1

1 0 0 0

1
CCA ,

then the stationary distribution of the EMC is

�π =< 0.4524, 0.2375, 0.0373, 0.2728 > .

Then, E[Tij ] can be calculated by using (35)-(39). Since pij

are known already, E[Ti] are calculable:

E[Tc] = 142.2, E[Ts] = 45.9, E[Tm] = 51.7, E[Tf ] = 60.

Last, we obtain the limiting probabilities Pi by using (9),

Pc = 0.6877, Ps = 0.1167, Pm = 0.0207, Pf = 0.1750.

Remark 4: Although the accuracy of using the heuristic

method depends on the soundness of the heuristics established

(in (35)-(39), for example), the heuristic method provides us an

approach to analyze the effect of a specific dynamic factor, such

as node mobility, on the stochastic property of node behaviors.

Since we have proved that the network survivability also depends

on the behavior state distributions, the limiting probability plays

an important role in bridging the gap between the network

survivability and any specific dynamic that directly affects the

limiting probability. Therefore, the semi-Markov node behavior

model proposed in this paper does not only provides us a general

mathematical framework in describing node behaviors, but also

applies to evaluate the impact of a wide variety of random

dynamics on the network survivability, via its state distributions.

B. Simulation Setup

To evaluate the correctness of our theoretical analysis, we

conducted exhaustive simulations in the simulation tool ns2

(v2.28) and a series of numerical experiments in MATLAB

(v7). In simulations, the network area approximately represents

the center of a town. The number of nodes (network size N) is

ranging from 100 to 900 to represent small and large networks.

The mobility model chosen is the Semi-Markov Smooth (SMS)
model [35], which provides the uniform node distribution and

more realistic movement patterns. Unless otherwise indicated, the

speed is uniformly distributed between 0 and 10 m/s to represent

the movements of pedestrians and cars. Constant Bit Rate (CBR)

is chosen for traffic and 100 sessions are constantly maintained,

in each traffic pattern, 100 sessions are constantly maintained to

keep every node involved in networking.

Moreover, in simulations nodes change their behaviors accord-

ing to the policies described in Section VI-A. For cooperative

nodes, AODV is used as the routing protocol; while for misbe-

having nodes, a modified version of AODV was developed so that

their behaviors do not comply with the routing and forwarding

rules defined in the standard. Specifically, selfish nodes do not

forward RREQ and RREP messages for others; malicious nodes

forward RREQ and RREP messages but drop data packets to

be forwarded. The results are averaged over multiple simulation

rounds conducted with various random seeds. The simulation time

is set to 2000s so that the system can reach steady states. The

default network parameters are listed in Table II.

C. Limiting Probability Evaluation

To demonstrate the existence of limiting probabilities, all

parameters are set as the values in Table I. We calculated Pj

(j ∈ S) every 10 s based on the cumulated statistics, by using

the empirical method introduced in Section VI-A, and illustrated

the results with respect to the simulation time in Fig. 4. From

the figure, we can see clearly that as more and more statistics

are used, the vibration of Pj keeps attenuating and Pj finally

reaches to the limiting value after about 1000 s. We also annotated
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TABLE II

THE NETWORK SETUP IN SIMULATIONS.

Parameter Setting
Simulation area 1000 m × 1000 m
System size 500 (100, 900)
Transmission range 100 m
Mobility model SMS model (uniform placement)
Movement features avg. speed 5 m/s / pause time 1 s
Link capacity 11 Mbps (1 Mbps for broadcast)
Application CBR (64 bytes)
Traffic load 100 connections, 8 packet per sec

Simulation time 2000 s

heuristic values of Pj (calculated in Section VI-A already) in

the figure (shown as solid and dash lines), from which we can

see a good match between the limiting probabilities and heuristic

values. This observation confirms the existence of the limiting

probabilities and the soundness of our heuristics.
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Fig. 4. Limiting probabilities.

Next, we demonstrate how to use our model to investigate the

impact of different parameters, including the initial energy Einit

and node mobility (in terms of T̄in), on the limiting probability.

In particular, the cooperative probability Pc is of our concern due

to its importance in network survivability.

