
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011 209

The Limit of Information Propagation Speed
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Abstract—This paper investigates the speed limit of information
propagation in large-scale multihop wireless networks, which
provides fundamental understanding of the fastest information
transportation and delivery that a wireless network is able to
accommodate. We show that there exists a unified speed upper
bound for broadcast and unicast communications in large-scale
wireless networks. When network connectivity is considered, this
speed bound is a function of node density. If the network noise
is constant, the bound is a constant when node density exceeds a
threshold; if the network noise is an increasing function of node
density, the bound decreases to zero when node density approaches
infinity. As achieving the speed bound places strict requirements
on node locations, we also quantify the gap between the actual
achieved speed and the desired bound in random networks in
which the relay nodes are not located as desired. We find that the
gap converges to zero exponentially as node density increases to
infinity.

Index Terms—Information propagation, multihop communica-
tion, network connectivity, packet delay, wireless network.

I. INTRODUCTION

T HE wireless networks provide alternative networking
services in places where fixed wireline networks are

unnecessary or impossible to be deployed. However, the
performance of wireless networks is not optimistic because
the wireless medium is subject to various communication
constraints, such as limited spectrum bandwidth, high environ-
mental noise, intense wireless interference, dynamic channel
condition, and fast signal attenuation. As such, understanding
and improving the achievable network performance have been
under intensive study in the wireless circumstances.

Initiated by the seminal work of Gupta and Kumar [1], re-
searchers have investigated the capacity of wireless networks
thoroughly. It is found that the throughput per node decreases
on the order of as the node population increases [1].
This finding is pessimistic since it implies the fact that none of
the nodes can communicate in the end if the network becomes
overcrowded. In the succeeding efforts to improve capacity, it is
discovered that higher throughput is indeed obtainable if extra
network conditions are considered, for example node mobility
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[2], infrastructure support [3], transmission cooperation [4], and
ultrawide bandwidth [5]. Besides the theoretical bounds, algo-
rithm design [6] has also been proposed to maximize the net-
work capacity.

Different from the previous works, we study in this paper
packet delay instead of throughput of wireless networks. Packet
delay is a performance metric equally important as throughput,
especially in the quality-of-service sensitive real-time commu-
nications, in which the delay perceived by each packet is more
pertinent to the communication quality than the throughput of
the entire network. Specifically, we are interested in determining
the lower bound on the packet delay in wireless networks. The
delay bound provides the understanding of how fast a packet can
be transported and paves the way for the further investigation
on the feasibility of supporting delay-sensitive traffic in wire-
less networks.

The delay perceived by a packet is the combined result of var-
ious factors including path length, link bandwidth, traffic load,
and channel access overhead. Fortunately, these factors can be
decoupled as they represent different delay components. For in-
stance, the path length determines the number of hops traversed
by the packet; the link bandwidth determines the transmission
time on each hop; and the traffic load comes into effect in the
form of packet queuing, processing, and wireless medium ac-
cess delay at each intermediate node. In order to obtain generic
results on packet delay, we do not assume any particular traffic
pattern in this paper. Instead, we study a lightly loaded network
in which the packet queuing, processing, and medium access
delays are negligible as compared to the transmission delay.
Decoupling the bandwidth-incurred delay and the load-incurred
delay allows us to treat them separately and to reach conclusions
that are not limited to specific traffic distributions. The additive
property of packet delay guarantees that the lower bound discov-
ered in the lightly loaded networks also applies to the arbitrarily
loaded networks, though the tightness of the bound needs fur-
ther investigation in the latter scenario.

To facilitate our study, we define the information propaga-
tion speed as an equivalent metric of the packet delay. As packet
transportation can be viewed as moving a packet from its source
node to its destination node over a physical distance, we use the
speed metric to quantify the movement progression, namely, the
distance traveled through by the packet toward its destination
in a given amount of time. Under this definition, we translate
the original problem of finding the lower bound of packet delay
into the equivalent problem of determining the upper bound of
packet propagation speed. The fundamental tradeoff is the selec-
tion of few links with long distance per link versus the selection
of many links with short distance per link. Obviously, short link
distance improves the capacity of the link, and therefore trans-
mission finishes fast on the link, but a packet needs to go through
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many hops before reaching its destination. Zheng shows in [7]
that there exists an upper bound on the information propa-
gation speed that is attainable under three conditions: 1) every
relay node uses an optimal transmission radius ; 2) the trans-
portation distance between the source node and the destination
node is a multiple of ; and 3) the relay nodes are aligned with
equal separation distance . We study in this paper the gener-
alized speed limit problem in which the above three conditions
may not hold and, in addition, the network connectivity and the
node location randomness are taken into account.

