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ABSTRACT
The capacity scaling property specifies the changes in net-
work throughput when network size increases and serves as
an essential performance evaluation metric for large-scale
wireless networks. Existing results have been obtained based
on the implicit assumption of negligible overhead in acquir-
ing the network topology and synchronizing the link trans-
missions. In large networks, however, global topology collec-
tion and global link synchronization are infeasible with both
the centralized and the distributed link scheduling schemes.
This gap between the well-known capacity results and the
impractical assumption on link scheduling potentially under-
mines our understanding of the achievable network capacity.
Therefore, the following question remains open: can local-
ized scheduling algorithms achieve the same order of capacity
as their global counterpart? In this paper, we propose the
scheduling partition methodology by decomposing a large
network into many small autonomous scheduling zones, in
which localized scheduling algorithms are implemented in-
dependently from one another. We prove that any localized
scheduling algorithm that satisfies a set of sufficient and
necessary conditions can yield the same order of capacity
as the widely assumed global scheduling strategy. In com-
parison to the network dimension

√
n, scheduling partition

sizes Θ(
√

log n) and Θ(1) are sufficient for optimal capac-
ity scaling in the random and the arbitrary node placement
models respectively. We finally propose an example localized
link scheduling algorithm to verify the capacity achieved by
scheduling partition. Our results thus provide guidelines on
the scheduling algorithm design toward maximum capacity
scaling in large-scale wireless networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
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1. INTRODUCTION
The wireless networks have gained tremendous success as

a substitute and extension for the traditional wired networks
in many places. As the user population increases, deploy-
ment of large-scale wireless networks is expected to accom-
modate the increasing demand for wireless services. The
capacity scaling property is one of the most important met-
rics to evaluate the performance of large wireless networks,
which indicates the trend of throughput changes when the
network size increases. Large network size helps diversify
path selections and balance traffic flows, but it intensifies
the wireless interference among users and impacts the net-
work capacity negatively. In order to understand the capac-
ity scaling of large wireless networks, many insightful results
have been obtained in the literature [1–11] that provide the
limiting upper bounds and the achievable lower bounds on
network capacity.

Specifically, motivated by the seminal work [1], many ef-
forts have been made to find the upper and lower capacity
bounds for different communication types in various net-
work settings. On one hand, the constraints of wireless in-
terference and multihop relay prevent a large wireless net-
work from reaching arbitrarily high throughput, while on the
other hand, thoughtful link scheduling can avoid transmis-
sion collisions such that the achievable throughput is within
a constant fraction of the upper bound. The work in [1]
considered the throughput of unicast communications. The
study was extended to broadcast communications in [4–6]
and later to multicast communications in [7, 8]. Recently,
the capacity results of unicast, broadcast and multicast were
unified by introducing the concept of (n, m, k)-casting [9].
Another important discovery on wireless network capacity
with random node placement was made by utilizing the per-
colation method [10] and followed by the improved bounds
on multicast capacity [11]. All of these results were ob-
tained by assuming a globally collision-free link scheduling
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algorithm, which, however, may not be available in large
wireless networks.

Collision-free transmissions are implemented in wireless
networks via link scheduling schemes. The goal of scheduling
is to coordinate transmissions such that every transmission
is guaranteed successful and network throughput is maxi-
mized, i.e., to find the shortest schedule that fulfills all the
link transmission requests. In the approach of centralized
scheduling [12–16], a designated entity collects the entire
network topology information and computes a schedule that
allocates different time slots to the interfering links which
otherwise would collide if transmitting concurrently. As net-
work size increases, centralized scheduling clearly becomes
infeasible because of the requirement for global topology col-
lection. The distributed scheduling algorithms [17–21] work
better in large networks by not collecting global topology.
Instead, nodes exchange messages with neighbors to reach a
consensus regarding their respective transmission times. As
a result of the consensus, a maximal set of collision-free links,
called maximal matching [22], transmit simultaneously and
interfering links transmit at different times. However, dis-
tributed scheduling is not a feasible solution for large wire-
less networks either. The amount of exchanged messages
and the latency to determine the transmission schedule in-
crease as network size grows. Furthermore, network-wide
clock synchronization is required in order for each link to ad-
here to the established schedule. Any clock error may result
in the failure of correct timing in link transmissions. Besides
scheduling, random access [23, 24] has also been studied in
the literature as a simple and alternative approach to link co-
ordination, but the capacity bounds with random access are
unknown yet in large wireless networks, where the medium
access competition among neighboring nodes may lead to
high chance of transmission failures.

Therefore, the inapplicability of existing link scheduling
schemes in large wireless networks is in sharp contrast to
the assumption of a globally collision-free link transmission
schedule in the current study of network capacity scaling.
The gap between them presents an open question: can lo-
calized link scheduling algorithms achieve similar capacity
scaling as their global counterpart? The answer to this ques-
tion is important as it bridges the disconnection between
the theoretical capacity results and the practical implemen-
tation toward capacity maximization.

In this paper, we propose a scheduling partition method-
ology to address the feasibility of maximum capacity scal-
ing in large-scale wireless networks. We decompose a large
wireless network into many small partitions with the links
in each partition scheduled independently from other par-
titions. The network decomposition approach thus signifi-
cantly reduces the scheduling complexity as compared to the
existing algorithms. When designed properly, the schedul-
ing complexity is constant for each partition, regardless of
the network size. Note that scheduling partition may intro-
duce link collisions due to the absence of coordination across
partitions, which breaches the requirement for collision-free
scheduling. Nevertheless, we provide a set of partition and
scheduling principles that guarantee the infringement not to
jeopardize the objective of maximum capacity scaling. We
intend to characterize and present scheduling partition as a
general methodology. Meanwhile, we also design a simple
localized link scheduling algorithm as an application under
this framework and verify the effectiveness of scheduling par-

tition in achieving maximum capacity scaling with constant
scheduling complexity.

The rest of this paper is structured as follows. We describe
the network models and formulate the scheduling problem
in Section 2. Our main results are summarized in Section
3. Sections 4 and 5 present the proofs of our discoveries.
In Section 6 we design a simple localized scheduling algo-
rithm to verify the effectiveness of our scheduling partition
approach. Lastly, Section 7 concludes this paper.

2. NETWORK MODELS AND PROBLEM
FORMULATION

A variety of network models have been used in the litera-
ture to represent different scenarios of network expansions,
node communications, location distributions and wireless in-
terferences. As we study a generally applicable scheduling
method, we consider all these models in this paper.

2.1 Network Models
We consider in this paper the expansion of network size as

the well-known extended network model, which was initially
introduced in [1] and later widely used for wireless network
capacity study, e.g., [2–11]. The extended network is char-
acterized by n nodes distributed in a square region B with
area |B| = n. As network scales n → ∞, the node density
keeps constant 1. Another popular scaling model, the dense
network, differs from the extended model by a factor of

√
n.

After including this scaling factor, our results in this paper
also apply to dense networks. Besides network expansion,
we also consider the following models for wireless interfer-
ences, node locations and communication scenarios.

2.1.1 Interference Models
Three models are widely used in the literature to represent

wireless interference: the protocol model, the physical model
and the generalized physical model.

The protocol model (Iprot) [1] specifies a successful trans-
mission from node vi to node vj if

|Xi − Xj | ≤ r(n), (1)

and for any other simultaneously transmitting node vk

|Xk − Xj | ≥ (1 + Δ)r(n), (2)

where Xi, Xj and Xk are the locations of vi, vj and vk,
r(n) is the critical transmission radius of all nodes, and Δ
models the guard zone around vj in which any simultaneous
transmission causes collision at vj . Whenever a transmission
is successful, vi communicates to vj at a constant data rate
wij = W . Otherwise, whenever collision occurs, wij = 0.

The physical model (Iphy) [1] requires a minimum Signal-
to-Interference-plus-Noise-Ratio (SINR) at vj in order for a
transmission from vi to vj to be successful, as shown below.

Pi
|Xi−Xj|α

BN0 +
P

k �=i
Pk

|Xk−Xj |α
≥ β, (3)

where vk is any simultaneously transmitting node, Pmin ≤
Pi, Pk ≤ Pmax are the transmission powers, B is the spec-
trum bandwidth, N0 is the spectrum density of ambient
noise, α > 2 is the path loss exponent, and β is a constant.
We assume that all the transmissions occur within radius
r(n). In order to overcome the singularity problem [25] that

110



occurs when vi and vj are arbitrarily close and the received
signal power at vj is amplified unrealistically by the path
loss model, we assume a minimum distance r0(n) = εr(n)
(0 < ε < 1) for every transmission. In summary, r0(n) ≤
|Xi − Xj | ≤ r(n). Besides, we assume the ambient noise
is non-negligible as compared to the received signal power,
i.e., γ1BN0 ≤ Pminr−α(n) ≤ Pmaxr−α(n) ≤ γ2BN0 where
γ1, γ2 > 0 are constants. The data rate is wij = W for suc-
cessful transmissions or wij = 0 for failed transmisssions.

