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Abstract—Recent studies on mobility-assisted schemes for rout-
ing and topology control and on mobility-induced link dynamics
have presented significant findings on the properties of a pair of
nodes (e.g., the intermeeting time and link life time) or a group
of nodes (e.g., network connectivity and partitions). In contrast
to the study on the properties of a set of nodes rather than
individuals, many works share a common ground with respect
to node mobility, i.e., independent mobility in multihop wireless
networks. Nonetheless, in vehicular ad hoc networks (VANETs),
mobile devices installed on vehicles or held by humans are not
isolated; however, they are dependent on each other. For example,
the speed of a vehicle is influenced by its close-by vehicles, and
vehicles on the same road move at similar speeds. Therefore,
the gap between our understanding of the impact of independent
mobility and our interest in the properties of correlated mobility
in VANETs, along with the real systems altogether, declare an
interesting question. How can we measure the internode mobility
correlation, such as to uncover the node groups and network com-
ponents, and explore their impact on link dynamics and network
connectivity? Bearing this question in mind, we first examine
several traces and find that node mobility exhibits spatial locality
and temporal locality correlations, which are closely related to
node grouping. To study the properties of these groups on the fly,
we introduce a new metric, i.e., dual-locality ratio (DLR), which
quantifies mobility correlation of nodes. In light of taking spatial
and temporal locality dimensions into account, the DLR can be
used to effectively identify stable user groups, which in turn can
be used for network performance enhancement.

Index Terms—Correlated mobility, group detection, vehicular
ad hoc networks.

I. INTRODUCTION

IN mobile ad hoc networks (MANETs), mobile devices
communicate by wireless links through multihop network-

ing. The mobility of wireless devices leads to connection and
disconnection of communication links and routes, and grouping
and dispersion of nodes, which in turn greatly affect network
performance. Thus, mobility has been the focus of researchers’
extensive studies that include modeling node mobility [2], ex-
amining the impact of mobility (e.g., in [3]–[6]), and designing
mobility-based schemes (e.g., [7], [8]).
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Fig. 1. Group evolutions. Birth (individual nodes E1 and E2 form new
group E), death (nodes in group F disperse to move individually), growth
(number of nodes in group A increases from 2 to 3), contraction (number of
nodes in group D decreases from 5 to 4), split (group C splits into two groups
C1 and C2), and combination (Groups B1 and B2 combines into a bigger
group B). (a) t = t1. (b) t = t2.

Existing studies have focused on independent node mo-
bility because of its simplicity for analysis and simulation.
However, investigations of node mobility in real traces have
observed that mobility of wireless devices, which is associated
with mobile humans (e.g., pedestrians or drivers), exhibits
a significant degree of correlation. In corporate and campus
wireless local area network (WLAN) traces [9], [10], nodes
can be classified into different groups according to their home
locations where they spend most of their time. In vehicular ad
hoc networks (VANETs), the mobility of cars is correlated as
their movements are constrained by road layout, speed limit,
and speed of nearby cars. This correlation of vehicle mobility
leads to vehicle groups (i.e., connected network components),
such as groups C and D shown in Fig. 1, which is known as
the phenomena of group mobility in wireless communication
networks. In addition, node mobility results in node groups
changing over time, including the groups’ growth, contraction,
split, and combination shown in Fig. 1. In summary, correlated
mobility directly determines the architectures and dynamics of
node groups (i.e., connected network components).

Presence of groups due to correlated mobility means that
nodes have unequal abilities to relay data to other parts of
the network and could be exploited to improve information
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dissemination and topology management. For example, two
neighboring vehicles with similar speeds (i.e., high mobility
correlation) are less likely to be out of each other’s communi-
cation range (i.e., long link lifetime) and are thus more suitable
for building routes with high stability. As another example,
in a bus-based delay-tolerant network (DTN), a bus carrying
a message may prefer sending copies to encountered buses
that run on different routes (i.e., different mobility patterns)
to increase the opportunity of meeting with a destination bus.
Apparently, knowledge of mobility correlations among nodes is
helpful for establishing stable routes, increasing packet delivery
ratio, and reducing delay.

Being aware of the correlated node mobility in reality and
its potential benefits in enhancing network performance, exist-
ing works have explored group mobility in improving routing
performance [7], [11], predicting network connectivity and
partition [12], [13], and assisting information dissemination
[4], [8], [14]. These studies have assumed preconfigured group
mobility behavior and group membership, such as reference
point group mobility (RPGM) [15] and its variances [5],
[12], [13].

Nevertheless, in a real-world setting, groups of wireless users
are dynamically changing and evolving due to the autonomous
human mobility and social behaviors, except in mission-
oriented applications. Fig. 1 shows the group evolutions in
a typical VANET scenario. The main occurring phenomena
include group birth and death, growth and contraction, and split
and combination [16]. For instance, groups B1 and B2 at time
t1 combine to a larger group B at t2, whereas group C at
t1 splits into two groups C1 and C2 at t2 because of vehicle
movements. The dynamic movement behaviors of vehicles
mean that group mobility is not a prior knowledge in wireless
communication networks or in group structures. The dynamics
of node groups make the insights and benefits of group mobility
claimed by applications based on predefined group mobility and
structure questionable. Therefore, the open question is how to
measure internode mobility correlation and identify dynamic
user groups on the fly such that we can leverage group mobility
for efficient network design, performance enhancement, and
topology management.

Because correlated mobility is still underexplored, in this
paper, we aim to characterize the mobility correlations among
nodes and identify mobile group structures in VANETs. To
begin with, we examine how node mobility is correlated using
real traces. We observe that the mobility of vehicles is not only
correlated with the space domain (e.g., adjacent locations and
similar speeds) but is also related with the time domain (e.g.,
overlapping movement paths and a shared visitation schedule
to community sites). On one hand, vehicle mobility at a certain
time depends on geographic surroundings (e.g., road layout and
speed limit), which means that vehicle mobility shows spatial
locality. On the other hand, being associated with mobile hu-
mans, mobile devices likely appear at several community sites
(such as houses, offices, and shopping centers) with different
frequencies and sojourn times at different times. In other words,
node mobility, such as human mobility [17], exhibits temporal
locality because of a user’s movement schedule. Moreover,
there is a close relationship between node mobility correlation

in spatial and temporal localities and group structures, which
can be explored to identify user groups on the fly.