To be specific, we are interested in the following three ques-
tions. First, if the packet transportation distance between the
source and the destination is known not to be a multiple of ,
what is the upper bound on the information propagation speed?
Obviously, it should be tighter than since is unreachable
in this case. Second, does network connectivity place any con-
straint on the speed upper bound and, if yes, how? As achieving
the maximum speed requires using a specified transmission
radius , it is possible that the network is not fully connected
by using . Should this case occur, a packet may not be able
to reach all the intended recipients and the speed upper bound

may not be feasible. Third, even if the optimal transmission
radius is used, it may not be possible to find the relay nodes
at the desired locations due to the randomness in node distri-
bution. When the relay nodes are not located as desired, infor-
mation propagates at a lower speed and a gap exists between
the actually achieved speed and the upper bound . How can
this gap be quantified? We attempt to answer these questions,
which provide the foundation for optimal network planning and
protocol design to expedite packet delivery in multihop wireless
networks.

As the first contribution, we show that the optimal transmis-
sion radius depends on the end-to-end transportation distance.
In order to transport a packet at the fastest speed, the relay
nodes must be equally spaced and use the same transmission
radius. The value of the transmission radius is a divisor of the
straight-line distance between the source and the destination
nodes. Interestingly, the optimal transmission radius converges
to a constant in large-scale wireless networks.

As the second contribution, we determine the speed upper
bound under the constraint of network connectivity. We intro-
duce a probabilistic measurement on network connectivity and
examine the feasible speed bound in two noise models: the con-
stant-interference model and the increasing-interference model.
We show that in the constant-interference model the speed
bound is a constant when node density exceeds a threshold, and
in the increasing-interference model the speed bound decreases
to zero when node density increases to infinity.

As the third contribution, we quantify the gap between the
actual achieved speed and the desired upper bound. The gap
exists due to the randomness of node locations. We prove that
a packet propagates omnidirectionally in large-scale wireless
networks and the gap reduces as node density increases. We also
show that in both noise models, there exists a threshold node
density below which the gap is bounded by constants and above
which the gap converges to zero exponentially.

The rest of this paper is structured as follows. We discuss the
related work in Section II and formulate the problem of informa-
tion propagation speed in Section III. The optimal transmission
radius and the speed upper bound in large wireless networks

are obtained in Section IV. The speed bound under the con-
straint of network connectivity is determined in Section V. The
quantification of speed gap is provided in Section VI. Finally,
Section VII concludes this paper.

II. RELATED WORK

A. Throughput Capacity

Since the work by Gupta and Kumar [1], many efforts have
been made to understand the fundamental performance limits of
wireless networks, most of which have focused on the network
throughput. Gupta and Kumar demonstrated that the throughput
per node is that decreases to zero as the number of
nodes goes to infinity. In the follow-up research, it was found
that higher throughput can be achieved under various conditions
and by using different techniques.

Grossglauser and Tse [2] discovered that mobility increases
throughput. Node mobility increases the chance of transporting
a packet using a short path, which reduces the number of
relay transmissions and alleviates the intensity of interference.
Garetto et al. [8] further proved that the asymptotic capacity
of ad hoc networks varies from to under
anisotropic mobility patterns.

Liu et al. [3] studied the wireless networks with infrastructure
support. They found that throughput increases linearly with the
number of base stations if there are sufficient base stations in the
network. Kozat and Tassiulas [9] showed similar improvement
that the throughput per node is if the number of
access points is large enough.

Gastpar and Vetterli [10] investigated the network coding
techniques and found that throughput can be improved by
cooperation in transmissions. It was shown that the throughput
per node pair scales as asymptotically when the nodes
collaborate in transmissions. Ozgur et al. [4] extended the
network scenario to multiple source–destination pairs. They
showed that an almost linearly scaling capacity can
be achieved by intelligent node cooperations.

B. Delay Bound

All the works discussed above enhance the network utiliza-
tion by increasing the total volume of transported packets within
a given time period. It was meanwhile discovered that by al-
lowing some packet delay, the network throughput can be fur-
ther improved [11][12]. However, because packet delay cannot
be arbitrarily relaxed, for example the real-time communica-
tions (e.g., voice conversations) and the time-sensitive messages
(e.g., urgent event reports in sensor networks) require timely de-
livery, mechanisms are needed to guarantee satisfactory packet
delay in the delay-constrained communication scenarios.

Krunz and Kim [13] analyzed the packet delay distribution
and discard rate in wireless networks, from which they deter-
mined the wireless effective bandwidth to enforce the connec-
tion admission control. Wang et al. [14] proposed two admission
control schemes to guarantee the packet delay based on the sta-
tistical delay analysis.

Liebeherr et al. [15] and Verloop [16] studied packet sched-
uling policies to minimize the flow-level delays. In bandwidth-
sharing networks, multiple flows compete for the limited trans-
mission bandwidth. The competition is coordinated by a sched-
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uling policy. Optimally configuring the scheduling policy min-
imizes the delay of each flow.

Yang and Kravets [17] considered the wireless medium ac-
cess delay. They proposed a distributed delay allocation scheme
that adjusts the contention window sizes of competing nodes
to ensure satisfactory delay performance. Similarly, Bader and
Ekici [18] optimized the network throughput and delay by im-
plementing interference-aware packet injection mechanisms.