The generalized physical model (Igen) [6] differs from the
physical model in the data rate wij , which is determined as

wij = B log2

“
1 +

Pi
|Xi−Xj |α

BN0 +
P

k �=i
Pk

|Xk−Xj|α

”
. (4)

As in the physical model, we assume Pmin ≤ Pi, Pk ≤ Pmax,
α > 2, r0(n) ≤ |Xi −Xj | ≤ r(n), and γ1BN0 ≤ Pminr−α(n)
≤ Pmaxr−α(n) ≤ γ2BN0. Note that due to non-negligence
of BN0, the variable link data rate is upper bounded by

wij ≤ B log2(1+
Pmax(εr(n))−α

BN0
) ≤ B log2(1+γ2ε

−α). (5)

2.1.2 Location Models
We consider two prevailing node location models: random

and arbitrary. In random networks (Lrand) [1], node loca-
tions are distributed in a random Poisson point process. As
n → ∞, r(n) = Θ(

√
log n) is required for network connec-

tivity. In arbitrary networks (Larbi) [1], node locations are
assigned in need. One example is to place the nodes on a
grid with equal distance between neighbors. In this case, as
n → ∞, r(n) = Θ(1) is sufficient for network connectivity.

2.1.3 Communication Models
Three communication models are studied in the literature:

unicast, broadcast and multicast. The unicast model (Cuni)
[1–3] assumes n source-destination pairs. Every node in the
network is a source and it selects another node randomly
as its destination. In the broadcast model (Cbro) [4,5], each
node disseminates its packets to all the other n−1 nodes. As
the transition between unicast and broadcast, the multicast
model (Cmul) [6–8] disseminates the packets from each node
to k − 1 randomly chosen destinations. It is equivalent to
unicast if k = 2 and to broadcast if k = n.

From a single transmission point of view, these communi-
cation models differ in the number of receivers during one
transmission. In unicast there is only one receiver for each
transmission, while in broad/multi-cast there could be mul-
tiple receivers at the branching points of the broad/multi-
cast tree. For presentation convenience, we define the group
of links sharing the same branching point in a broad/multi-
cast tree as broad/multi-cast branches when the branching
node sends the same packet along these links. In addition,
we define the number of communication sessions that tra-
verse a node vi as the node session degree ζi and the num-
ber of sessions that traverse a link lij (lij is directional) as

the link session degree ζij . We further define ηij =
ζij

ζi
to

denote the percentage of time spent on lij when vi is trans-
mitting. Finally, we assume the packet length L bounded
by Lmin ≤ L ≤ Lmax.

2.2 Problem Formulation
In this paper, we propose a scheduling partition methodol-

ogy for achieving the optimal capacity scaling. We will show

that, by proper network partitioning and link scheduling,
network capacity scales on the same order as the theoreti-
cal results [1–11], but with significantly reduced scheduling
complexity that can be as small as a constant. Before prob-
lem formulation, we define a few relevant concepts.

Definition 1. Asymptotic bounds. (i) f(n) = O(g(n))
means there exists a constant c such that f(n) ≤ cg(n) as

n → ∞; (ii) f(n) = o(g(n)) means limn→∞
f(n)
g(n)

= 0; (iii)

f(n) = Ω(g(n)) means g(n) = O(f(n)); (iv) f(n) = ω(g(n))
means g(n) = o(f(n)); (v) f(n) = Θ(g(n)) means f(n) =
O(g(n)) and f(n) = Ω(g(n)). (See [3].)

Definition 2. Scheduling diameter. The diameter of a
scheduling algorithm S(t) = {lij(t) : lij is active at time t}
is defined as Φ(S(t)) = max{li1j1 ,li2j2∈S(t)}{|Xi1 − Xi2 |}.

Definition 3. Scheduling localization. In extended net-
works, algorithm S(t) is global if Φ(S(t)) = Θ(

√
n) and al-

gorithm S(t) is localized if Φ(S(t)) = o(
√

n).

Definition 4. Scheduling partition. A scheduling parti-
tion is a geographic region in which the complete topology
information is collectable for collision-free link scheduling.
This paper considers convex polygonal partitions only.

Definition 5. Scheduling complexity. We consider cen-
tralized scheduling algorithm in each partition. The schedul-
ing complexity is the number of computational steps required
in one run of the algorithm.

All the previous scheduling algorithms assumed in the ca-
pacity scaling study [1–11] are global, thus facing the imple-
mentability problem in large-scale networks. Our objective
is to achieve the same order optimal capacity with man-
ageable scheduling complexity. By taking the partition ap-
proach, the scheduling task is completed independently in
individual partitions, thus avoiding network-wide topology
collection or information exchange. The challenge for the
partition approach is the simultaneous satisfaction of two
goals: maximum capacity (at least in the order sense) and
minimum complexity (constant, if possible). Our scheduling
partition problem is hence formulated as follows.

Definition 6. Network capacity. A data rate λ(n) is the
network capacity if there exists a joint packet routing and
link scheduling scheme such that every node in the network
can send data at rate λ(n) to its destinations losslessly, but
not with any rate higher than λ(n).

Note that λ(n) is determined jointly by the packet routing
protocol and the link scheduling algorithm. As our research
focus is the possibility of using localized scheduling algo-
rithms to achieve order optimal capacity, we assume that
the same routing protocol (the specific protocol selection is
insignificant here) is applied when we compare the perfor-
mance of global and localized scheduling algorithms.

Denoting λg(n) as the λ(n) when any of the global schedul-
ing algorithms assumed in [1–11] is used, and λl(n) as the
λ(n) when we partition the network and implement a local-
ized scheduling algorithm in each partition, we will prove

λl(n) = Θ(λg(n)) (6)

is possible if we partition the network and design the local-
ized scheduling algorithms appropriately. In other words,
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given λg(n) = Θ(f(n)), we will demonstrate the way to
achieve λl(n) = Θ(f(n)), regardless of the function f(n)
that depends on the particular assumptions on the interfer-
ence, location and communication models.

3. MAIN RESULTS
The key question in this study is whether and how schedul-

ing partition can achieve the order optimal capacity in large-
scale wireless networks. To facilitate our study, we charac-
terize the scheduling partition methodology by using three
parameters and define a class of localized scheduling algo-
rithms {Sl(ρ,δ,ξ)(t)} that satisfy three specifications.

S1: Each partition is a convex polygon disjoint from others.
It contains a disk of radius ρ(n) and is contained in a
larger co-centric disk of radius σρ(n) (constant σ > 1).
The disk center is the center of the partition.

S2: In each partition, the links (excluding those in the
same group of broad/multi-cast branches) scheduled
for concurrent transmissions must have a minimum
interspace δ(n), which is defined as the Euclidean dis-
tance between the transmitters.

S3: Given any location in a partition, at any time at least
one link must be scheduled for transmission within ra-
dius ξ(n) from that location. The location of a link is
the location of the transmitter.

The above specifications prescribe the partition dimension
via ρ(n) and the density of concurrent transmissions via δ(n)
and ξ(n). In practice, a large network can be partitioned us-
ing Voronoi tessellation [26] by placing a set of schedulers
at strategic locations. Each node in the network contacts
its nearest scheduler and follows the scheduling instructions
from the chosen scheduler. When ξ(n) > δ(n), S2 and S3
can co-exist without conflict. According to Definition 4,
Sl(ρ,δ,ξ)(t) guarantees collision-free link transmissions within
each individual partition, but does not preclude transmission
failures due to cross-partition interference. Our results will
demonstrate that the impact of cross-partition interference
can be bounded in a way that the network capacity scales
on the same order as using global link scheduling. For con-
ciseness, we abbreviate Sl(ρ,δ,ξ)(t) as Sl(t) from now on, and
denote any global scheduling algorithm as Sg(t).

Next, we provide the sufficient and necessary conditions
on ρ(n), δ(n) and ξ(n) for Sl(t) to achieve order optimal ca-
pacity. The following theorem summarizes our main result.

Theorem 1. In large-scale wireless networks, ∀I ∈ {Iprot,
Iphy, Igen}, ∀L ∈ {Lrand, Larbi}, ∀C ∈ {Cuni, Cbro, Cmul}, a
localized scheduling algorithm Sl(t) achieves λl(n) = Θ(λg(n))
if and only if the following conditions are satisfied:

• Partition dimension: ρ(n) = Ω(r(n)), the partition
size should scale at least on the same order of the crit-
ical transmission radius r(n).