A follow-up and challenging issue is how to quantify this
internode mobility correlation in spatial and temporal localities
to identify node groups. As spatial locality has two attributes
(i.e., location and speed), and the similarity in spatial local-
ity of two nodes is characterized by their relative speed and
distance. Because temporal locality is characterized by the
mobility schedules to execute social activities in community
sites, which has a similar function with “caves” in ancient times,
we consider a cave profile to model visiting frequencies, orders,
and sojourn times of community locations in the network. By
taking an entropic approach, correlation degree in temporal
locality is measured as the closeness of cave profiles. Therefore,
by incorporating both spatial locality similarity (SLS) and
temporal locality similarity (TLS), we introduce a new metric,
i.e., dual-locality ratio (DLR), to quantify mobility correlation
between a pair of nodes. A high DLR means that two nodes
tend to join together as a group, whereas a low DLR means
individual movements with little correlation.

In light of taking spatial and temporal localities into account,
we find that the DLR can be used to identify group structures
in two citywide vehicle traces. In the cab-based trace in which
groups are likely formed or broken down due to geographic
constraints, the DLR identifies cab groups according to loca-
tions and speeds of nodes. Whereas in the bus-based trace in
which the trajectories indicate different levels of companion-
ship because of the discrepancy in itineraries, the DLR detects
bus groups consistent with bus routes. This attests that the
DLR is able to catch correlations among nodes in spatial and
temporal localities. Simulation results show that the DLR can
recognize stable groups in dynamic network environments in
real time under group mobility.

Identified group structures allow nodes to make routing deci-
sions that can improve network performance, such as reducing
packet loss. Simulation results show that DLR-assisted data
forwarding can increase the packet delivery ratio. In addition,
mobility correlation can be used to organize nodes into stable
clusters, which is one of the most general applications of
topology control. Simulations also show that the DLR-assisted
clustering greatly reduces the changing rate of a cluster head.

Overall, this paper makes three contributions. First, it
presents a new metric called DLR that quantitatively measures
mobility correlation in spatial and temporal localities. Second,
it shows that DLR can effectively identify real-time stable
group structure in VANETs. Third, it incorporates DLR in
assisting data forwarding and clustering.

The remainder of this paper is organized as follows. In
Section II, we give a succinct summary of existing work on
group mobility and the motivation of this paper. Section III
presents our observations of spatial and temporal localities
in node mobility by investigating two citywide traces. In
Section IV, we quantify mobility correlation using a new met-
ric, i.e., DLR. In Section V, we evaluate this metric through
two traces and simulations by showing that the DLR can effec-
tively capture the mobile group structures in wireless networks.
Section VI gives applications of the DLR in assisting data
forwarding and clustering. Section VII concludes this paper.
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II. RELATED WORK

In contrast to the random mobility modeled by popular mo-
bility models (such as random walk), the moving behaviors of
mobile users usually follow some mobility patterns and exhibit
significant degree of correlations, which leads to overlapping
movement trajectories of vehicles driven by humans [18]. As
observed in corporate/campus WLAN traces [9], [10], mobile
users spend most of their time at their home locations, where
node gathering yields connected components. Traces in [19]
show that nodes belonging to one community have frequent
contacts and long contact duration. The correlated vehicle
mobility (also called group mobility) clearly leads to node
grouping on the road or at community sites where humans
perform tasks or social activities.

As a result, many research works have elaborated upon the
impact of group mobility. In particular, simulations in [3] show
that routing protocols (i.e., dynamic source routing, destination-
sequenced distance vector routing, and ad hoc on-demand
distance vector routing) achieve the highest throughput and
the least overhead with RPGM compared with Freeway and
Manhattan models. The authors of [18] observe a significantly
reduced packet delivery ratio when employing the realistic
trace simulator to control mobility of nodes. The work in [5]
reveals that correlated node movements have a huge impact
on asymptotic throughput and delay, and can sometimes lead
to better performance than that achievable under independent
node movements.

Existing studies on correlated mobility heavily rely on group
mobility models with simplified node grouping behaviors, such
as RPGM and virtual track models [20]. It is commonly as-
sumed that nodes are partitioned into several groups beforehand
and group memberships either never change (e.g., RPGM) or
evolve according to a certain stochastic process. For instance,
the virtual track model [20] for a vehicular network scenario
binds nodes’ group movements on edges in a graph, and group
split and merge only happen at vertices. The work in [21]
assumes that groups of nodes merge or split according to a
Markov chain process.

Nevertheless, in a spontaneously deployed ad hoc network
with no preconfigurations, mobile nodes have no prior knowl-
edge about the mobility groups and their memberships. More-
over, rather than the simplified node grouping behaviors in
existing group mobility models, node groups in reality evolve
not only in various ways (such as growth, contraction, com-
bination, and split, as shown in Fig. 1) but also according to
complex mechanisms due to the autonomous human mobility
and complicated social behaviors of mobile users. As group
mobility is still underexplored, correlated mobility needs to be
studied to identify dynamic node groups.

In this paper, we try to identify dynamic node groups that
are induced by correlated mobility of vehicles. We achieve this
by describing mobility correlation between any two vehicles
through a novel metric, i.e., DLR, which incorporates mobility
correlations of nodes in both spatial and temporal domains. The
effectiveness of DLR is evaluated using traces and simulations.
In addition, we demonstrate how DLR can be leveraged to assist
data forwarding and clustering.

Fig. 2. Geographical grouping in SFCAB.

III. CORRELATED MOBILITY IN EMPIRICAL TRACES

In vehicle-to-vehicle networks, mobile devices are mostly
carried by drivers/passengers or installed on vehicles that are
driven by humans, i.e., mobile devices are associated with mo-
bile humans. Vehicle mobility, in contrast to random indepen-
dent and identically distributed mobility model, is restricted by
geographic surroundings and dependent on each other, which
are examined using real traces here.

A. Spatial Locality of Node Mobility

To find out whether there exist correlations among mobile
nodes in the real world, we start with a taxicab trace in
San Francisco (SF) from the Cabspotting Project [22]. This
trace is chosen for our study because the customers may have
quite different destinations and independent movements, which
do not show obvious mobility correlations. The SF cab trace
(SFCAB) contains GPS logs of 536 yellow cabs for over
30 days. Cab location is updated almost every minute if the cab
stays online. In this cab-based VANET, each cab is taken as a
mobile node. We extract locations of 40 cabs running at 01:27
on May 05, 2008, as shown in Fig. 2.