Link scheduling was also studied to minimize the end-to-end
packet delay by coordinating the wireless link transmission or-
ders. Djukic and Valaee [19] designed heuristics to select the
optimal transmission order that minimizes the packet delay at
each node. Chafekar et al. [20] considered the concurrent packet
transmissions in multiple flows and presented a scheduling al-
gorithm that minimizes the delivery delays of all the packets.

Though the existing research results on packet delay have
provided profound insights into the delay composition in wire-
less networks and valuable suggestions on the delay control
methodologies, they all address the problem from a statistical
perspective that minimizes the average delay of packet flows. In
all these studies, traffic load is the essential factor contributing
to packet delay. Quite differently, we consider in this paper the
delay of a single packet in lightly loaded networks. As there
are few other packets competing for the resources, the queuing
and medium access delays are negligibly small. Instead, the
end-to-end packet delay is dominated by the bandwidth of the
links along the packet transportation path.

Till now, only Zheng [7] has studied this bandwidth-limited
delay in wireless networks. In the pioneering paper [7], Zheng
defined the concept of information diffusion rate that measures
the time required for disseminating a packet to every node in
the network. It was shown that a packet cannot be disseminated
faster than a constant upper bound. The fastest rate is achieved
only if the packet travels through a straight-line path consisting
of -distance equally spaced relay nodes, and the farthest node
in the network is a multiple of -distance away from the source,
where is a constant.

III. PROBLEM FORMULATION

We study the generalized packet propagation speed problem
in this paper. Particularly, we attempt to discover the speed
bound for transporting a packet between arbitrarily located
source–destination pairs and take into consideration the net-
work connectivity requirement as well as the node location
randomness. As mentioned earlier, we assume a lightly loaded
network where the packet delay and hence the packet propa-
gation speed are solely determined by the link bandwidth. The
speed upper bound is, nonetheless, still valid for networks with
any load distributions. Before starting the investigation, we first
describe the network model used in this paper and define the
metric information propagation speed.

A. Network Model

We study a square-shaped wireless network of nodes
in a very large area with
the following assumptions regarding the node locations and
communications.

• The nodes are static and randomly distributed obeying a
Poisson point process [21] with density .

• All the nodes share a -Hz available frequency band.

• Any two nodes can communicate over the direct link be-
tween them. The link is characterized by an additive white
Gaussian noise (AWGN) channel with path loss exponent

[22] and its bandwidth is subject to the Shannon
limit [23], [24]: , where SNR is the
signal-to-noise ratio. Advanced coding techniques are used
such that the link bandwidth approximates the Shannon
limit [25].

• A uniform transmission power is used by every node.
• The noise present at each node is the sum of the ambient

noise and the interference noise .
For tractable modeling and analysis, we assume that
is a constant and is either a constant or a variable, de-
pending on the density of concurrently transmitting nodes.
We consider two cases in this paper: 1) the constant-in-
terference noise model in which is a constant when
increases; and 2) the increasing-interference noise model
in which increases as increases. In the second model,
since dominates in the total noise when increases, we
ignore and assume . In both models, the total
noise is assumed to be homogeneous in the network.

• No directional antenna is used, and no large signal-
blocking obstacle exists in the network.

• A packet has fixed length of bits during transportation.
For the purpose of clearer presentation, we make the following
comments and clarifications on the assumptions stated above.

• Throughout this paper, the area of the wireless network
is fixed, though it can be arbitrarily large. When we study
the limit case of infinite node density , the density
scales by increasing the node population while keeping
the area constant.

• All the distances in this paper are the Euclidean distance.
• The path-loss attenuation exponent is 2 in free space. In

all other environments, is bigger than 2 due to multipath
fading effects.

• Given two nodes and separated by a distance ,
the signal strength of as received by is . Hence,
the capacity of the direct link between and is

.
• If sends a packet to at the full bit rate , a node

also receives the same packet if , since
. On the other hand, if ,

cannot receive the packet correctly, as . We
define as the transmis-
sion radius of , and as the
coverage area of in this transmission.

B. Information Propagation Speed

In multihop wireless networks, the transportation of a packet
is via rebroadcasting. As illustrated in Fig. 1, when node
initiates a packet transportation, it broadcasts the packet to all
the neighbors inside its coverage area , and these neigh-
bors continue to rebroadcast the packet to a farther distance
until the packet is received by the destination node. Depending
on the routing protocol used, not every intermediate node that
hears the packet is required to rebroadcast. Besides, node sched-
uling is often implemented in large wireless networks to sepa-
rate the simultaneous transmissions such that their packets do
not collide. From the perspective of information theory, the in-
terference from simultaneous transmissions only degrades the
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Fig. 1. Information propagation in multihop wireless networks. The packet
broadcasting duration is � for each node.

quality of wireless channels, but does not necessarily preclude
communications. Therefore, theoretically speaking, communi-
cations are still possible without node scheduling. However, in
order to be consistent with the de facto practice, we assume that
a random percentage of nodes are scheduled for transmission
at any time. Thus, considering packet routing and node sched-
uling, only a subset of the nodes that have received the packet
from rebroadcast to transport the packet.