1) Effect of Initial Energy: In Fig. 5, the heuristic value of

Pc is increased from 0.69 to 0.74 when the initial energy Einit

is increased from 100 Ws to 200 Ws, which is consistent with

the intuition that a higher initial energy will increase the node

lifetime. Nevertheless, the increase is not significant, which is

partially due to the fact that the time spent in the selfish state may

also be increased given the selfish threshold ξ fixed. Moreover,

it is worthy of mentioning that Pm is almost doubled after the

increase of Einit since the lifetime of a malicious node is actually

prolonged. Thus, the impacts of energy are two folds, that is,

increasing energy can make end-users behave cooperatively for

a longer time but may also exaggerate the impact of malicious

nodes on network survivability.

2) Effect of Node Mobility: To evaluate the impact of node

mobility on Pc, we conducted simulations using two different

average speeds: 20 m/s and 2 m/s, with 10 movement patterns

corresponding to each of them. The SMS mobility model used

in our paper provides the uniform node distribution, which elim-

inates the side effect of some artifacts, such as inhomogeneous

node density induced by the Random-waypoint model [36] such

that the effect of speed can be evaluated accurately. When
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Fig. 5. The effect of Einit on Pc.

the simulation area is bounded, we did not observe substantial

difference in Pc for both average speed settings. The reason is

quite simple: since all nodes are constrained within the boundary,

different speeds have no effect to the node residential time, which

in turn do not affect Pi. However, in real networks, the boundary

does often not exist and nodes can hardly be confined in a

given area. To demonstrate the impact of node mobility in real

environment, we enlarged the simulation area but still assigned a

1000 m × 1000 m square as the predefined network, such that

the churn due to movements can be detected. The simulation

results are shown in Fig. 6, in which we can see that the average

speed affects Pc considerably, i.e., the higher the mobility is, the

lower Pc is. To explain this phenomenon, notice the fact that the

faster a node moves, the sooner the node traverses the boundary,

yielding a smaller average residence time T̄in. Consequently, Pc

is decreased due to the decreased time spent in the network. The

heuristic values of Pc, annotated in the figure, are calculated by

varying T̄in, which is simply estimated by dividing the diagonal

of the network by the average speed.
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Fig. 6. The effect of nodal mobility on Pc.

D. Network Survivability Evaluation

In this section, we verify the correctness of our theoretical

bounds on the network survivability. In simulations, the k-

connected survivability is calculated by the ratio between the

number of k-connected topologies and that of all topologies

studied (around 1000). Since detecting the connectivity of a
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network requires extensive computing time, we only consider k

up to 3. In order to eliminate the border effect described in Section

V-C, we used a wrap-around distance (i.e., toroidal distance [15])

so that nodes at the border are considered as being close to

nodes at the opposite border and they are allowed to have links.

Further, only the lower bound given in (29) will be depicted as

the analytical approximation to the network survivability because

the upper bound ((28)) is quite loose compared to the simulation

results. In simulation, all network parameters are set to the default

values given in Table II. Next, we explain our simulation results.

1) The Effect of Node Cooperativeness: To observe the effect

of node cooperativeness clearly, we set the recovery time as 0

so that the effect of node failures is eliminated. We also set

PB = 0 so that Pc varies only due to the node selfishness and

Jellyfish attack. By adjusting the selfish threshold ξ and attack

time Ta, a series of Pc values ranging from 0.05 to 0.95 (roughly)

were obtained by using the heuristic estimation. The analytical

survivability (lower bound) was then calculated for k = 1, 2, 3

by using (29) with these Pc values. The simulation and analytic

results are shown in Fig. 7, where the curves with markers

represent the network survivability measured from simulation

data and the ones without markers are for analytical results.

From this figure, it is obvious that the network survivability

increases when we decreases the connectivity requirement (k),

which indicates that the stronger connectivity a network has,

the more survivable the network is in terms of its topology. An

interesting observation is that the survivability increases very fast

from 0 to 1 as Pc increases, for example, the survivability for

k = 2 is almost 0 as Pc ≤ 0.4; while it jumps to almost 1 as

Pc ≥ 0.7. This observation is actually in accordance with the

so-called phase transition phenomenon in (geometric) random

graphs (see [27] and [20]) and indicates there exists a critical

value of Pc for network survivability. Finally, we can see that

the analytical results match with the simulation results with only

minor deviation, and especially, the deviation becomes almost

invisible when the survivability is above 0.8. This confirms

the tightness of the asymptotic lower bound derived from our

theoretical analysis.
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Fig. 7. The effect of node cooperativeness on network survivability.