• Minimum link separation: δ(n) = O(r(n)), the mini-
mum separation between concurrent transmissions sh-
ould scale at most on the same order of the critical
transmission radius r(n).

• Maximum link separation: ξ(n) = Ω(r(n)), the maxi-
mum separation between concurrent transmissions sh-
ould scale at least on the same order of the critical
transmission radius r(n).

Theorem 1 reveals that, in order for Sl(t) to achieve the
order optimal capacity, the smallest acceptable partition
dimension is Θ(r(n)), which equals Θ(

√
log n) for random

node locations and Θ(1) for arbitrary node locations. As
Sg(t) is a special case of Sl(t) with partition size Θ(

√
n),

Theorem 1 demonstrates a significant reduction of schedul-
ing complexity by using partition, while still allows Sl(t) to
achieve the same order optimal capacity as Sg(t). In addi-
tion, our result also indicates r(n) as the correct order of
link separation for optimal capacity. Scheduling lower (i.e.,
δ(n) = ω(r(n))) or higher (i.e., ξ(n) = o(r(n))) density of
concurrent transmissions will yield less network capacity by
either wasting opportunities for parallel communications or
introducing excessive link collisions.

Theorem 1 in fact consists of two statements regarding the
capacity comparison of localized and global scheduling algo-
rithms under conditions ρ(n) = Ω(r(n)), δ(n) = O(r(n))
and ξ(n) = Ω(r(n)):

P1: λl(n) = O(λg(n)), the localized algorithms cannot ach-
ieve higher capacity than the global algorithms;

P2: λl(n) = Ω(λg(n)), the localized algorithms can how-
ever achieve at least a constant fraction of capacity of
the global algorithms.

We further have the following theorems that prove the
above statements in Theorem 1.

Theorem 2. Given a localized scheduling algorithm Sl(t)
that achieves capacity λl(n), there exists a global scheduling
algorithm that achieves λg(n) ≥ λl(n).

Proof. See Appendix 9.1.

The proof of Theorem 2 is also the proof for statement
P1 of Theorem 1. To prove statement P2, we have the next
theorem that transforms the problem on network capacity
measured by the maximum source data rate to an equivalent
problem on the data transmission rate on each wireless link
in the network. The latter problem is easier to solve.

Theorem 3. Denoting wl,ij(n) and wg,ij(n) as the sup-
ported data transmission rates on link lij with localized and
global scheduling algorithms respectively, λl(n) = Ω(λg(n))
if and only if wl,ij(n) = Ω(wg,ij(n)) for any lij.

Proof. See Appendix 9.2.

Given Theorem 3, the problem described in statement P2
becomes comparison of wl,ij(n) and wg,ij(n), on which we
have the following result.

Theorem 4. In large-scale wireless networks, ∀I,∀L,∀C,
a localized link scheduling algorithm Sl(t) achieves wl,ij(n) =
Ω(wg,ij(n)) for any link lij if and only if ρ(n) = Ω(r(n)),
δ(n) = O(r(n)) and ξ(n) = Ω(r(n)).

Theorems 2, 3 and 4 together constitute the proof for
Theorem 1. In the next two sections, we will present the
proof for Theorem 4, which includes the sufficiency and the
necessity of conditions ρ(n) = Ω(r(n)), δ(n) = O(r(n)) and
ξ(n) = Ω(r(n)) for obtaining wl,ij(n) = Ω(wg,ij(n)). The
main idea of proof is to compare the respective bounds for
wl,ij(n) and wg,ij(n) under these scheduling conditions.
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vi vj

1
2
|Xi − Xj |

Figure 1: Density determination of the concurrent
senders in the physical model. The disk has radius
1
2
|Xi −Xj |. The square has edge length 1

2
√

2
|Xi −Xj |.

4. PROOF OF CONDITION SUFFICIENCY
We prove in this section the sufficient condition in The-

orem 4, which states that wl,ij(n) = Ω(wg,ij(n)) if ρ(n) =
Ω(r(n)), δ(n) = O(r(n)) and ξ(n) = Ω(r(n)). Our proof has
two steps: i) we bound the link transmission rate of Sg(t)
as wg,ij(n) = Θ( 1

r2(n)
), and ii) we bound the corresponding

link transmission rate of Sl(t) as wl,ij(n) = Ω( 1
r2(n)

). The

combination immediately gives wl,ij(n) = Ω(wg,ij(n)).

4.1 Link Rate in Global Scheduling
We have the following theorem on bounding the link trans-

mission rate in global scheduling.

Theorem 5. In large-scale wireless networks, ∀I,∀L,∀C,
the maximum achievable link transmission rate in global sch-
eduling is wg,ij(n) = Θ( 1

r2(n)
).

Proof. We discuss the interference models Iprot, Iphy and
Igen separately. As this proof does not make any assump-
tion regarding node locations and communication types, it
applies to all the models of L and C. The foundation of this
proof is the fact that links do not collide by using Sg(t).

For Iprot, any two concurrently transmitting nodes must
be separated at least by distance Δr(n). Otherwise, both
transmissions fail due to the violation of Eq. (2). Therefore,
at any time Sg(t) can schedule at most one sender in any

arbitrary square region with edge Δr(n)√
2

. Given node density

1, we bound the time-average data transmission rate of link

lij as wg,ij(n) ≤ ηij
W

(Δr(n)/
√

2)2
=

2ηijW

Δ2r2(n)
. We obtain the

lower bound on wg,ij(n) by observing that senders spaced

by (2 + Δ)r(n) do not collide, i.e., wg,ij(n) ≥ ηijW

(2+Δ)2r2(n)
.

For Iphy, a transmission is successful if Eq. (3) holds. As
shown in Fig. 1, when vi sends a packet to vj , the number
of concurrent senders y within distance 1

2
|Xi − Xj | from vi

must satisfy the following inequality in order for vj to receive
the packet correctly

Pmax

|Xi − Xj |α ≥ βy
Pmin

( 3
2
|Xi − Xj |)α

, (7)

from which we obtain y ≤ (3/2)αPmax
βPmin

. By taking an arbi-

trary square region with edge 1

2
√

2
|Xi − Xj | that covers vi,

as illustrated in Fig. 1, and noting that |Xi − Xj | ≥ r0(n),
we show that the number of concurrent senders within any

square region with edge r0(n)

2
√

2
cannot exceed (3/2)αPmax

βPmin
+ 1.

Otherwise, all these transmissions fail due to their mutual in-

terference. So, we have wg,ij(n) ≤ ηij
(3/2)αPmax/(βPmin)+1

(r0(n)/(2
√

2))2
W

=
8((3/2)αPmax/(βPmin)+1)ηijW

ε2r2(n)
. To find the lower bound on

vivi

vj

vj

(a) r(n) ≥ ( d−1
2

+ 1)
√

2a (b) r(n) ≤ (d + 1)
√

2a

a

2
a
(d

+
1
)

Figure 2: Determination of the bounds on r(n) in
the generalized physical model. In this fraction
of network, a node transmits in each of the four
corner cells that are spaced by Euclidean distance
2a(d + 1), as in [4] and [10]. Considering all the pos-
sibilities of d (regardless of its parity) and the arbi-
trary locations of vi and vj in their respective cells,
r(n) ≥ ( d−1

2
+1)

√
2a is necessary to guarantee the con-

nection between vi and vj , as illustrated in (a). Be-
sides, given Manhattan distance d, r(n) ≤ (d + 1)

√
2a

since the Euclidean distance between vi and vj does
not exceed (d + 1)

√
2a, as shown in (b).

wg,ij(n), we cite a relevant result. It is pointed out in [1] that
there is a large enough constant Δ1 such that all the trans-
missions are successful in the physical model as long as the
concurrent senders are separated by distance (2 + Δ1)r(n).

We thus obtain easily wg,ij(n) ≥ ηijW

(2+Δ1)2r2(n)
.

For Igen, by dividing the network into small cells with edge
a, link lij can transmit successfully at rate R(a, d) when
scheduled [4, 10], where nodes vi and vj are separated by
Manhattan distance d and function R(a, d) is a constant
under our assumptions on Igen. The Manhattan distance
is defined as the minimum number of contiguous cells to
connect vi and vj . Two cells are contiguous in [4] if they
share an edge, while in [10] they are contiguous if they share
either an edge or a vertex. We consider both definitions here.
We find that the critical node transmission radius r(n) must
satisfy the following relations with the cell size a and the
Manhattan distance d: ( d−1

2
+ 1)

√
2a ≤ r(n) ≤ (d + 1)

√
2a,

as explained in Fig. 2. Since at any time the scheduling
algorithm Sg(t) presented in [4] and [10] allows only one
node to transmit within any square region of area 4a2(d+1)2

and the bounds on r(n) give 2r2(n) ≤ 4a2(d+1)2 ≤ 8r2(n),

we have
ηijR(a,d)

8r2(n)
≤ wg,ij(n) ≤ ηijR(a,d)

2r2(n)
.