Denote as the set of nodes that have received the packet
by time , and as the subset that has forwarded the
packet by time . The total area that the packet has reached by
time is then expressed as . In addition, de-
note as the line starting from in the direction ,
and define . In Fig. 1, is the line seg-
ment . The information propagation speed in the direction
is then defined to be

(1)

By definition, is the distance from to the farthest lo-
cation reached by the packet in direction divided by the time
elapsed since the packet departure from . As we will show in
the rest of this paper, maximizing requires all the packet
relay nodes use a specified transmission radius. We name such
a radius as optimal transmission radius in the sense of
maximization.

In the rest of this paper, we will formally derive the upper
bound on , examine the feasibility of the upper bound
under the network connectivity constraint, and determine the
gap between and its upper bound.

IV. UPPER BOUND ON SPEED

Zheng shows in [7] that there exists a constant upper bound
on that is attainable when several conditions are satisfied
simultaneously. One of the conditions requires that the source
and the destination be separated by a distance that is multiple
of the optimal transmission radius , where is a constant in-
dependent of the source–destination distance. We note that, in
broadcast communications, might be the best transmission
strategy for fast packet dissemination since the number of des-
tinations may be large and their locations may not be known.
However, in unicast communications there is only one destina-
tion, the location of which is possibly known to the source and

Fig. 2. Packet relay path in direction �.

relay nodes. If the known source–destination distance is not a
multiple of , we show that there exists a tighter speed upper
bound that is achieved at a different transmission radius. For
completeness of presentation, we first reproduce the result of
[7], as shown next in the case of broadcast communications.

A. Broadcast Communications

Suppose by time , a packet originated from has reached
the location in direction , as shown in Fig. 2. Let

denote the relay path from to and
denote the transmission duration of

node . By definition

(2)

The maximum of occurs when
, where is the nonzero root of the

equation

(3)

Thus

(4)

If , , , , and are constant, and are constant. This
is the same result as Zheng has obtained in [7]. Inequality (4)
demonstrates that is upper-bounded by the constant ,
which is achieved when each step in (2) takes equality, i.e., the
following conditions are satisfied: 1) every relay node uses the
optimal transmission radius ; 2) relay nodes are lined up and
equispaced by ; and 3) the distance from to the destination
node (or the farthest recipient node in broadcast communi-
cations) is a multiple of .

B. Unicast Communications

In unicast communications, though we can always require
every node transmit in the radius , the distance be-
tween the source and the destination nodes may be known and
not equal to a multiple of . Should this case occur, we show
next that is upper-bounded more tightly by another con-
stant that is achievable when a different transmission radius

is used, as specified in the following theorem.
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Theorem 1: is maximized when the optimal transmis-
sion radius is determined by

if
if

(5)

in which and function rounds
to the nearest integer. In both cases,

.
Remark 1: Theorem 1 states the fact that there exists a

threshold distance such that: 1) if the source–destination
distance is shorter than , direct transmission from to
achieves the fastest speed; and 2) if the source–destination
distance is longer than , the fastest speed is achieved when
the optimal transmission radius takes the value closest to
and dividing the source–destination distance.

In order to prove Theorem 1, we introduce a few notations
and lemmas. Denote

as an -hop straight-line relay path from to ,
and as the packet transmission time along

. We have the following lemmas.
Lemma 2: Consider and . By defining

, we have

if

if . (6)

Remark 2: Lemma 2 states the fact that: 1) if ,
1-hop direct transmission is faster than any 2-hop relay trans-
mission; 2) if , choosing a relay node equidistant
from the source and the destination results in the fastest trans-
mission among all the 2-hop relay paths, and it is also faster
than the 1-hop direct transmission; 3) if , 1-hop di-
rect transmission is as fast as the 2-hop relay transmission with
the relay node placed exactly at the middle, and both are faster
than any other 2-hop transmissions.

Proof: See the Appendix.
Next, we generalize the result of Lemma 2 to the cases of

any-hop path length and introduce Lemma 3.
Lemma 3: Consider and define

if
if

(7)

in which is an -hop equidistant relay path con-
necting and , i.e.,
and .

Remark 3: Lemma 3 states the fact that: 1) if ,
1-hop direct transmission is faster than any multihop trans-
missions; 2) if , the fastest transmission must
be achieved along a relay path in which the relay nodes are
separated equally.

Proof: By Lemma 2, if ,
. , as

, apply the result of Lemma 2 recursively

Fig. 3. Node removal and relocation process. (a) Finding the node set
�� �� � � � � � � � �� � � � � � � ��. (b) Removing the nodes
�� � � � � � �� � � � � � � � � ��. (c) Relocating the node � such
that � � � (if � � �) or the node � such that
� � � (if � � �).

...

Therefore, when .
In order to prove

when , it is equivalent to show that for any path
, there is another path that satisfies

. We consider the following
node removal and relocation process to prove the existence of

. For each node , we make the two
changes below in sequence.

1) Node removal. Find the set of nodes
. If , remove the nodes

from .
2) Node relocation. If is the last relay node or ,

skip this step. Otherwise, if ( is the number of
nodes found in Step 1), relocate such that

; if , relocate such that
.