By fixing the time, Fig. 2 shows node mobility by a cab’s
location and speed. These two attributes of vehicle mobility are
constrained by road layout and speed limit, which demonstrate
the spatial locality of node mobility. Although cabs likely move
independently as their destinations span a broad area, we still
observe several cab clusters with different sizes, i.e., there exist
mobility correlations among cabs. In Fig. 2, there are two
larger groups (in red and green) and two smaller groups (in
blue and pink), along with six individual nodes. In the largest
group (in red circle), 22 cabs are located in downtown SF,
which means that these 22 users have similar spatial locality
properties (i.e., adjacent locations and possibly similar speeds).
This node grouping is probably caused by vehicles moving on
the same road, around attraction of hot spots (such as airports
and shopping centers). In other words, nodes with similar
spatial locality tend to form user groups.

Remark 1: The snapshot of the cab trace shows that
node mobility exhibits spatial locality and that mobile users
with similar spatial locality can establish connected network
components.
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Fig. 3. Social grouping in STBUS.

B. Temporal Locality of Node Mobility

In addition to the observation of mobility correlation in
spatial locality aspect, we turn to another trace, i.e., a bus trace
in Seattle (ST) from the Ad Hoc City Project [23], to explore the
mobility pattern of vehicles. This trace is considered because
the movements of buses are not as independent as the cab-
based trace, serving people who may share similar stops and
timing patterns. The Seattle bus trace (STBUS) contains GPS
logs of more than 1200 buses running 239 routes for around
20 days. Bus location is updated about every 2 min while the
bus is running. Because there are frequent holes in the STBUS
trace, we observe 17 buses running six routes at 11:30 A.M. on
October 10, 2001, shown in Fig. 3. The curves are trajectories
of bus routes and the points are current locations of buses.

In the Ad Hoc City Project, bus stops are important locations
in the network. The important locations in the network are
compared with caves in ancient times when people have social
activities in caves of tribes. Over time, a bus demonstrates its
mobility pattern through its frequent visits to the stops on its
running route while it seldom travels to others, it has a long
sojourn time at bus stations and short stay time at stops on road-
side, and its visit order is from one stop to another (e.g., in-town
or out-town). This dependence of mobility pattern on caves in
the network reveals the temporal locality of node mobility.

Fig. 3 shows that buses running on the same routes tend to
form groups (e.g., blue route 200 and red route 007). Clearly,
buses on the same route have identical movement trajectory and
thus likely meet frequently (e.g., the three black dots on the
lower part of Route 007). In other words, buses can be grouped
with respect to stops for different purposes, such as shopping
centers and industry parks, which are related to social behavior
and similar temporal locality. Notice that buses running the
same route do not always locate near to each other, e.g., the four
buses (in red spots) on Route 245 are almost evenly distributed
en route. That means that correlation in temporal locality is dif-
ferent from correlation in spatial locality as temporal locality is
induced by social behaviors, whereas spatial locality is induced
by geographic limitations.

Remark 2: In addition to the mobility correlation in spatial
locality due to geographic constraints, correlation in temporal
locality induced by social gatherings or similar activity sched-
ules also has impact on grouping of nodes. This adds another
modality to explore the internode mobility correlation.

Because correlated node mobility results in dynamic node
groups and network structures, measuring mobility correlation

is needed for identifying network structures and exploring its
impact on network performance and application in network
design. Two nodes in each other’s transmission range maintain a
communication link, and a group of nodes that locate and move
closely (high correlation in spatial locality) would form a stable
group (i.e., connected network component). Nodes with similar
temporal locality are likely to meet frequently and stay together
for a long period, resulting in short intermeeting time and long
contact duration. Therefore, mobility correlation in both spatial
and temporal localities should be measured to identify node
groups on the fly.

However, existing studies fail to capture both modalities in
measuring mobility correlation. The works in [24] and [25]
proposed metrics that measure mobility correlation based on
nodes’ relative location and speed (i.e., spatial locality) at a
certain time while neglecting correlation in mobility patterns
(i.e., temporal locality) over time. On the other hand, many
community detection algorithms [26] measure mobility cor-
relation based on contact information between nodes. This
approach tends to detect long-term community structure but is
unable to capture the group evolutions in real time. To fully
understand the properties of a group or network component, it
is desirable to capture mobility correlation in both spatial and
temporal locality domains.

IV. MEASURING INTERNODE MOBILITY CORRELATION

Based on our observations in Section III that vehicle mobility
is correlated in spatial and temporal localities, the challenge is
how to quantify this dynamic mobility correlation. Here, we
first investigate correlations in spatial and temporal localities
separately and then present a new metric, i.e., DLR, that com-
bine these two factors to measure the mobility correlation.

A. SLS

As location and speed are two factors of the spatial locality
of vehicle mobility, distance di, j(t) and relative speed vi, j(t)
provide information for the similarity of spatial locality be-
tween two nodes at time t. The SLS measure SLSi, j(t) is time
varying to capture dynamic mobility correlations. SLSi, j(t)
should increase when either the distance di, j(t) or relative
speed vi, j(t) decreases. To make sure that the spatial and TLS
measures have the same order of magnitude, we also require
SLSi, j(t) to be normalized within [0, 1].

With the statistical distance measure defined in statistical
analysis [27], we are able to quantify the SLS of two ve-
hicles with their relative movement information. Regarding
location and speed as the two attributes of the 2-D spatial
locality observation for a node, the statistical distance between
the two 2-D observations of two nodes (i, j) at time t is√
w1d2i, j(t) + w2v2i, j(t) where di, j(t) and vi, j(t) are their

relative distance and speed, respectively, and w1 and w2 are
the weight coefficients for each attribute. Note that vi, j(t) =√
|vi(t)|2 + |vj(t)|2 − 2|vi(t)‖vj(t)| cos θ, where |vi| and

|vj | are the magnitude levels of nodes vi and vj’s speeds,
and θ is the angle between their moving directions. Let rmax

denote the maximum transmission range and vmax denote
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the maximum speed. Because two neighboring nodes satisfy
0 ≤ di, j(t) ≤ rmax and 0 ≤ vi, j(t) ≤ 2vmax, we can set w1 =
1/(rmax)

2 and w2 = 1/(2vmax)
2 so that di, j(t) and vi, j(t) can

be scaled to have the same order of magnitude (i.e., be within
the range of [0, 1] for a neighboring node pair). Therefore, we
define the SLS between a neighboring node pair (i, j) as

SLSi, j(t) =
1

1 +

√(
di, j(t)
rmax

)2

+
(

vi, j(t)

2vmax

)2
. (1)

SLSi, j(t) = 0 for two nonneighboring nodes i and j as no
communication link exists between them.