By defining c1 = min{ ηijW

(2+Δ)2
,

ηijW

(2+Δ1)2
,

ηijR(a,d)

8
} and c2 =

max{ 2ηijW

Δ2 ,
8((3/2)αPmax/(βPmin)+1)ηijW

ε2 ,
ηijR(a,d)

2
}, we sum-

marize the bounds as c1
r2(n)

≤ wg,ij(n) ≤ c2
r2(n)

in all the

three interference models. Thus, wg,ij(n) = Θ( 1
r2(n)

).

4.2 Link Rate in Localized Scheduling
We next determine the lower bound on the link transmis-

sion rate when Sl(t) is used. Before presenting the theorem
on this lower bound, we have the following two lemmas that
will be used in the proof of the theorem.

Lemma 1. Assume that κ1, κ2 > 0 are constants. Given
a disk of radius κ1r(n), if ρ(n) ≥ κ2r(n), the number of
partitions that overlap with the disk is at most a constant.

Proof. See Appendix 9.3.

Lemma 2. Assume that constants κ1, κ2 and κ3 satisfy
0 < κ1 < κ2 < κ3 ≤ 2κ1. Given two co-centric disks of
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radius κ1r(n) and κ3r(n) respectively, define an annulus as
the area between the disk circumferences. If ρ(n) ≥ κ2r(n),
there exists a constant c > 0 such that a partition that over-
laps with the smaller disk must overlap with the annulus by
at least an area of cr2(n).

Proof. See Appendix 9.4.

It is worth noted that Lemma 2 is still true if κ3 > 2κ1.
We do not elaborate since the current form of Lemma 2 is
enough for us to prove a lower bound on wl,ij(n).

Theorem 6. In large-scale wireless networks, ∀I,∀L,∀C,
a localized link scheduling algorithm Sl(t) achieves wl,ij(n) =
Ω( 1

r2(n)
) for any link lij if ρ(n) = Ω(r(n)), δ(n) = O(r(n))

and ξ(n) = Ω(r(n)).

Proof. By the definition of asymptotic bounds, we need
to find constants c, cρ, cδ and cξ such that wl,ij(n) ≥ c

r2(n)

if ρ(n) ≥ cρr(n), δ(n) ≤ cδr(n) and ξ(n) ≥ cξr(n). We
present the proof for wl,ij(n) ≥ c

r2(n)
in two steps:

1: ρ(n) = cρr(n), δ(n) = cδr(n), ξ(n) = cξr(n).

2: ρ(n) ≥ cρr(n), δ(n) ≤ cδr(n), ξ(n) ≥ cξr(n).

Step 1 is the special case in which we show that wl,ij(n) ≥
c

r2(n)
when we configure ρ(n), δ(n) and ξ(n) correctly, and

step 2 is the generalized case in which wl,ij(n) ≥ c
r2(n)

is

still true if ρ(n) and ξ(n) are configured larger while δ(n) is
configured smaller than our choices. Next, we present the
proof for all the models of I, L and C.

Step 1, for Iprot. We first consider location model Lrand

and communication model Cuni. We demonstrate that if we
choose constants cρ = 3

2
(1+Δ), cδ = 3(1+Δ), cξ = 4(1+Δ)

and some constant cu, we will have wl,ij(n) ≥ cu
r2(n)

when

ρ(n) = cρr(n), δ(n) = cδr(n) and ξ(n) = cξr(n). By Iprot,
a transmission from vi to vj is successful when there are no
other concurrent senders within distance (1 + Δ)r(n) from
vj . Since Sl(t) guarantees non-collision within individual
partitions, any sender that fails the transmission on link
lij , if any, must reside in a neighbor partition that overlaps
with disk D(vj , (1 + Δ)r(n)). By setting κ1 = 1 + Δ and
κ2 = 3

2
(1 + Δ), Lemma 1 shows that D(vj , (1 + Δ)r(n))

overlaps with at most a constant c1 number of partitions.
In addition, by setting κ3 = 2(1 + Δ), Lemma 2 tells us
that each of these overlapping partitions must overlap with
the annulus D(vj , 2(1+Δ)r(n))\D(vj , (1+Δ)r(n)) at least
by an area c2r

2(n), where c2 is a constant, as depicted in
Fig. 3(a). In any neighbor partition, for example Pk, be-
cause specification S3 dictates at least one active sender
within any arbitrarily located disk of radius ξ(n), for exam-
ple D(o4, 4(1 + Δ)r(n)), the probability of finding an active
sender inside D(o3, ε) is bounded as

Pr[active sender in D(o3, ε)] ≥ c2r
2(n)

π(4(1 + Δ)r(n))2
= c3.

(8)
Since δ(n) = 3(1+Δ)r(n), when a node in D(o3, ε) is active
in transmission, Pk does not schedule any concurrent senders
in D(vj , (1 + Δ)r(n)). Hence we obtain

Pr[Pk does not fail reception at vj at a given time] ≥ c3.
(9)

(a) Unicast (b) Broadcast/Multicast

vivj

o3o3

o4 o4

PkPk

Figure 3: Proof of Theorem 6 in the protocol
interference model. In unicast, we define disks
D(vj , (1 + Δ)r(n)), D(vj , 2(1 + Δ)r(n)), D(o3, ε) and
D(o4, 4(1 + Δ)r(n)). In broad/multi-cast, we define
disks D(vi, (2+Δ)r(n)), D(vi, 2(1+Δ)r(n)), D(o3, ε) and
D(o4, 4(1 + Δ)r(n)). The area of D(o3, ε) is at least
c2r

2(n). The polygon denotes a neighbor partition.

As Pk may reschedule up to 	Lmax
Lmin


 + 2 times during the

packet transmission from vi to vj , we further have

Pr[Pk does not fail reception at vj ] ≥ c
�Lmax

Lmin
	+2

3 = c4.
(10)

Finally, considering all the neighbor partitions, we arrive at

Pr[successful reception at vj ] ≥ cc1
4 = c5. (11)

Note that at least one sender is active within any square
region with edge 2ξ(n) and the node density is 1, so vi has
a chance of at least 1

64(1+Δ)2r2(n)
to be scheduled. Thus, we

can bound the time-average transmission rate of lij as

wl,ij(n) ≥ c5ηijW

64(1 + Δ)2r2(n)
=

cu

r2(n)
, (12)

where cu =
c5ηijW

64(1+Δ)2
.

Step 1, for Iprot (cont’d). We then consider location
model Lrand with communication models Cbro and Cmul. By
Cbro and Cmul, the packet transmissions from vi along the
broad/multi-cast branches are successful if there are no con-
current senders within distance (2+Δ)r(n) from vi. Similar
to unicast, we prove the existence of a constant c6 such that

Pr[successful reception at all receivers] ≥ c6, (13)

by setting ρ(n) = (2+ 3
2
Δ)r(n), δ(n) = (4+3Δ)r(n), ξ(n) =

4(1 + Δ)r(n), κ1 = 2 + Δ, κ2 = 2 + 3
2
Δ and κ3 = 2(1 + Δ),

as shown in Fig. 3(b). We further prove

wl,ij(n) ≥ c6ηijW

64(1 + Δ)2r2(n)
=

cb

r2(n)
, (14)

where cb =
c6ηijW

64(1+Δ)2
.