This process initiates at , proceeds node by node toward
and iterates until there is no more node removal and no more
node relocation in the resulting relay path . Fig. 3
depicts an example of these two procedures.

First, we show that the resulting relay path has shorter trans-
mission time than the original path, i.e.,

. In the node removal step, since ,
by the first part of Lemma 3 (already proven), 1-hop direct trans-
mission from to is faster than the -hop transmission via

. Hence, removing
results in faster transmission. In the node relocation step, be-

cause (if ) or (if ) is larger than ,
by Lemma 2, relocation of (if ) or (if ) re-
sults in faster transmission. Therefore, has shorter
transmission time than .
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Fig. 4. End-to-end packet transportation time,� � ��� KHz,� � ���� bits,
��� � �� , � � �. When � � � m, � � � m; when � � ��, 30,
60 m, � � �� m; when � � ��� m, � � ��	�� m.

Second, we prove that the resulting relay path is
an equidistant relay path, i.e., . Because
the node removal step takes relay nodes away and the number of
remaining relay nodes must be nonnegative, it is obvious that the
number of relay nodes converges to a value .
After that, there are no more removals, but relocations may con-
tinue. As the transmission time from to decreases during
the relocations (already proven) and it is nonnegative, it must
converge to certain value, after which there are no more reloca-
tions. If are not all equal, relocation
will continue. Thus, they must be all equal by the end of the re-
location process.

Finally, it is safe to substitute for . After the substitution,
we have .

We are now ready to prove Theorem 1 based on Lemma 3.
Proof: First, if , Lemma 3 states that 1-hop

direct transmission is the fastest among all the possible relay
transmissions. It is obvious to conclude that in order to maxi-
mize , .

Second, if , Lemma 3 shows that
. As

solving , we obtain the optimal
number of relay hops , the optimal transmis-
sion radius , and the upper bound on
the information propagation speed

(8)

Because is the unique maximizer for ,
. When is a multiple of , and

. Otherwise, and .
We plot the packet transportation time for different

source–destination distances in Fig. 4 as a visual aid to
understand Theorem 1. Unlike and , and
are determined not only by , , , , and , but also
by the source–destination distance . The conditions
for are: 1) every relay node uses the op-
timal transmission radius ; and 2) the relay nodes are
aligned and separated from each other by distance . Note

Fig. 5. Optimal transmission radius �.

TABLE I
COMPARISON BETWEEN 
��	 AND � � �

, indicating in large-scale networks
the generalized speed bound for arbitrarily located source
and destination nodes converges to the same constant bound
for broadcast communications. As we study large-scale net-
works in this paper, we will denote and

in the rest
of this paper, where .

C. Solution of

Till now, we have shown the existence of a unified optimal
transmission radius in large-scale networks. Next, we provide
a solution for . Equation (3) can be rewritten as

(9)

which allows us to compute in a recursive way

(10)

Given , we compute until
. Computation with various values shows that this se-

quence always converges. The final value of after conver-
gence is the nonzero root of (3). Interestingly, we find
is a good approximation to . Table I compares the values
of and for sample values. We observe that
is well approximated by , especially for large . Hence,

may be obtained numerically from (10) or approximated
by (11)

(11)

The optimal transmission radius is then determined by
after is solved. Fig. 5 plots for sample

values and signal-to-noise ratios. It is observed that increases
as the signal-to-noise ratio increases or decreases.
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V. UPPER BOUND ON SPEED UNDER NETWORK

CONNECTIVITY CONSTRAINT

We have shown that there is a unified upper bound on
for broadcast and unicast communications in large-scale

networks. In this section, we study the feasibility of this upper
bound . Achieving requires using the optimal transmission
radius by all the relay nodes, but may not guarantee the net-
work being connected. If the destination node cannot be reached
by the transmission radius , the maximum speed is infea-
sible. As such, we need to understand the maximum information
propagation speed constrained by the network connectivity.

A. -Feasible Packet Delivery

We define the term -feasible delivery to provide a proba-
bilistic measurement on the degree of network connectivity as
well as the successfulness of packet delivery. The delivery of
a packet is -feasible if the packet can reach all the intended
recipients with a probability no less than . Subse-
quently, we define a transmission radius to be -feasible (de-
noted as ) if this provides -feasible packet delivery. Note
that implies that the entire network is connected with prob-
ability of at least by using the transmission radius . Obvi-
ously, any transmission radius larger than is also -feasible.
However, because is the unique maximizer for

, is maximized at the that is closest to ,
when -feasible packet delivery is required. We define

to be the -feasible optimal transmission
radius and to be the

-feasible speed upper bound.
The network connectivity is determined by the node density

and the node transmission radius. Given node density, the net-
work is fully connected if the node transmission radius is suffi-
ciently large. Obviously, we are able to construct a minimum
spanning tree to connect every node in the network, and the
longest edge in this minimum spanning tree serves as a suffi-
ciently large transmission radius. Penrose shows in [26] that the
longest edge in the minimum spanning tree over Poisson
distributed random nodes in a unit square satisfies

Zheng [7] further proves that in an extended network with unit
node density, if

Scaling the extended network to the dense network, we have

Choosing and replacing with
( in a unit square), we have

(12)
Our network consists of the tiles of unit squares with node den-
sity over an area . Thus, (12) applies to our network model

as well. Next, we discuss and with variable node densi-
ties in two different noise models.