Clearly, this SLS measure satisfies all our requirements.
SLSi, j(t) is symmetric and 0 ≤ SLSi, j(t) ≤ 1. When di, j(t)
and vi, j(t) decrease to 0, which means that the two nodes
move together at the same speed, similar to two people sitting
in the same car, we have SLSi, j(t) approaches to 1, implying
the highest SLS. On the contrary, when the distance and the
relative speed between these two nodes, i.e., di, j(t) and vi, j(t),
respectively, are large, then the value of SLSi, j(t) becomes
very small, even to 0, which indicates very little or no SLS
between this pair of nodes. In other words, the more adjacent
the locations and similar the speeds of nodes are, the higher
SLS they have, which indicates stable communication links and
local groups.

B. TLS

In addition to correlation in the spatial locality domain,
correlation in temporal locality is also critical for understanding
the mobility correlation of nodes. Here, we take an entropy-
based approach to measure the degree of similarity of temporal
locality. Specifically, we first present a mathematical model,
i.e., a cave profile, to characterize the temporal locality of an
individual node. Then, we measure the closeness of different
cave profiles based on the idea of relative entropy.

1) Cave Profile Modeling: Existing studies on mobility pat-
terns of mobile users [9], [10], [17], [28] have shown that, in
contrast to the random trajectories predicted by the prevail-
ing Levy flight and random-walk models [29], movements of
mobile users show a high degree of temporal locality. More
specifically, a mobile user not only visits different communities
with different frequencies and stays there for unequal amounts
of time but it also visits these sites at different times. As
vehicles (e.g., buses, cabs, personal cars) have become the main
transportation tool for mobile users (i.e., nodes in a VANET
are associated with mobile humans), node mobility in VANETs
also exhibits temporal locality. Therefore, we model vehicle’s
temporal locality by characterizing the frequency and sojourn
time in each location and the order in which the locations are
visited [30].

Assume that N nodes move in a network with M communi-
ties, which could be hot spots (such as campuses, houses, and
offices) extracted from a real map or partitions of the network
area. Mobile users visit different communities to perform dif-
ferent social activities, which is similar to people attaching to
communities in caves in ancient times. Thus, communities in

the network are referred to as “caves.” Let Ω = {c1, . . . , cM}
be the set of all caves in the network. Further, we assume that
mobile nodes can record their location, either by GPS or other
localization methods in [31]. Suppose that the time is slotted
with each time interval Δt (e.g., Δt = 1 h). Let Xi(t) be the
cave at which node ni presents at time slot t and Ti(t) =
{Xi(1), Xi(2), . . . , Xi(t)} denote the historic caves visited
over the past t time slots. In fact, Ti(t) includes information
on ni’s visiting frequency, sojourn time, and visiting order
of community sites and can be thus used to extract temporal
locality information.

We also notice that prior study [30] found that human mo-
bility can be predicted with high accuracy (≥ 93%) based on
its movement trajectory because humans tend to repeat their
daily schedules, such as working at offices during daytime and
staying at their home in the evening. As nodes in VANETs
are associated with mobile humans, node mobility would also
show predictability. Moreover, they found that the best mobility
predictability is achieved through the entropy measure based
on P (T ′

i), which is the probability of finding a particular time-
ordered subsequence T ′

i in the trajectory Ti, as it captures the
full spatiotemporal order present in a person’s mobility pattern.
Therefore, we can estimate the likelihood of ni targeting cave
cm as the next destination, which is denoted as pti(cm), by
the probability of finding the time-ordered subsequence Ti(t−
k, t)cm conditioned on finding subsequence Ti(t− k, t) in
node’s visiting history Ti(t).

Definition 1: The cave profile of node ni at time t is defined
as P k

i (t) = {pki (c1, t), . . . , pki (cM , t)}, i.e.,

pki (cm, t)=P
(
Xt+1

i =cm|Ti(t)
)
=

N (Ti(t− k, t)cm, Ti(t))

N (Ti(t− k, t), Ti(t))
(2)

where Ti(t− k, t) = {Xi(t− k), . . . , Xi(t)} is the substring
of Ti(t) recording the visitation history in the recent k time
slots, and N(s′, s) denotes the number of times that the sub-
string s′ occurs in s. N(Ti(t− k, t), Ti(t)) and N(Ti(t−
k, t)cm, Ti(t)) are the numbers of times that time-ordered se-
quences of visited caves {Xi(t− k), . . . , Xi(t)} and {Xi(t−
k), . . . , Xi(t), cm} appear in movement history Ti(t), respec-
tively, which are determined by visiting frequencies, sojourn
times, and visiting orders of the caves in the network. P k

i (t)
depends only on the k most recent locations; thus, we refer
to it as O(k) cave profile. As (2) estimates the likelihood of
appearing at cave cm in the next time slot based on all three
attributes of temporal locality, the cave profile mathematically
represents the temporal locality.

If N(Ti(t− k, t), Ti(t)) = 1, pki (cm, t) = 0 for m = 1, . . . ,
M . To avoid this case, (2) degrades to O(k − 1). If node ni

visits Xi(t) for the first time, (2) degrades to the O(0) cave
profile, in which

p0i (cm, t) = N (cm, Ti(t)) / |Ti(t)| (3)

where |Ti(t)| is the length of Ti(t). Clearly, the O(0) cave
profile characterizes the temporal locality based on visiting
frequency and sojourn time. To find the value of k, we take the
suggestion from an earlier work [32] that human mobility can
be well predicted depending on the two most recent locations.
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Therefore, we recommend the O(2) cave profile for the simplic-
ity of analysis and practical applications. That means

p2i (cm, t+ 1) =
N (Xi(t− 1)Xi(t)cm, Ti(t))

N (Xi(t− 1)Xi(t), Ti(t))
. (4)

In addition, we normalize the cave profile to ensure that∑M
m=1 p

k
i (cm, t) = 1 by rewriting

p̂ki (cm, t) =
pki (cm, t)∑M
j=1 p

k
i (cj , t)

. (5)

The cave profile is able to model the temporal locality of
individual mobility. Then, we move on to the measurement of
TLS between two nodes.

2) Measuring TLS: Among various similarity/distance mea-
sures that compare two probability distributions (see [33]), the
Kullback–Leibler divergence (KLD) (also relative entropy) is a
well-known method of measuring the difference between two
probability vectors in information theory. The KLD is well
defined for both discrete and continuous distributions, and is
always nonnegative. However, the KLD is a nonsymmetric
measure and is sensitive to quantization effects in the histogram
computation. The Jenson–Shannon divergence (JSD), which
is the symmetrized and smoothed version of the KLD, is an
empirically derived divergence that is numerically stable and is
also robust in the presence of noise. Thus, we choose the JSD
to measure the similarity between mobility patterns.