Combining the analysis of Cuni, Cbro, Cmul and defining
c = min{cu, cb}, we have proven wl,ij(n) ≥ c

r2(n)
for random

node locations in the protocol interference model.
Step 1, for Iprot (cont’d). We next consider location

model Larbi in which node locations are assigned in need.
A popular assignment is to place the nodes on a grid with
equal distance between neighbors [1, 8]. When we partition
the network, we align the node locations into a grid form
in each partition. The grids are however not aligned across
partitions due to their independence from one another, as
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Figure 4: Node locations on grids.

shown in Fig. 4. The node interspace in each partition is
set to 1 to satisfy the constant node density of 1. Given an
arbitrary point on the partition boundary, because there is
at least one node within distance

√
2 in each neighbor parti-

tion, any constant r(n) ≥ 2
√

2 is large enough to guarantee
the network connectivity. The proof for wl,ij(n) ≥ c

r2(n)

is almost the same as that for the Lrand model. For con-
ciseness, we only highlight the differences. In Eq. (8), we
have shown that the probability for a neighbor partition
to schedule a sender in the annulus area is at least a con-
stant c3, where c3 is defined as the ratio between two ar-
eas: D(o3, ε) versus D(o4, 4(1+ Δ)r(n)). To be accurate, c3

should be the ratio between the numbers of nodes therein
instead of the areas. These two metrics are equivalent for
random node locations since r(n) = Θ(

√
log n) → ∞ as

n → ∞ and the constant node density can be equivalently
scaled to infinity if r(n) is normalized to 1. For arbitrary
node locations, r(n) = Θ(1) and the two ratios are not in-
terchangeable. We next determine the ratio between the
numbers of nodes. Recall that the area of D(o3, ε) is at least

c2r
2(n). By choosing r(n) ≥ max{

q
π
c2

, 2
√

2}, we show that

D(o3, ε) contains at least one node. In general, there are
at least 	p

c2
π

r(n)
2 nodes inside D(o3, ε). As every node
placed inside D(o4, 4(1 + Δ)r(n)) occupies a unit square

area in a slightly larger disk D(o4, 4(1 + Δ)r(n) +
√

2
2

), a

partition can place at most π(4(1 + Δ)r(n) +
√

2
2

)2 nodes

in D(o4, 4(1 + Δ)r(n)). By setting c′3 =
�
√

c2
π

r(n)	2

π(4(1+Δ)r(n)+
√

2
2 )2

,

where r(n) is constant for arbitrary node locations, we can
rewrite Eq. (8) as

Pr[active sender in D(o3, ε)]≥ 	p
c2
π

r(n)
2
π(4(1+Δ)r(n)+

√
2

2
)2

=c′3.

(15)
Following the same reasoning as (9), (10) and (11), we have

Pr[successful reception at vj ] ≥ c′5. (16)

Because at least one node is active in any square region with
edge 2ξ(n), which contains no more than (8(1 + Δ)r(n) +√

2)2 nodes, vi has a chance of at least 1

(8(1+Δ)r(n)+
√

2)2
to

be scheduled. We hence obtain

wl,ij(n) ≥ c′5ηijW

(8(1 + Δ)r(n) +
√

2)2
=

c′u
r2(n)

, (17)

where c′u =
c′5ηijWr2(n)

(8(1+Δ)r(n)+
√

2)2
. Similarly, by setting c′b =

a

bvj

Figure 5: Aggregate interference from the region
bounded between distance a and b.

c′6ηijWr2(n)

(8(1+Δ)r(n)+
√

2)2
in broadcast and multicast, we have

wl,ij(n) ≥ c′6ηijW

(8(1 + Δ)r(n) +
√

2)2
=

c′b
r2(n)

. (18)

We have thus proven the case for arbitrary node locations in
the protocol interference model by setting c = min{c′u, c′b}.

Step 1, for Iphy. Similar to the proof technique used
in [1], we transform the physical model into an equivalent
protocol model. It is shown in [1] that every node can re-
ceive packets correctly in the physical model as long as a
minimum space (2 + Δ1)r(n) is enforced between neighbor
senders, where Δ1 is a constant. Distance (2 + Δ1)r(n) de-
marcates close-in and far-away regions, and the aggregate
interference from the far-away region is insignificant to cor-
rect packet reception. Similar result is also found in [12].
In the following, we extend this finding to network partition
and prove the existence of another constant Δ2. Specifically,
we show that if ρ(n) ≥ r(n) and the concurrent senders
in each partition are separated at least by (2 + Δ2)r(n), a
transmission from vi is successful if no other nodes transmit
within radius (2 + Δ2)r(n) from vi.

In the physical interference model, the SINR at a receiver
vj must exceed threshold β in order to receive a packet suc-
cessfully. To determine the interference imposed on vj , we
divide the network into non-overlapping square belt regions
and consider the aggregate interference from one of them, as
illustrated in Fig. 5. We cover this square belt region seam-

lessly with disks of radius (2+Δ2)r(n)
2

, which are interspaced

evenly at distance
√

2(2+Δ2)r(n)
2

. The disks needed is at most

( 2b√
2(2+Δ2)r(n)/2

+1)2−( 2a√
2(2+Δ2)r(n)/2

−1)2, if
√

2(2+Δ2)r(n)
2

divides 2a and 2b. Note that a partition cannot schedule
more than one sender in a disk at any time because of the re-
quired minimum separation (2+Δ2)r(n) between concurrent
senders. The number of concurrent senders inside a disk thus
does not exceed the number of partitions that overlap with

this disk, which is at most π((2+Δ2)r(n)/2+2σρ(n))2

πρ2(n)
≤ ( 2+Δ2

2
+

2σ)2 ≤ (2+Δ2)
2. Here we have assumed Δ2 ≥ 4σ− 2. Let-

ting a = m
√

2(2+Δ2)r(n)
4

and b = (m+1)
√

2(2+Δ2)r(n)
4

, where
m = 1, 2, · · · , and noting that the interference from any
sender inside the square belt zone does not exceed Pmaxa

−α,
we bound the total interference I from all the concurrent
senders outside the square a =

√
2(2+Δ2)r(n)

4
as

I ≤
∞X

m=1

3(2m+1)(2+Δ2)
2Pmax

“
m

√
2(2+Δ2)r(n)

4

”−α
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≤ 3(2 + Δ2)
2Pmax

“√
2(2 + Δ2)r(n)

4

”−α 3α2 − 6α + 2

α2 − 3α + 2

= 3(2 + Δ2)
2−αPmax

“√
2r(n)

4

”−α 3α2 − 6α + 2

α2 − 3α + 2
. (19)

The SINR at vj is then bounded by

SINR ≥ Pminr−α(n)

BN0 + 3(2 + Δ2)2−αPmax

`√
2r(n)
4

´−α 3α2−6α+2
α2−3α+2

.

(20)
After some computations, we show SINR ≥ β if

Δ2 ≥
“3(2

√
2)α(3α2 − 6α + 2)βγ1Pmax

(α2 − 3α + 2)(γ1 − β)Pmin

” 1
α−2 − 2. (21)

Eq. (21) tells an important fact regarding localized schedul-
ing in the physical interference model: if concurrent senders
in each partition are separated at least by (2 + Δ2)r(n)

and constant Δ2 ≥ max{( 3(2
√

2)α(3α2−6α+2)βγ1Pmax
(α2−3α+2)(γ1−β)Pmin

)
1

α−2 −
2, 4σ − 2}, packet reception at vj is always successful as
long as there are no other senders in the square close-in re-

gion a =
√

2(2+Δ2)r(n)
4

, which is contained in disk D(vi, (2+
Δ2)r(n)). We have thus proven our statement that a trans-
mission from vi is successful if the other nodes within dis-
tance (2 + Δ2)r(n) from vi keep silent. This result applies
to unicast, broadcast and multicast.

Given the equivalence of physical and protocol interfer-
ence models established above, it is straightforward to prove
wl,ij(n) ≥ c

r2(n)
in the physical model. The proof follows the

same line of reasoning as presented in the protocol model ex-
cept for replacing Δ with Δ2. Note that the two conditions
needed for the model equivalence, ρ(n) ≥ r(n) and the min-
imum separation (2 + Δ2)r(n) between concurrent senders
in each partition, are satisfied when we choose appropriate
values for cρ and cδ.

Step 1, for Igen. Our proof for the physical model has
shown that every successful transmission satisfies SINR ≥ β.
Hence, the same transmission must be able to achieve con-
stant rate B log2(1 + β) in the generalized physical model.
The bound wl,ij(n) ≥ c

r2(n)
is then proven trivially by re-

placing the constant W used in the physical model with the
new constant B log2(1 + β).

Step 2. Till now, we have demonstrated wl,ij(n) ≥ c
r2(n)

for all the models of I, L and C when ρ(n) = cρr(n), δ(n) =
cδr(n) and ξ(n) = cξr(n), if we configure constants cρ, cδ

and cξ properly. Lastly, we generalize this result to obtain
the sufficient scaling conditions on ρ(n), δ(n) and ξ(n).

When ρ(n) ≥ cρr(n), there are two possibilities. If ρ(n) =
Θ(r(n)), each partition is geographically bounded between
inner radius ρ′(n) = cρr(n) and outer radius σ′ρ′(n) (σ′ =
σρ(n)
ρ′(n)

is constant). The proof for wl,ij(n) ≥ c
r2(n)

is the same

as before except for replacing σ with σ′. If ρ(n) = ω(r(n)),
we break down each partition into smaller partitions that
are parameterized by inner radius ρ′(n) = cρr(n) and outer
radius σρ′(n). Since wl,ij(n) ≥ c

r2(n)
in every smaller par-

tition, we can merge these partitions back into the original
partition and retain wl,ij(n) ≥ c

r2(n)
.