B. Noise Models

We assume two noise models in this paper to determine the
connectivity-constrained speed upper bound in two represen-
tative network environments. The noise models determine the
scaling properties of and as node density increases.
In the first one, the constant-interference model, the density of
nodes scheduled for concurrent transmissions is kept constant as

increases, i.e., is constant. In this case, is
also a constant independent of node density. In the second one,
the increasing-interference model, the percentage of sched-
uled nodes is constant as increases such that and

is a linear function of the node density, as proven in the fol-
lowing lemma.

Lemma 4: In a network with uniform transmission power
and randomly distributed nodes in Poisson point process with
density , the interference at any location is ,
where is the interfence at this location when , if the
percentage of simultaneously scheduled nodes is a constant
independent of .

Remark 4: Lemma 4 states the fact that the interference noise
increases linearly as the node density increases.

Proof: Since the nodes are distributed in a Poisson point
process and is independent of , the concurrently transmit-
ting nodes are also in Poisson distribution with density .
By choosing two arbitrary locations and defining

as the interference at caused by the transmissions at
, we have

where is a small area around and is the interfer-
ence from . The total interference at from all the transmis-
sions in the network is

As is arbitrary, .
In the increasing-interference model, since , we write

. The optimal transmission radius in this
model has the form .

C. -Feasible Upper Bound on Speed

We discover that the -feasible optimal transmission radius
and speed upper bound can be described by the fol-

lowing two theorems.
Theorem 5: In the constant-interference noise model, there

exists a threshold node density such that

(13)
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(14)

where .
Remark 5: Theorem 5 states the fact that, in the constant-in-

terference model, there is a threshold node density above which
and are constants.

Proof: By (12), s.t.

Let denote the biggest root of the equation

If this equation has no real root, define . Since
,

By denoting , we have

(15)

This result indicates that when ,
is -feasible, i.e., . In this case,

.
When , is not -feasible

because Inequality (15) does not hold. Since the network
connectivity is determined by the average node degree, we
can increase the node transmission radius to keep the network
connected when node density is low. The analysis above
shows that is the smallest -feasible transmission radius
with node density . By solving , we
obtain the smallest (also the closest to ) -feasible trans-
mission radius with node density as .
Hence, when , and

.
Theorem 6: In the increasing-interference noise model, there

exists a threshold node density such that

(16)

(17)

where and
.

Remark 6: Theorem 6 states the fact that, in the increasing-
interference noise model, and decrease to zero as
node density increases to infinity.

Proof: Similar to Theorem 5, , s.t.

Let denote the biggest root of the equation

If this equation has no real root, define . Since
,

By denoting , we have

(18)

This shows that when , is
-feasible. Hence, and

.
When , similar to the discussion in Theorem 5,

is the smallest -feasible transmission ra-
dius with node density and is the smallest (thus the
closest to ) -feasible transmission radius with node density

. Therefore, when , and
.

D. Comparison of the Noise Models

Interestingly, Theorems 5 and 6 show that the -feasible
speed upper bound behaves quite differently in the two
noise models.

In the constant-interference model, when , is
an increasing function of and reaches its maximum at .
When , is a constant, implying that given suf-
ficiently large node density the information propagation speed
is upper-bounded by a constant. An example of in this
model is shown in Fig. 6.

In the increasing-interference noise model, when ,
the maximizer of is obtained as

by solving , where
is the nonzero root of the equation

(19)

If , does not exist. In this case
is a decreasing function of when . If ,

exists and , indicating
. Therefore, increases until
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Fig. 6. � ��� in the constant-interference model, � � ��� KHz, � �
���� bits, ��� � �� , � � ��.

Fig. 7. � ��� in the increasing-interference model, � � ��� KHz, � �
���� bits, ������ � �� , � � ��.

, and then decreases there-
after. When , is always a decreasing function of
and converges to zero as approaches infinity. Thus, in the in-
creasing-interference noise model, information propagation be-
comes impossible when node density becomes extremely large.
The strong interference prevents the transmission of any packet.
An example of in this model is shown in Fig. 7, in which
it is observed that takes similar values and converges in
similar trend when is large, regardless of .

VI. GAP BETWEEN AND

We have shown that, given the parameter , there exists an
optimal transmission radius that may achieve the max-
imum information propagation speed in a network with
node density . However, as we have discussed earlier, actually
achieving this maximum speed requires an additional condition
that all the relay nodes are aligned and separated from each other
by the distance . Since the nodes are distributed randomly,
it may not be possible to find these perfectly located relay nodes
when . There is always a gap between the actual achiev-
able speed and the bound . We quantify this gap
in this section.