2) The Effect of Node Failures: To explain the effect of node

failures on network survivability, we set both Ps and Pm as zero,

by tuning ξ and T̄a, to eliminate the impact of misbehaving nodes.

By adjusting initial energy Einit and recharging time TR, we

obtain Pf in the range of 0.0376 to 0.8177. Then the network

survivability for k = 1, 2, 3 is calculated against each of Pf

(Pc = 1 − Pf ) values. The simulation and analytical results

are plotted in Fig. 8. From this figure, we observed the similar

“phase transition” phenomenon, that is, the network survivability

decreases very fast as Pf increasing, especially after a certain

value. For example, when Pf ≥ 0.5, the survivability for k = 1

is almost zero, which implies that the network is disconnected

almost surely; while an almost sure survivability is achievable

only if Pf ≤ 0.3.
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Fig. 8. The effect of node failures on network survivability.

3) The Effect of Node Misbehaviors: In the similar way, we

eliminated the effect of node failures in order to study the impact

of node misbehaviors only. The simulation and analytical results

are depicted in Fig. 9. Similar to the plots in Fig. 8, the curves in

Fig. 9 also indicate that the survivability decreases when more

and more misbehaving nodes are present, which is consistent

with our intuition and the fact of decreased Pc. Nevertheless,

compared with the results shown in Fig. 8, we observed that

the change of survivability due to node misbehaviors is less

significant than that due to node failures, especially for lower

connectivity requirement. For example, the survivability for k = 1

does not decrease considerably until Ps + Pm ≤ 0.5 and it keeps

positive till Ps + Pm ≥ 0.7. As we have mentioned in Section

V-C, this observation is accordant with the fact that misbehaving

nodes are still active in the network layer so that they do not affect

the density of active nodes μa, which is, however, an important

factor for network survivability.
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Fig. 9. The effect of selfish and malicious nodes on network survivability.

12

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: North Carolina State University. Downloaded on August 27, 2009 at 10:12 from IEEE Xplore.  Restrictions apply. 



E. Impacts on Network Performance

To provide a complete picture of the negative effect of node

misbehaviors, we also evaluated the network performance when

misbehaving nodes are present by simulations, where misbehav-

ing nodes simply drop all data packets to be forwarded once

paths are established. This is a special case of the traditional

Jellyfish attack and actually called as the “Blackhole” attack in

[19] (different from the Blackhole concept in our work). It was

pointed out that the performance impact caused by this particular

misbehavior is nearly the same as that caused by traditional Jel-
lyfish attacks that manipulate the delay, reordering, and selective

dropping. Thus, we can use CBR (over UDP) to obtain a similar

performance evaluation as we use TCP for traditional Jellyfish
attacks aforementioned, as conducted in [19]. In simulations, the

following metrics are considered in the evaluation: normalized

goodput, average end-to-end delay, and average hop-count, with

all network parameters set to the default values in Table II. The

simulation results are shown in Fig. 10.

In Fig. 10(a), the normalized goodputs are shown to decrease

significantly when more misbehaving nodes perform abnormal

routing operations. This impact is particularly severe to the well-

connected network with N = 500 nodes. The reason for the

drastic degradation on goodput is partially due to the fact of

substantial network partitioning effect caused by node misbehav-

iors, corresponding to the decreased survivability. In particular,

the goodput for the network with N = 100 nodes is quite low

due to the fact that the network is actually disconnected all the

times. An interesting observation is that this node misbehavior

can shorten end-to-end delays significantly, especially for dense

networks (e.g., N = 900), as shown in Fig. 10(b). However, this

plausible “improvement” is at the cost of suffocating the traffic on

long paths, which is explained by the results in Fig. 10(c). In fact,

the decrease of average hop-count is not because shorter paths can

be found; instead, it captures the effect of network partitioning

and survivability downgrading.