Definition 2: The JSD between P̂ k
i (t) and P̂ k

j (t) is

JSD
(
P̂ k
i (t)‖P̂ k

j (t)
)

=
1
2

M∑
m=1

p̂ki (cm, t) log2
2p̂ki (cm, t)

p̂ki (cm, t) + p̂kj (cm, t)

+
1
2

M∑
m=1

p̂kj (cm, t) log2
2p̂kj (cm, t)

p̂ki (cm, t) + p̂kj (cm, t)
. (6)

For the sake of simplicity, we refer to node ni’s cave profile
as P̂i(t) in the following. The JSD measure of TLS is thus
defined as

TLSi, j(t) = 1 − JSD
(
P̂i(t)‖P̂j(t)

)
. (7)

0 ≤ TLSi, j(t) ≤ 1 and TLSi, j(t) is symmetric. TLSi, j(t) = 1
if and only if P̂i(t) = P̂j(t). The closer the cave profiles of a
pair of nodes are, the larger their TLS is, and vice versa.

3) Illustrative Example: To better understand the cave pro-
file model and TLS measure, let us take an example of four
mobile users with five-site options, i.e., M = {1, 2, 3, 4, 5}.
The location history for each user is shown in Table I. The his-
toric observations, although short, mimic the skewed location
visiting preferences of human mobility. For instance, n1 visits
communities c1 and c2 much more often than the other three
communities, whereas n3 mostly stays at c2 and c5. In contrast
to the sequence of site visits of n1, n2 goes to c2 after staying
at c1.

By applying (4) for the O(2) cave profile, the likelihood
of ni visiting cave m after visiting caves c3 and c4 can be
calculated, e.g., p21(1, t) = N({341}, T1)/N({34}, T1) = 1/2
and p21(i, t) = N({34i}, T1)/N({34}, T1) = 0 for i = 2, 3, 4.

TABLE I
EXAMPLE OF USER CAVE PROFILES

Accordingly, the normalized P̂ 2
i is obtained using (5), and the

resulting cave profiles are shown in Table I.
Using (6) and (7), the TLS between each user pair can be

calculated, which is TLS1,4 = TLS4,1 = 1, and TLSi, j = 0,
otherwise. The results indicate that nodes n1 and n4 have high
TLS and thus likely move together as both of them probably
will go to Cave 1. It is interesting to see that even n1 and
n2 have the same historical probability of visiting each cave
according to (3), they are not likely be moving together because
they seldom appear at one location at the same time. In other
words, O(0) cave profile is inadequate for measuring TLS.

Remark 3: Based on the mobility history, the cave profile
can be used to estimate the likelihood that each community is
chosen as a user’s next destination. By measuring the closeness
of cave profiles, TLS shows the likelihood of two users visiting
the same cave during the next time slot and thus tells the
tendency of two users moving as a group.

C. DLR

Thus far, we have investigated SLS and TLS, both of which
are essential in characterizing internode mobility correlation.
By introducing a tune-up parameter α to jointly consider the
given observations, we propose a new metric, i.e., DLR, to
measure internode mobility correlation.

Definition 3: DLRi, j(t) between two nodes (i, j) at time t
is given by

DLRi, j(t) = (1 − α)SLSi, j(t) + αTLSi, j(t) (8)

where 0 ≤ α ≤ 1, and 0 ≤ DLRi, j(t) ≤ 1.
Through adjusting the value of α, the weights of SLS and

TLS can be adapted for different network scenarios. For net-
works that most nodes move independently, the DLR with
small α can represent the mobility correlation in spatial local-
ity, whereas for nodes with clear mobility patterns, the DLR
with large α can manifest the similarity of nodes’ temporal
locality. The DLR can also accommodate different applications
by choosing different α. Large α (even α = 1) is suitable for
mobility pattern recognition or communiction detection. On the
other hand, small α (even α = 0) is fit for link or path duration
estimation.

The given definition of DLR measures the mobility correla-
tion between a pair of nodes. In the following, we further show
that DLR can be used to study properties of a group of nodes,
such as group structure and stability.

V. IDENTIFYING NETWORK COMPONENTS ON THE FLY

A group means a number of nodes bounded together as being
related in some way.
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Definition 4: Let DLRth be the required grouping threshold
for two users to belong to a group. Two neighboring nodes
(i, j) are in the same group if DLRi, j ≥ DLRth. According to
this definition, nodes can identify whether encountered nodes
belong to a group. Each node i first obtains information on
cave files, locations, and speeds from its neighbors to calculate
DLR. When DLRi, j exceeds DLRth, node i will consider node
j as its group member. Through further exchanging each other’s
group member information among encountered nodes, group
structures can be uncovered. As nodes change information
among neighbors, identified groups are connected network
components.

The main overhead of the computing DLR is due to the
exchange of mobility information between neighboring mobile
nodes. Two types of messages are generated and periodically
broadcast by nodes to update: 1) spatial locality information;
and 2) temporal locality information. The spatial locality mes-
sage includes node’s location, speed, and moving direction. The
temporal locality message includes the node’s cave profile (i.e.,
caves that the nodes visited over the past t time). Assume that
the sizes of the spatial locality message and the temporal local-
ity message are Ss and St, and the corresponding broadcast fre-
quencies are fs and ft, respectively. The overhead at each node
is Ssfs + Stft. Clearly, the spatial locality message has small
Ss. The spatial locality update frequency is related to relative
velocity and transmission range r of vehicles [34]. fs can be set
as r/2vmax so that the link that is established or broken can be
captured. For example, fs approximately equals to one message
per 4 s when r = 250 m and vmax = 30 m/s. On the other hand,
ft can be set as one message per 10 min, which is sufficient to
capture the driver’s visit to different communities. The temporal
locality message only needs to record visited caves over 24 h
as humans tend to repeat their daily movement schedules. The
total overhead in the network is (Ssfs + Stft)N , where N is
the number of nodes in the network.

A. Trace Evaluation

To use the DLR to identify groups, spatial and temporal
localities need to be extracted from traces. Because locations
of nodes are logged in both data sets, information on spatial
locality can be easily obtained. Hence, we focus on how we
extract cave profiles for characterizing temporal locality and the
results of group identification.