Note that the speed gap exists due to the location offset of
the relay nodes from their desired locations. In addition, when
node scheduling is used, it may happen that the nodes closest
to the desired locations are not scheduled for transmissions im-
mediately after they receive the data packet, which increases the
speed gap further. However, since we study the fastest achiev-
able speed, we assume in this section a smart scheduling scheme

Fig. 8. Information propagation in multihops in direction �.

that always schedules the nodes in the best locations to relay a
data packet immediately after their packet reception. By using
such a smart scheduling scheme, the fastest achievable speed is
determined solely by the node density and independent of the
percentage of scheduled nodes as long as the best relay nodes
are included into the schedule.

By definition, the actual information propagation speed is
measured by . Due to the randomness of
node locations, this speed may be faster or slower when the
packet travels through different subareas in the network. To
evaluate without introducing the subarea bias, we define
the long-term speed in the direction to be

(20)

Since every node uses the same optimal transmission radius
, the 1-hop transmission time

is the same for every node. We rewrite (20) as

(21)

where , and
, as shown in Fig. 8.

First, we show that the actual information propagation speed
is omnidirectional in large-scale networks. In the long term, a
packet is disseminated from the source to the same distance
away in any direction. The frontier of propagation is in a cir-
cular shape, as specified in the following theorem.

Theorem 7: In a network with homogeneous node distribu-
tions, , .

Remark 7: Theorem 7 states the fact that a packet reaches
the same distance away in any direction after sufficiently long
propagation time, though it can be faster or slower temporarily
in one direction than another.

Proof: By definition, . All we need to show is
. As the nodes are distributed homogeneously, the

propagation distances in and after hops, and ,
are two random variables with the same probability distribu-
tion. For the same reason, and also have the
same probability distribution. Since
and , and must have the
same probability distribution. Therefore,

.
Fig. 9 depicts an example of the speed comparison in different

directions. As the packet propagates farther away, the speeds in
all directions converge to the same value.

As we will show next that is determined by the node density
, we write . We define the gap between

the actual speed and its upper bound as

(22)
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Fig. 9. Comparison of the packet propagation speeds in six randomly chosen
directions, in which the normalized speed is defined as the ratio of the minimum
speed to the maximum speed in the six directions, � � ��.

Theorem 8: In a network where the nodes are randomly dis-
tributed in a Poisson point process with density , ,

almost surely.
Remark 8: Theorem 8 states the fact that is a strictly

decreasing function of with probability 1.
Proof: By definition, . To

prove , , it is equivalent to show
.

First, we show almost surely. We start with
a network of node density . Suppose a packet originated by
node has propagated over a distance of to reach lo-
cation in an arbitrary direction after hops and de-
note as the -hop relay path traveled
through by the packet to reach . Now, reduce the node
density to by randomly removing each node (except ) from
the network with probability . From the properties
of Poisson process, we know that the nodes in the resulting net-
work are Poisson-distributed with density . Since removing
any disrupts , the survival proba-
bility of is

When , , implying is
almost unreachable in the resulting network. Denoting
as the propagation distance of the packet in direction after
hops in the resulting network, we have

, which gives

i.e., almost surely.
Next, we show . Theorems 5 and 6 in-

dicate that is a decreasing function (not always strictly
though) of in both noise models. Hence, ,

.
Combining and , we obtain

almost surely.
Theorem 8 points out that reduces as increases. The

next theorem provides a quantified measurement of .

Fig. 10. Definitions of (a) � and (b) � .

Fig. 11. Propagation distance � in direction �.

Theorem 9: In a network where the nodes are ran-
domly distributed in a Poisson point process with den-
sity and the optimal transmission radius is used,
defining , and

(23)

Remark 9: Theorem 9 provides the bounds on the conver-
gence rate of the speed gap as the node density increases.

Proof: First, we define two relevant random variables that
will be used in this proof. As depicted in Fig. 10(a), we define

as the distance from a node to its farthest neighbor within
the transmission radius . In Fig. 10(b), we draw a sector
at an arbitrary location with radius and central angle

, and define as the distance from to the nearest node
found in this sector.

Next, we prove . As shown in Fig. 11, letting
denote the relay path traveled by a

packet from to reach in hops

where is the occurring at . Then

since has i.i.d. probability distribution. We obtain
as follows. According to the Poisson distribu-

tion, with probability , a node has no neighbor (i.e.,
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Fig. 12. �th-hop propagation distance � � � � � in direction
�, � � � � � � � � � �� ���,
� 	 � � � 	 � � 
��.

). With probability , has at least one
neighbor (i.e., ). Given

The conditional expectation is

The unconditional expectation is

Thus

Finally, we prove . As Fig. 12 illustrates, de-
note as the farthest location that a packet has reached in
direction after hops, and
as the relay path traveled by the packet to reach . Draw
a sector at with radius and central angle ,
as illustrated by the dashed-line encompassed area in Fig. 12,
where . Note that for any
node in this sector, , implying that must
have received the packet by time and forwarded the
packet by time , i.e., . Since is the far-
thest location from on covered by , ,

where is the farthest location reached by on . Thus,
. By triangle inequality

As the previous inequality holds for all the in the sector

where is defined in Fig. 10(b). Replacing with

where is the occurring at and has i.i.d.
probability distribution. Next, we compute . We know
from the Poisson distribution that with probability ,
there is no node in the sector (i.e., ), and with
probability , there is at least one node in the sector
(i.e., ). Given

The conditional expectation is

The unconditional expectation is

Thus
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Fig. 13. Speed gap in the constant-interference noise model, ��� � �� . (a) � � �; (b) � � �; (c) � � �.