Nevertheless, although a low survivability results in a low

performance, we cannot conclude a similar implication in the

opposite direction. Indeed, providing a theoretical analysis on the

impact of node behaviors on network performance is still an open

and interesting problem, which will be our future research topic.

VII. RELATED WORK

As aforementioned in Section II-B, although network surviv-

ability has been defined from different perspectives and analyzed

extensively for wired and infrastructure wireless networks, only

a few of survivability studies were made for wireless ad hoc

networks. Chen et al. presented a quantitative approach to evaluate

the system survivability performance in [6] and introduced the ex-

cess packet loss due to failures (ELF) as the survivability measure

for wireless ad hoc networks. To obtain ELF, authors assumed

Markovian property for the network and conducted an end-to-

end availability analysis by solving a set of CTMC models. This

work considered both node failure durations and their impacts on

the network. Nevertheless, based on our analysis, the Markovian

assumption may not hold in wireless ad hoc networks in general.

Further, an assumption of the Markov availability model is that

for any pair of nodes, other (N − 2) nodes may act as routers,

which is, however, not true due to the limitation of node degrees.

In another experimental study [8], Paul et al. analyzed the

survivability of wireless ad hoc networks with respect to the

dynamic topology changes. In this study, the network survivability

was perceived by a number of metrics, such as average connec-

tivity efficiency, average network stability, and service efficiency.

Nevertheless, this work did not provide any theoretical analysis

to all survivability measures aforementioned and did not take

any failure model into consideration. Similarly, although network

connectivity was used by a few of other survivability studies,

such as [9], [10], no analysis has ever been conducted to reveal

the impact of failures on the topological survivability.

Contrary to the limited theoretical result in the current sur-

vivability analysis, there have been abundant theories available

from the state-of-the-art connectivity studies. For example, in

[15], the connectivity of wireless multi-hop networks was studied

thoroughly and a tight bound was given to the problem of finding

(r, n) pairs which achieves an almost surely connected network,

where r and n denote the transmission range and number of

nodes, respectively. An earlier work [14] even provided a closed-

form approximation of probabilistic k-connectivity, which can

be deduced from our main result (29) by assuming all nodes

cooperative. Nevertheless, node degree was considered as the

only criteria to decide node isolation and the scenario where

nodes might be isolated by misbehaving neighbors has never been

considered in previous connectivity studies.

In summary, we can see that previous works either concentrated

on the impact of node misbehaviors or DoS attacks on network

performance but with no consideration to topology survivability

[17]–[19], or focused on the survivability of wireless networks

without considering the unique feature of ad hoc networks and

the potential impact of all kinds of node behaviors. We hope our

paper is the first unified study to provide a theoretical approach

for the survivability of wireless ad hoc networks in the presence

of both node misbehaviors and random failures.

VIII. CONCLUSION

In this paper, we developed an analytic framework to study

the impact of node misbehaviors and failures on network sur-

vivability, which is defined as the probabilistic k-connectivity of

the network induced by active nodes. We first classified node

behaviors and proposed a novel semi-Markov behavior model to

characterize the behavior transitions. With the limiting distribution

obtained from the model, we next studied node isolation problem

and derived the probabilistic connectivity of individual nodes.

Finally, we derived the closed-form approximation of the network

survivability by using an (loose) upper bound and (tight) lower

bound, which turns out to be a function of the network properties

(network size N , transmission range r, and initial density λ) and

node behavior distributions.

As a conclusion, the impact of node behaviors (failures) on

network survivability can be evaluated quantitatively from our

analytical result (Theorem 2), which can be further used as

a guideline to design or deploy a survivable ad hoc network

given a predefined survivability preference. Further, the semi-

Markov node behavior model can be used as a bridge between

any dynamic factors, such as node mobility or attack intensity

(ratio), and network survivability, as long as the factor affects

state distributions explicitly. Last but not least, it is surprising that

node misbehaviors may “improve” network performance in terms

of end-to-end delays in some scenarios; however, this plausible

performance improvement sacrifices the survivability of wireless

ad hoc networks because of increased node isolations.
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Fig. 10. Impacts of misbehaving nodes on network performance.
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