We note that δ(n) (resp. ξ(n)) describes the minimum
(resp. maximum) separation between concurrently sched-
uled link transmissions. For Sl(t) with δ(n) ≤ cδr(n) and
ξ(n) ≥ cξr(n), we can always choose δ′(n) = cδr(n) ≥ δ(n)
and ξ′(n) = cξr(n) ≤ ξ(n) to achieve wl,ij(n) ≥ c

r2(n)
.

(b)(a)

vivi

pp

vk
vk

Pi

Pp

Figure 6: Proof of Theorem 7 in the protocol in-
terference model. Case (a) proves ρ(n) = Ω(r(n)), in
which we define disks D(vi, 2σρ(n)) and D(p, 2σρ(n)).
Case (b) proves ξ(n) = Ω(r(n)), in which we define

disk D(p, ξ(n)). In both cases, |vip| = Δr(n)
2

.

5. PROOF OF CONDITION NECESSITY
We next prove the necessary condition in Theorem 4,

which states that wl,ij(n) = Ω(wg,ij(n)) only if ρ(n) =
Ω(r(n)), δ(n) = O(r(n)) and ξ(n) = Ω(r(n)). Given our
previous result wg,ij(n) = Θ( 1

r2(n)
) obtained in Theorem 5,

it is hence required to prove the necessity of ρ(n) = Ω(r(n)),
δ(n) = O(r(n)) and ξ(n) = Ω(r(n)) for wl,ij(n) = Ω( 1

r2(n)
).

Before proceeding with the proof, we present two lemmas.

Lemma 3. Given sequences {f(n)} and {g(n)} that sat-
isfy f(n) �= Ω(g(n)), there exist subsequences {f(nk)} ⊆
{f(n)} and {g(nk)} ⊆ {g(n)} such that f(nk) = o(g(nk)),
and vice versa.

Proof. See Appendix 9.5.

Lemma 4. Given sequences {f(n)} and {g(n)} that sat-
isfy f(n) �= O(g(n)), there exist subsequences {f(nk)} ⊆
{f(n)} and {g(nk)} ⊆ {g(n)} such that f(nk) = ω(g(nk)),
and vice versa.

Proof. See Appendix 9.6.

We then have the next theorem for the necessity of condi-
tions on ρ(n), δ(n) and ξ(n) to obtain wl,ij(n) = Ω( 1

r2(n)
).

Theorem 7. In large-scale wireless networks, ∀I,∀L,∀C,
a localized link scheduling algorithm Sl(t) achieves wl,ij(n) =
Ω( 1

r2(n)
) for any link lij only if ρ(n) = Ω(r(n)), δ(n) =

O(r(n)) and ξ(n) = Ω(r(n)).

Proof. We use contradiction, i.e., wl,ij(n) �= Ω( 1
r2(n)

) if

ρ(n) �= Ω(r(n)) or δ(n) �= O(r(n)) or ξ(n) �= Ω(r(n)). The
three interference models are discussed separately. As no
assumption is made on node locations and communication
types, the proof applies to all the models of L and C.

For Iprot, if ρ(n) �= Ω(r(n)), Lemma 3 states that there ex-
ists ρ(nk) = o(r(nk)). We choose a point p such that |vip| =
Δr(n)

2
and define disks D(vi, 2σρ(n)) and D(p, 2σρ(n)), as

shown in Fig. 6(a). Since the partition diameter does not
exceed 2σρ(n), the partition where vi resides, denoted as
Pi, must be contained in D(vi, 2σρ(n)) and the partition
where p is located, denoted as Pp, must be contained in

D(p, 2σρ(n)). Given ρ(nk) = o(r(nk)), we obtain 2σρ(nk)
|vip| =

2σρ(nk)
Δr(nk)/2

→ 0 as nk → ∞. Thus, ∃n∗ such that ∀nk > n∗,
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2σρ(nk)
|vip| < 1

2
, showing that D(vi, 2σρ(nk)) and D(p, 2σρ(nk))

do not overlap and that Pi and Pp are separated. Since there
is at least one sender vk in Pp and |vivk| < Δr(nk), collision
must occur between vi and vk. Consequently, wl,ij(nk) = 0
when nk > n∗. In other words, wl,ij(nk) = o( 1

r2(nk)
) or

equivalently wl,ij(n) �= Ω( 1
r2(n)

).

For Iprot, if δ(n) �= O(r(n)), by Lemma 4, there exists
δ(nk) = ω(r(nk)). As node density is 1 and a partition
cannot schedule multiple concurrent senders in any square

region with edge δ(n)√
2

, the chance for vi to be scheduled is

at most 2
δ2(n)

. The time-average transmission rate of lij is

thus bounded by wl,ij(n) ≤ 2ηijW

δ2(n)
, which gives

wl,ij (nk)

1/r2(nk)
≤

2ηijWr2(nk)

δ2(nk)
→ 0 as nk → ∞. Hence, wl,ij(nk) = o( 1

r2(nk)
)

and wl,ij(n) �= Ω( 1
r2(n)

).

For Iprot, if ξ(n) �= Ω(r(n)), by Lemma 3, there exists
ξ(nk) = o(r(nk)). We choose a point p such that |vip| =
Δr(n)

2
and define disk D(p, ξ(n)), as shown in Fig. 6(b). Be-

cause ξ(nk)
|vip| = ξ(nk)

Δr(nk)/2
→ 0 as nk → ∞, there must exist n∗

such that ∀nk > n∗, ξ(nk)
|vip| < 1 and vi is outside D(p, ξ(nk)).

Since there is at least one sender vk in D(p, ξ(nk)) and
|vivk| < Δr(nk), vk collides with vi. Therefore, wl,ij(nk) =
0 when nk > n∗. In other words, wl,ij(nk) = o( 1

r2(nk)
) and

wl,ij(n) �= Ω( 1
r2(n)

).

For Iphy, from Eq. (3) we have Pmax
|Xi−Xj |α ≥ β Pmin

|Xk−Xj |α
for any node vk that transmits concurrently with vi, which

leads to |Xk−Xj | ≥
`

βPmin
Pmax

´ 1
α |Xi−Xj | ≥

`
βPmin
Pmax

´ 1
α r0(n) =`

βPmin
Pmax

´ 1
α εr(n). Hence, when a transmission from vi to vj is

successful, no senders other than vi can be scheduled within

distance
`

βPmin
Pmax

´ 1
α εr(n) from vj . Along the same line of

reasoning as in the protocol model, we prove the necessity
of ρ(n) = Ω(r(n)), δ(n) = O(r(n)) and ξ(n) = Ω(r(n)) by

replacing vi with vj and Δr(n) with
`

βPmin
Pmax

´ 1
α εr(n).

For Igen, we first consider ρ(n) �= Ω(r(n)), which implies
ρ(nk) = o(r(nk)). Given a transmission from vi to vj , there
must exist a node vk transmitting concurrently within dis-
tance 4σρ(n) from vj in a nearby partition, because the
partition diameter does not exceed 2σρ(n). The SINR at

vj is then upper bounded by Pmax(εr(n))−α

Pmin(4σρ(n))−α and wl,ij(nk) ≤
2ηijB log2(1+SINR)

(2+Δ2)2r2(nk)
→ 2ηijBPmax(εr(nk))−α

(ln 2)(2+Δ2)2r2(nk)Pmin(4σρ(nk))−α . Fur-

ther,
wl,ij(nk)

1/r2(nk)
≤ 2ηijBPmax(εr(nk))−α

(ln 2)(2+Δ2)2Pmin(4σρ(nk))−α → 0 as nk →
∞, showing wl,ij(nk) = o( 1

r2(nk)
) and wl,ij(n) �= Ω( 1

r2(n)
).

Hence, ρ(n) = Ω(r(n)) is necessary for wl,ij(n) = Ω( 1
r2(n)

).

The necessity of condition ξ(n) = Ω(r(n)) is proven simi-
larly. Lastly, if δ(n) �= O(r(n)), then from Eq. (5) we have
wl,ij (nk)

1/r2(nk)
≤ 2ηijB log2(1+γ2ε−α)r2(nk)

δ2(nk)
→ 0, showing wl,ij(nk)

= o( 1
r2(nk)

) and wl,ij(n) �= Ω( 1
r2(n)

). Hence δ(n) = O(r(n))

is also a necessary condition for wl,ij(n) = Ω( 1
r2(n)

).