1) Group Identification in SFCAB: First of all, we inves-
tigate whether there is traceable temporal locality feature in
cab mobility. As SFCAB records whether a cab is carrying
customers or not, we can extract locations where cabs pick
up or drop off customers, i.e., locations of stops. It is worth
noting that the customers are autonomous and take cabs without
coordination, which means that there is no correlation among
their destinations. Surprisingly, the stops of three cabs shown in
Fig. 4 reveal that locations of stops are not uniformly distributed
in the city area. For instance, Cab 1 visits the western area more
often than the eastern part of the city, whereas Cab 2 prefers the
eastern area. This may be because cab drivers prefer working in
different areas or hot spots (e.g., airport or downtown), i.e., cab
mobility exhibits temporal locality.

Fig. 4. SFCAB. Temporal locality in cab mobility.

Fig. 5. SFCAB. “Caves” are visible.

To measure the TLS of two cabs, we then identify hot spots as
“caves,” where people frequently get on or off cabs. The stops
of 100 cabs are clustered to five caves (hot spots) through the
k-means clustering algorithm in Matlab, which is shown in
Fig. 5. The stop locations of one cab in Fig. 5 show that this cab
visits caves 2, 4, and 5 more frequently, whereas it occasionally
visits caves 1 and 3. For simplicity, we use O(0) cave profile,
i.e., the probability that a cab stays in each cave. Car ni’s
preference for cave cm is

p0i (cm) =
number of stops in cave cm

total number of stops of car ni
. (9)

By parsing the data in the SFCAB trace file, we finally
identify three groups (1, 4, and 6) with multiple members and
nine additional single nodes, as shown in Fig. 6. The length and
the direction of an arrow represent the speed and the moving
direction of a node, respectively, and the dotted line between
ni and nj means that DLRi, j ≥ DLRth, where DLRth = 0.2 is
the average DLRs among all node pairs. By taking a closer look,
we further observe that node 5 does not join group 1 because
node 5 is not within the transmission range of any node in this
group. In addition, nodes 2 and 3 cannot be clustered to a group
because they move at different speeds, i.e., the arrow length
(speed) for node 3 is much longer (faster) than that of node 2.
Nodes 9 and 10 are classified as two groups because of their
opposite moving directions.

When we change 0 < α < 1 with different values, i.e., dif-
ferent weights of TLS and SLS, we observe a little difference
in identified groups, as shown in Fig. 6. One plausible reason
is that cabs mostly move independently and do not show
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Fig. 6. SFCAB. Identified groups with α = 0.5 and DLRth = 0.2.

Fig. 7. TLS between two buses.

apparent correlation in temporal locality; thus, SLS dominates
node grouping, and TLS has little impact on identifying group
structures in the SFCAB.

Remark 4: Fig. 6 shows that the DLR can effectively identify
groups, in which nodes have similar mobility features (such as
location and velocity), have more connections among them than
connections outside the group, and form connected network
components. Therefore, DLR can properly measure the SLS
among nodes based on their relative distance and speed.

2) Group Identification in STBUS: Assume that each bus
stop is a “cave,” and Ω is the set of all bus stops. We extract
cave profile P 0

i = {p0i (c1), . . . , p0i (cM )} by calculating p0i (cm)
as the likelihood that bus i appears at bus stop cm. For cm on a
running route of i, p0i (cm) is i’s sojourn time around cm, which
can be approximated by lm/Li, where lm is the length between
cm and its previous stop, and Li is the length of the running
route of bus i (see Fig. 7); otherwise, p0i (cm) = 0. Using (6)
and (7), the TLS between two buses running routes i and j is
simplified as

TLSi, j = 1 − 1
2
log2

(
Li − Li, j

Li
+

Lj − Li, j

Lj

)
(10)

where Li, j = Li ∩ Lj is the overlapping length of two routes.
Note that, for two buses running on the same route, TLSi, j is

1 as they have the same mobility pattern. For buses running on
different routes, TLSi, j depends on the proportion of overlap-
ping trajectory over the total route length. The more two routes
overlap, the more similar their temporal locality become.

Fig. 8. STBUS. Identified groups with α = 0, 0.5, and 1.

Using DLR in (8) and setting DLRth as the average of DLRs
over all neighboring node pairs, the group structure in STBUS
is shown in Fig. 8. Groups in dashed rectangles are obtained
by using α = 1, which are consistent with bus routes. Based
solely on SLS (α = 0), buses running on different routes may
be clustered into a group (the small solid square in the middle)
as long as they geographically locate closely. By considering
both SLS and TLS, e.g., α = 0.5, identified groups (the dashed
circles) only include buses running on the same route and
moving closely.

Remark 5: The DLR can effectively detect user groups in
STBUS, in which nodes have the same mobility pattern (i.e.,
traveling route) or closely located. Nodes belonging to the
same group have more interactions among them than with other
nodes (particularly nodes running on different routes), which
implies a good measurement of mobility correlations among
mobile nodes.

B. Simulation Evaluation

By examining real traces, we have observed how the DLR
can be used in identifying groups with either apparent corre-
lation in spatial locality (e.g., cabs) or temporal locality (e.g.,
buses). To the best of our knowledge, there is no trace with both
spatial and temporal locality information available for public
use; thus, we resort to simulations for a thorough evaluation.

1) TSC Mobility: To reproduce the skewed location pref-
erences of human mobility, i.e., people spend most of their
time at a few frequented caves and stay shortly at other caves,
we implement a time–space-varying caveman (TSC) mobility
model in OMNeT ++ [35].

At t = 0, each node assigns its cave preference pro-
file {pi(cm), 1 ≤ m ≤ M}, according to truncated power-law
(TPL) distribution to ensure the skewed location preferences.
Denote by Wi = {wi(c1), wi(c2), . . . , wi(cM )} the pausing
times of node i at M caves, where wi(cm) is proportional to
pi(cm). Accordingly, nodes visit and stay in different caves
with different weights/probabilities that enables hierarchical
location preferences.

An example with five communities in the network is shown
in Fig. 9. Node i at home location generates location profile



4598 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 9, NOVEMBER 2013

Fig. 9. TSC mobility. Locality modeling and smooth movement.

Fig. 10. Intercontact time under TSC mobility.

{pi(cm), 1 ≤ m ≤ 5} and sojourn time Wi. Then, node i se-
lects one of the M communities as its next target with likeli-
hood pi(cm) and randomly chooses a destination point around
the target cave. The node moves to its destination using smooth
movement that first speeds up, then moves at stable speed,
and finally slows down before coming to a stop. The speed of
smooth movement is proportional to the distance between the
starting point and the destination [36]. When node i reaches its
destination at cm, it stays there for wi(cm) period of time with
pauses or small movements around cm. Then, node i repeats
this process again. All N nodes in the network continue their
movements until the end of simulation.