Fig. 14. Speed gap in the increasing-interference noise model, ������ � �� . (a) � � �; (b) � � �; (c) � � �.

The speed gap and its bounds are shown in Figs. 13 and
14 for different values. Based on the result of Theorem 9,
we are able to determine the asymptotic convergence rate of the
speed gap as the node density approaches infinity. In order to
present this asymptotic rate, we first introduce Lemma 10.

Lemma 10: Define and
, where , . and ,

and as .
Remark 10: Lemma 10 states the fact that the tails of

and are bounded by exponential functions.
Proof: When , s.t. .

Because

as

Therefore, as .
When , and , as , and

. Hence,
, which gives as
.

The asymptotic convergence rate of is then summarized
in the next two theorems.

Theorem 11: In the constant-interference noise model,
and ,

as .

Remark 11: Theorem 11 states the fact that, in the constant-
interference noise model, the speed gap converges to zero ex-
ponentially with exponent , where is an arbitrarily small
positive real number.

Proof: When , and
. By Theorem 9, letting and

, we have .
When , and . Choose

and . By Theorem 9 and Lemma 10,
and , as

and

Theorem 12: In the increasing-interference noise model,
and ,

as .

Remark 12: Theorem 12 states that, in the increasing-inter-
ference noise model, the speed gap converges to zero exponen-
tially with exponent , where is an arbitrarily
small positive real number.

Proof: When , and
. By Theorem 9, letting and

, we have .
When , and

. Choose
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Fig. 15. Packet transportation time via 1-hop and 2-hop relay paths, � � ��� KHz, � � ���� bits, ��� � �� , � � �. (a) � � � � � m � �	 .
(b) �	 � � � �� m � �. (c) �	 � � � �� m � �.

and . By Theorem 9 and Lemma 10,
and , as

and

Theorems 11 and 12 reveal that in both noise models there
is a threshold node density, below which is bounded by
constants (the constants are determined by the choice of param-
eter ) and above which converges to zero exponentially
in the rates of and , respectively.

VII. CONCLUSION

In this paper, we have studied the packet delay problem in
lightly loaded large-scale multihop wireless networks in terms
of the packet propagation speed. We find that there exists an
upper bound, determined by the network parameters, on the in-
formation propagation speed. This upper bound is different for
broadcast communications and unicast communications, but the
two bounds converge in large-scale networks. As a necessary
condition for achieving this upper bound, all the relay nodes
must use an optimal transmission radius. We also reveal that,
when network connectivity is considered, the feasible speed
upper bound is a function of node density. If the noise in the
network is constant, the speed bound is constant when node den-
sity exceeds a threshold. Otherwise, if the noise is an increasing
function of node density, the speed bound decreases to zero as
node density grows to infinity. Finally, we prove that a packet
propagates omnidirectionally in large-scale random networks,
and the gap between its actual speed and the upper bound de-
creases exponentially when node density increases to infinity.
The work in this paper provides fundamental understanding of
the achievable fastest information delivery in large-scale wire-
less networks, which is instrumental to the delay-minimization
routing protocol design in wireless networks. The speed upper
bound found in this paper also applies to the wireless networks
with arbitrary traffic loads and routing protocols since heavy
load and nonoptimal path selection incur extra packet trans-
portation delay. The tightness of the speed upper bound, how-
ever, will need to be reconsidered in such cases.

APPENDIX

PROOF OF LEMMA 2

Proof: Define and
, in which is

the distance between the source node and the relay node. When
or , it is a 1-hop transmission. Otherwise, it is

a 2-hop transmission. In order to find the minimum of ,
we determine the convexity of and first.

By definition, function has the following properties:

Define and .
We have . It is not
difficult to find the following properties of .

1) .
2) increases monotonically when .
3) decreases monotonically when .
4) .
These properties indicate s.t.

.

Since , s.t.

.

Define and
. Then

.

Since
, we have

i.e. is strictly concave
i.e. is strictly convex .
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Next, we determine the convexity of . Note that
is symmetric with respect to . In addition,

and (because
, ,

). The convexity as well as the
minimum of is discussed in three cases.

1) . and are concave on
, so is concave with no local minimum,

as shown in Fig. 15(a).
2) . is concave on and convex

on . is convex on
and concave on . Therefore,
must be concave on , while either con-
cave or convex on . However,

indicates concavity. Thus,
is concave on with no local minimum,

also as shown in Fig. 15(a).
3) . Similar to the discussion in Case 2,

must be convex on , while ei-
ther concave or convex on .
Again, indicates concavity.
Therefore, has one local minimum at
and two local maxima in and , as
shown in Fig. 15(b) and (c).

Summarizing all the three cases, has at most one
local minimum which occurs at . Hence

if

if .
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