6. LOCALIZED ALGORITHM
Till now, we have proven Theorem 1, the main result of

this paper. The capacity relation λl(n) = Θ(λg(n)) implies
that the impact of cross-partition collisions is bounded when
using localized scheduling such that any failed transmission
can eventually get through after a constant number of re-

Localized Scheduling Algorithm: LSA
Input: a set of links L requesting transmission
Output: a schedule Sl(t) satisfying S1, S2 and S3
1 Sl(t) ← ∅
2 while L �= ∅
3 select a link lij randomly from L
4 Sl(t) ← Sl(t) ∪ {lij}
5 L ← L \ {lij}
6 L ← L \ {li′j′ : |Xi − Xi′ | < δ(n)}
7 return Sl(t)

Figure 7: A localized scheduling algorithm that runs
in each partition and in each time slot t.

tries, thus allowing localized scheduling to achieve the same
order of capacity as global scheduling. Although our study
has focused on the limiting case n → ∞, the result is appli-
cable to finite network sizes too. As long as the parameters
ρ(n), δ(n) and ξ(n) are chosen to the scale of r(n), the net-
work capacity is some constant fraction of that achieved by
the ideal global scheduling strategy.

Next, we apply our analytical result to design a simple lo-
calized scheduling algorithm that serves as our solution for
practically acquiring optimal capacity scaling. As our ob-
jective is to achieve two goals together: maximum capacity
and minimum complexity, we configure the partitions to the
smallest acceptable size to minimize scheduling complexity,
which is Θ(r(n)) according to Theorem 1.

The localized scheduling algorithm is presented in Fig. 7,
which runs at a central scheduler in each partition. The
scheduler collects the topology information inside its par-
tition and generates a collision-free schedule in each time
slot. The algorithm is parameterized as follows: σ = 10,
ρ(n) = r(n), δ(n) = 3(1 + Δ)r(n) and ξ(n) = 4(1 + Δ)r(n)
(in Iprot) or δ(n) = 3(1+Δ2)r(n) and ξ(n) = 4(1+Δ2)r(n)
(in Iphy and Igen). If there are broad/multi-cast commu-
nications, the links in the same group of broad/multi-cast
branches are taken as one link for the scheduling purpose.

The next two theorems prove that LSA achieves order
optimal capacity with constant scheduling complexity.

Theorem 8. Using LSA, λl(n) = Θ(λg(n)).

Proof. It is clear that the configuration of LSA satisfies
ρ(n) = Ω(r(n)), δ(n) = O(r(n)) and ξ(n) = Ω(r(n)). Our
task is then to prove that LSA satisfies S1, S2 and S3 so
that we can use Theorem 1 to prove λl(n) = Θ(λg(n)).

Requirement S1 is obviously met by setting ρ(n) = r(n)
and σ = 10. Requirement S2 is satisfied via line 6 of LSA,
which excludes any link from being scheduled if its distance
from a scheduled link is less than δ(n). Therefore, a mini-
mum space δ(n) is guaranteed between any two active links
in the same schedule. Lastly, we show that there exists at
least one active link within radius ξ(n) from any arbitrary
location in a partition, to satisfy S3. We first consider the
interference model Iprot. Given an arbitrary point p in a
partition, because ξ(n) − δ(n) = (1 + Δ)r(n), the trans-
mitting links scheduled outside D(p, ξ(n)) do not suppress
transmissions in the disk D(p, (1 + Δ)r(n)). According to
LSA, if there exist any links in D(p, (1 + Δ)r(n)), at least
one of them is scheduled. We next show that such links do
exist. For random node locations, as n → ∞, there exist
nodes in D(p, Δr(n)) almost surely. For arbitrary node lo-

cations, given any r(n) ≥
√

2
Δ

, there is at least one node
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Figure 8: ρ(n) = 1.
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Figure 9: ρ(n) = r
1
2 (n).

in D(p, Δr(n)). Moreover, as the length of any link does
not exceed the critical transmission radius r(n), a node in
D(p, Δr(n)) forms at least one link with other nodes in
D(p, (1 + Δ)r(n)). This proves existence of at least one ac-
tive link in D(p, ξ(n)). The proof is the same for interference
models Iphy and Igen by replacing Δ with Δ2.

Theorem 9. LSA finishes in constant number of steps.

Proof. As LSA selects the subset of transmitting links
randomly, we model the number of steps as a random vari-
able Z1 and denote its maximum as Ẑ1. Besides, we con-
sider two random experiments of covering given regions with
uniform disks of radius δ(n). The goal is to cover the speci-
fied regions seamlessly while keeping a minimum separation
δ(n) between the centers of neighbor disks. In the first ex-
periment we cover a partition. In the second experiment we
cover a square region 2σρ(n)×2σρ(n) that is co-centric with
the partition. We define random variables Z2 and Z3 as the
number of disks used in the first and the second experiments,
and denote their maxima as Ẑ2 and Ẑ3 respectively. It is not
difficult to find the following relations: Z1 ≤ Ẑ1 ≤ Ẑ2 ≤ Ẑ3.
Furthermore, the number of disks needed to cover the square

region never exceeds (2σρ(n))2

(π/4)(δ(n)/2)2
= 64σ2

9π(1+Δ)2
(in Iprot) or

64σ2

9π(1+Δ2)2
(in Iphy and Igen). Therefore, Z1 ≤ Ẑ3 ≤ 64σ2

9π(1+Δ)2

or Z1 ≤ Ẑ3 ≤ 64σ2

9π(1+Δ2)2
, which proves that LSA finishes in

constant number of steps regardless of network size n.

We have simulated the performance of LSA in random
networks to verify its optimality in capacity scaling. We in-
crease the network size n from 103 to 106 and set r(n) =q

ln n
π

. The partition dimension is chosen from a range of

values on different orders of r(n). The traffic in the network
is a random mixture of unicast, multicast and broadcast. As
the key to optimal capacity scaling is the existence of a con-
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Figure 10: ρ(n) = r(n).
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Figure 11: ρ(n) = r
3
2 (n).

stant lower bound on the probability of successful link trans-
missions, we plot the curves for the cumulative percentage of
links versus their achieved transmission successful probabil-
ity, as shown in Fig. 8–11. A point in these curves denotates
the percentage of links that have higher successful probabil-
ity than the corresponding x-axis value of the point. It is ob-
served in Fig. 8 and Fig. 9 that the curves move left-ward as
n increases when ρ(n) = o(r(n)). The moving trend shows
that, given sufficiently large n, the curve will eventually be
arbitrarily close to the y-axis. Hence, if ρ(n) = o(r(n)), all
the links will have constant transmission failures as n → ∞.
In contrast, Fig. 10 and Fig. 11 display stationary curves as
n → ∞. When ρ(n) = Ω(r(n)), there exists some constant
0 < p < 1 such that the successful probability of every link
is higher than p regardless of network size n. This constant
p guarantees a constant factor in the capacity difference be-
tween the localized and the global scheduling schemes. The
simulation results thus validate the sufficiency and the ne-
cessity of condition ρ(n) = Ω(r(n)) for scheduling partition
to achieve order optimal capacity scaling.

7. CONCLUSION
We have proposed in this paper the scheduling partition

methodology for achieving order optimal capacity scaling in
large wireless networks. It bridges the gap between the re-
quirement for a globally collision-free transmission schedule
assumed in the current study of wireless network capacity
and the fact of inapplicability of the existing scheduling al-
gorithms due to their excessive complexity in large networks.
Our new approach divides a large network into small parti-
tions and schedules transmissions in each partition indepen-
dently. As a result, the scheduling complexity is reduced sig-
nificantly. Meanwhile, it achieves the same order of capac-
ity scaling as the theoretically derived capacity bounds. We
have characterized the partition and scheduling approach by
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using three parameters and determined their design princi-
ples. Our results provide a practical solution for the maxi-
mum capacity scaling in large wireless networks.
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9. APPENDIX

9.1 Proof of Theorem 2

Proof. Suppose the network B is divided into a set of
disjoint partitions {Ci} (B = ∪iCi) and there is a local

schedule Sl,i(t) in each partition Ci. Let eSl,i(t) denote the
subset of failed links in Sl,i(t) due to cross-partition col-

lisions. Note that eSl,i(t) = ∅ in the generalized physical
interference model as there is no absolute link failure in
this model. By defining a global scheduling scheme Sg(t) =

∪i(Sl,i(t)\ eSl,i(t)), we see that Sg(t) supports the same λl(n)
as Sl,i(t) when the same routing protocol is used.

9.2 Proof of Theorem 3

Proof. We define an indicator function Ilij (λs) such that
Ilij (λs) = 1 if the rate λs from source vs traverses lij and
Ilij (λs) = 0 otherwise. Obviously wij(n) =

Pn
s=1 λsIlij (λs),

which shows that the data transmission rate on a link is the
sum of all the traversing source rates. If we scale every
source rate simultaneously by a constant, the data rate on
every link in the network is scaled by the same constant.