Before using TSC mobility, we run simulations to make
sure that TSC mobility exhibits characteristics of node mo-
bility observed in empirical traces, which is the TPL de-
cay of intercontact time [37]. Simulation runs for 24 h with
20 nodes moving in a five-community network area, as shown
in Fig. 9. The transmission range is set as 250 m. Fig. 10
shows the complementary cumulative distribution function of
the intercontact time, i.e., P{TI > t}, on a log–log scale with
simulation area ranging from 1000 m × 1000 m to 5000 m ×
5000 m. Consistent with the studies in [37], the intercontact
time follows a TPL distribution, and for the 5000 m × 5000 m
simulation area, the power-law behavior is dominant over up to
O(104) s, which is followed by a sharp decrease beyond that
time scale.

Remark 6: The TSC constrains node movement on lines
between caves, which reflects the road-topology-constrained
car movements. Moreover, the TSC mobility model not only

Fig. 11. Nodes with similar mobility patterns are identified as groups.

mimics skewed location preferences of human mobility but
also yields power law and exponential decay dichotomy of
intercontact time. Therefore, we use TSC to evaluate the DLR.

2) Group Identification Under TSC Mobility: Here, we first
study group identification in a simple four-cave network and
then in a general network. As a simple scenario, the net-
work is partitioned into four caves {C1, C2, C3, C4}, with
ten nodes moving for 48 h according to TSC mobility. Nodes
update their mobility observations every 10 min. We intro-
duce two mobility patterns: O(0) cave profile for {n1, . . . , n5}
is {0.85, 0.05, 0.05, 0.05}, whereas that for {n6, . . . , n10} is
{0.05, 0.05, 0.85, 0.05}.

Fig. 11 shows that DLR identifies two groups, in which
α = 0.5 and DLRth = 0.5 are used. Group 1 in C1 includes
nodes {n1, n2, n3, n4, n7}, and group 2 in C3 includes nodes
{n6, n8, n9}. Notice that node n7 is loosely connected to other
nodes in group 1 because it has a very different mobility pattern
(i.e., cave file) from nodes in group 1, e.g., it has a higher
preference of cave C3, whereas the nodes in group 1 spend
most of their time in cave C1. The connections between node
n7 and n2 in group 1 are due to correlation in spatial locality
(i.e., adjacent locations). Node n7 is disconnected to nodes n1,
n3, and n4 in group 1 because of different temporal and spatial
localities. Node n5 does not belong to group 2 because it neither
has a similar mobility pattern nor locate closely to nodes n6, n8,
and n9 in group 2.

Remark 7: When node mobility show correlations in both
spatial and temporal localities, DLR can identify user groups in
which nodes either have similar mobility patterns or are closely
located. Nodes with correlations in both spatial and temporal
localities form strongly connected components.

3) Group Lifetime: To further show the benefits of DLR in
group identification, we turn to evaluate the stability of DLR-
identified groups. To proceed, we define the group lifetime.

Definition: Strict group lifetime is defined as follows. Let
G be an identified node group and t0 be the first time when it
emerges. The strict group lifetime of G is the consecutive time
intervals, in which G maintains the same set of group members.

According to this definition, group G dies when there is a
node that joins in or there is a member that leaves (i.e., node
switches between groups). In other words, strict group lifetime
is the duration that a group survives without nodes switching in
or out of the group. The longer the strict group lifetime is, the
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Fig. 12. Strict group lifetime. DLR-identified versus location-based groups.

more stable the group is and the stronger mobility correlations
among group members are.

In the simulations, nodes are moving in a six-cave network
under the TSC mobility. The caves are simply obtained by parti-
tioning a network area into two-row and three-column grids. As
cave profiles are generated according to TPL distribution, the
nodes have different cave profiles, which not only exhibit the
skewed location preferences but also produce different levels
of mobility correlations in temporal locality. For instance, a
node with the cave profile (0.4, 0.35, 0.125, 0.125, 0, 0) will
visit caves c0 and c1 more frequently and stay there for most of
its time and occasionally visit caves c2 and c3. Nodes with the
same type of a cave profile have very high TLS.

Node groups are identified based on: 1) mobility correla-
tion (i.e., DLR value) that neighboring nodes with DLR >
0.5 would be clustered as in a group; and 2) node loca-
tion that nodes located in the same cave belong to a group.
We compute the strict group lifetimes of DLR-identified
groups and location-based groups and show the probabilities
P (strict group lifetime > t) in Fig. 12.

Fig. 12 shows that node groups identified based on DLR
tend to maintain longer lifetime than groups clustered based
on node locations. In other words, DLR-identified groups, in
which nodes have high mobility correlations, are more stable
than location-based groups. Therefore, DLR can be used to
effectively identify stable groups.

4) Impact of α and DLRth: Here, we provide guidelines on
how to choose appropriate α and DLRth.

α is an important parameter in DLR, which can adjust the
weights of SLS and TLS. On one hand, if mobile nodes (such
as buses) have relatively stable movement habits, DLR with
large α tends to detect long-term communities of nodes with
similar temporal locality. Thus, large α is preferred for net-
works with well-defined communities. On the other hand, DLR
with high weight of SLS tends to cluster nodes into closely
moving groups. Without taking into account SLS (α = 1), the
group structure may be unable to capture the dynamics of node
movements. Therefore, for a network with high or random node
mobility, such as a cab-based ad hoc network, smaller α may
be preferred to capture network dynamics.

Although DLRth is an important parameter in identifying
node groups, a universal DLRth may be hard to determine
due to the dependence of group structures on node mobility
and application requirements. An easy way to set DLRth is
averaging DLRs between a node and its neighbors because

nodes in a group are more closely related to each other. Another
possible way to choose appropriate DLRth is adaptively chang-
ing DLRth through learning the stability of identified groups. If
nodes move in or out the group frequently, increasing DLRth

can help to identify more stable groups. To find a suitable
DLRth, application requirements also need to be considered.
For reliable applications, such as sending control messages, we
suggest using large DLRth to ensure the stability of links and
group structures; otherwise, small DLRth is feasible.