We first prove the sufficient condition. When wl,ij(n) =
Ω(wg,ij(n)), then there exists a constant c that satisfies
wl,ij(n) ≥ cwg,ij(n) as n → ∞. It indicates that if we
scale each source rate from λg(n) to cλg(n), wl,ij(n) can
accommodate the new source rate. Thus, λl(n) = Ω(λg(n)).

We next prove the necessary condition. When λl(n) =
Ω(λg(n)), then there exists a constant c such that, given
λg(n), localized scheduling can support cλg(n). As the rout-
ing protocol is fixed, it is then required on every link lij that
localized scheduling can accommodate the link transmission
rate cwg,ij(n). Hence wl,ij(n) = Ω(wg,ij(n)).

9.3 Proof of Lemma 1

Proof. Since specification S1 dictates that the partition
diameter is not larger than 2σρ(n), any partition that over-
laps with the disk must be contained in a larger co-centric

119



(b) Case 2(a) Case 1

(c) Case 3 (d) Case 4

o1 o1

o1o1

o2

o2

o2

o2

o3o3

o3
o3

aa

b

b
c

c

dd ee

Figure 12: The relative locations of the co-centric
disks and an overlapping partition. The co-centric
disks are centered at o1, denoted as D(o1, κ1r) and
D(o1, κ3r) respectively. The annulus is denoted as
D(o1, κ3r) \ D(o1, κ1r). The partition is centered at
o2. For clarity, we have only shown the inner disk
of radius ρ, denoted as D(o2, ρ), but ignored the par-
tition boundary as well as the outer disk of radius
σρ. Point a is inside D(o1, κ1r). Lines ab and ac are
tangent to D(o2, ρ). Lines ad and ae are tangent to
D(o3, ε). d = |o1o2|.

disk of radius κ1r(n) + 2σρ(n). Racall that the partitions
are disjoint and each occupies at least an area of πρ2(n).
Hence, the number of partitions that can be contained in

the larger disk is at most π(κ1r(n)+2σρ(n))2

πρ2(n)
≤ (κ1

κ2
+ 2σ)2,

which is a constant.

9.4 Proof of Lemma 2
Proof. For simplicity reason, we abbreviate r(n) and

ρ(n) as r and ρ respectively in this proof. Besides, we use
O to denote the overlap area between a partition and the
annulus. The idea of the proof is to find a disk in O, de-
noted as D(o3, ε) where o3 is the center and ε is the radius,
which covers an area of at least cr2. By defining d as the
Euclidean distance between the center of the two co-centric
disks and the center of an overlapping partition, we discuss
all the possible cases of d.

Case 1: 0 ≤ d ≤ κ3r − κ2r. As shown in Fig. 12(a),
we find point o3 on the extension of line o1o2 such that
|o2o3| = κ1r+κ2r

2
and define ε = κ2r−κ1r

2
. Given any point

p ∈ D(o3, ε), it is easy to see that |o2p| ≤ |o2o3| + |o3p| ≤
κ1r+κ2r

2
+ κ2r−κ1r

2
= κ2r ≤ ρ, indicating p ∈ D(o2, ρ). In

addition, |o1p| ≥ |o1o3| − |o3p| ≥ κ1r+κ2r
2

− κ2r−κ1r
2

= κ1r

and |o1p| ≤ |o1o3|+ |o3p| ≤ κ3r−κ2r+ κ1r+κ2r
2

+ κ2r−κ1r
2

=
κ3r, showing p ∈ D(o1, κ3r) \D(o1, κ1r). Hence, D(o3, ε) ⊆
O. Since the area of D(o3, ε) is at least π(κ2r−κ1r

2
)2, we

have proven the lemma by choosing c1 = π
4
(κ2 − κ1)

2.

Case 2: κ3r − κ2r < d ≤ ρ + κ1r+κ3r
2

. As shown in
Fig. 12(b), D(o2, ρ) overlaps with D(o1, κ3r) partially. We
locate point o3 on line o1o2 such that |o1o3| = κ1r+3κ3r

4

and define ε = κ3r−κ1r
4

. It is obvious that D(o3, ε) ⊆
D(o1, κ3r) \D(o1, κ1r). Besides, we obtain |d− κ1r+3κ3r

4
| ≤

ρ − κ3r−κ1r
4

from κ3r − κ2r < d ≤ ρ + κ1r+κ3r
2

. Given
any point p ∈ D(o3, ε), we have |o2p| ≤ |o2o3| + |o3p| ≤
|d− κ1r+3κ3r

4
|+ κ3r−κ1r

4
≤ ρ− κ3r−κ1r

4
+ κ3r−κ1r

4
= ρ, indi-

cating D(o3, ε) ⊆ D(o2, ρ). Thus, D(o3, ε) ⊆ O and D(o3, ε)
has an area π(κ3r−κ1r

4
)2. The lemma is true by choosing

c2 = π
16

(κ3 − κ1)
2.

Case 3: ρ+ κ1r+κ3r
2

< d ≤ ρ+κ3r. As shown in Fig. 12(c),
D(o2, ρ) overlaps with D(o1, κ3r) partially in this case too.
Let a denote a point over which the partition overlaps with
D(o1, κ1r), ab and ac denote the lines tangent to D(o2, ρ).
Because the partition is convex, the area encompassed by ab,
ac and D(o2, ρ) must be part of the partition too. We choose
point o3 on line o2a such that |o1o3| = 3κ1r+κ3r

4
, which is

possible because |o1a| < κ1r, |o1o2| > κ1r+κ3r
2

and o2a is

continuous. We then define ε = ρ(κ3r−κ1r)
8(ρ+κ1r+κ3r)

. It is obvious

that D(o3, ε) ⊆ D(o1, κ3r) \ D(o1, κ1r). To prove D(o3, ε)
is inside the partition, it is only necessary to show ∠o3ad <
∠o2ab, where ad is tangent to D(o3, ε). Since sin(∠o3ad) =
|o3d|/|o3a| ≤ ε

(3κ1r+κ3r)/4−κ1r
< ρ

ρ+κ1r+κ3r
≤ |o2b|/|o2a| =

sin(∠o2ab), we obtain ∠o3ad < ∠o2ab. Hence, D(o3, ε) ⊆ O.

The area of D(o3, ε) is at least π( κ2r(κ3r−κ1r)
8(κ1r+κ2r+κ3r)

)2, so the

lemma is true by choosing c3 = π
64

(κ2(κ3−κ1)
κ1+κ2+κ3

)2.
Case 4: ρ+κ3r < d ≤ σρ+κ1r. Note that ρ+κ3r < σρ+

κ1r when the partition overlaps with D(o1, κ1r) and d > ρ+
κ3r. The proof is similar to Case 3. As shown in Fig. 12(d),
we locate point o3 on line o2a such that |o1o3| = κ1r+κ3r

2

and define ε = ρ(κ3r−κ1r)
4(σρ+2κ1r)

. It is obvious that D(o3, ε) ⊆
D(o1, κ3r) \ D(o1, κ1r). Again, we define ab and ac to be
tangent to D(o2, ρ), ad and ae to be tangent to D(o3, ε). We
have ∠o3ad < ∠o2ab because sin(∠o3ad) = |o3d|/|o3a| ≤

ε
(κ1r+κ3r)/2−κ1r

< ρ
σρ+2κ1r

≤ |o2b|/|o2a| = sin(∠o2ab). So,

D(o3, ε) ⊆ O. Proof follows using c4 = π
16

(κ2(κ3−κ1)
2κ1+σκ2

)2.
For any d > σρ+κ1r, the partition does not overlap with

D(o1, κ1r). We have therefore considered all the possible
cases regarding d. In summary, the lemma is proven true by
choosing c = min{c1, c2, c3, c4}.

9.5 Proof of Lemma 3

Proof. If there are no subsequences that satisfy f(nk) =

o(g(nk)), there must exist a constant c > 0 such that f(n)
g(n)

≥
c for all n, which implies f(n) = Ω(g(n)). Therefore, f(n) �=
Ω(g(n)) must indicate f(nk) = o(g(nk)) for some subse-
quences {f(nk)} and {g(nk)}.

If there exist subsequences f(nk) = o(g(nk)), then we

have limnk→∞
f(nk)
g(nk)

= 0. Hence we cannot find any constant

c > 0 such that f(n) ≥ cg(n) as n → ∞, i.e., f(n) �=
Ω(g(n)).

9.6 Proof of Lemma 4

Proof. This statement is obviously true according to
Lemma 3, since f(n) �= O(g(n)) means g(n) �= Ω(f(n)) and
f(nk) = ω(g(nk)) means g(nk) = o(f(nk)).
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