VI. DUAL-LOCALITY RATIO-BASED APPLICATIONS

The internode correlation can be helpful in many applications
in addition to detecting network components. For example,
in mobility-aware routing, two nodes with a high DLR move
closely and probably maintain a stable link; thus, they are
more suitable for establishing routes with high stability. In data
forwarding of DTNs, if a node currently carrying a message
sends a copy to a node with different mobility patterns (i.e.,
low DLR), the chance of at least one of them meeting the
destination could be increased. In mobility-aware clustering,
as the node with high mobility correlations with its neighbors
is much less likely to be disconnected from its neighbors,
therefore, communication overhead for changing cluster head
can be reduced if it is selected as the cluster head. Here, we
present two applications to show the benefits of the DLR in
assisting data forwarding and clustering.

A. DLR-Assisted Data Forwarding

As an application, we investigate how DLR can be used to
enhance performance of data forwarding. We develop a DLR-
assisted data-forwarding mechanism for information dissemi-
nation in DTNs. The relays are selected among the contacted
neighbors of a message carrier based on their mobility correla-
tion to increase delivery ratio. DLR-assisted data forwarding
is compared with simple random forwarding that the source
randomly chooses k − 1 relays. This eliminates other factors’
impact on network performance in more complicated routing
schemes, thus highlighting the impact of DLR.

Specifically, we assume that neighboring nodes can exchange
their locations, speeds, and cave profiles. Suppose that the
neighbors of data source S are NS = {n1, . . . , nl}, which are
relay candidates. We assume that D is not in the set NS ;
otherwise, S can simply transmit the data to D immediately.
A relay is selected according to the following steps.

1) S collects the spatial and temporal localities of its neigh-
bors NS by exchanging messages.

2) S calculates the mobility correlation DLRi, S between
S and its neighbor ni. S selects relay node R1 with
DLRS,R1

≤ DLRth and sends a message copy to R1.
3) S repeats step 2 and sends message copies to k − 1

distinct relays. The message is forwarded to D by the
relay node set R = {S,R1, R2, . . . , Rk−1}.

We implement DLR-assisted data forwarding in OMNeT ++
[35]. Fifty nodes with density 8 nodes/km2 move according to
TSC mobility. Node speed is within 10 to 20 m/s. Simulation
update interval is 1 s. There are 25 caves in the network. The
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Fig. 13. Delivery ratio. SCF versus random forwarding.

carrier frequency is 2.4 GHz. The medium-access-control-layer
bit rate is 2 Mbps. Transmission power is 2 mW and the signal
attenuation threshold is −25 dBm. The fading model is a path-
loss model with a coefficient of 2. Then, the node transmission
range is approximately 250 m. The performance metric is the
delivery ratio, which is the percentage of destinations that
receive messages from source nodes within 30 min.

Fig. 13 shows the delivery ratio of DLR-assisted data for-
warding compared with random forwarding with a varying
number of relays and DLRth. Clearly, the more relays are
used, the higher the delivery ratio is. DLR-assisted data for-
warding with DLRth = 1 is the same as random forwarding;
thus, they have the same performance (red curve in Fig. 13).
When DLRth = 0.5, DLR-assisted data forwarding achieves
better performance than random forwarding because DLR is
based on mobility similarity and a relay is selected when it has
relatively different mobility pattern with the message carrier,
which increases the probability of at least one relay meets
the destination. Interestingly, further reducing DLRth to 0.2
degrades DLR-assisted forwarding performance as relay nodes
become hard to find. This indicates that there exists an optimal
DLRth producing best delivery ratio performance. Using DLR
introduces overhead because of spatial and temporal locality
information updates among nodes. To reduce overhead, we
can use DLR reactively and only allow spatial and temporal
locality information exchange between relay nodes and their
neighbors. Suppose that the update frequencies of spatial and
temporal locality messages are fs and ft, respectively. For
example, under the given simulation scenario, fs = r/2vmax

(i.e., 1 message per 6 s), and ft = 1 message per 10 min.
The average number of spatial locality messages transmitted
is lower bounded by (k − 1) and upper bounded by τfsπr

2λ,
where k is the number of relay nodes, τ is the message delay
tolerance, r is node’s transmission range, and λ is the node
density. The number of temporal locality messages transmitted
is lower bounded by k − 1 and upper bounded by τft(N − 2),
where the total number of nodes N = 50. Hence, the total
number of packets associated with DLR is lower bounded by
2(k − 1) and upper bounded by τfsπr

2λ+ τft(N − 2). Here,
we briefly discuss the application of DLR in data forwarding.
A more sophisticated DLR-based routing algorithm can be
designed to achieve better network performance without too
much overhead.

Fig. 14. DLR assists clustering under TSC mobility.

B. DLR-Assisted Clustering

We further utilize DLR in mobility-aware clustering, which
is one of the most general applications of topology control, and
show its benefit of lower cluster-head changing rate compared
with the lowest-ID algorithm [38].

In the lowest-ID clustering algorithm, each node is randomly
assigned an ID, and the node with the smallest ID among its
neighbors acts as the cluster head. Because nodes may move at
a high speed and travel different routes to their destinations,
a node may be frequently disconnected with its randomly
selected cluster head, i.e., clusters based on the lowest ID are
unstable. The stability of clusters could be improved by select-
ing a cluster head based on average DLRs of nodes with their
neighbors. Hence, we implement a DLR-assisted clustering
algorithm that selects the node with the highest average DLR
over DLRs between it and its neighbors as the cluster head.

Using the same simulation setting as in Section V-B1, the
average cluster-head changing time is measured to indicate
cluster stability. Fig. 14 shows that under various node speeds,
changing the interval of the cluster head selected base on DLR
is much longer than that based on the lowest ID. A node
with a higher average DLR with its neighbors not only moves
closely with its neighbors but also may share overlapping paths;
therefore, it is much less likely to be disconnected from its
cluster members if selected as the cluster head, i.e., the chang-
ing rate of the cluster head is reduced. Therefore, DLR can
be used to obtain stable clustering for topology management
in MANETs.

VII. CONCLUSION

In this paper, we have studied the internode mobility correla-
tion in VANETs, which aims to fill the gap between the studies
on individual mobility and performance evaluation based on the
properties of a group of nodes. Spatial and temporal localities
are observed in two vehicle traces with complementary proper-
ties. The SFCAB trace features diversified mobility and desti-
nation and the STBUS features arranged routes and schedules.
We introduced a new metric, DLR, to quantify the internode
correlation in spatial and temporal localities. To explore the
applications of this metric, we have demonstrated how to use
DLR to identify stable groups and to assist data forwarding and
clustering.
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