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Abstract—There have been extensive works on the design of
opportunistic spectrum access and routing schemes to improve
spectrum efficiency in Cognitive Radio Networks (CRNs), which
becomes an integral component in the future communication
regime. Nonetheless, the potentials of CRNs in boosting network
performance yet remain to be explored to reach the full benefits
of such a phenomenal technique. In this paper, we study the
end-to-end latency in CRNs in order to find the sufficient and
necessary conditions for real-time applications in finite networks
and large-scale deployments. We first provide a general mobility
framework which captures most characteristics of the existing
mobility models and takes spatial heterogeneity into account.
Under this general mobility framework, secondary users are
mobile with an mobility radius α, which indicates how far a
mobile node can reach in spatial domain. We find that there
exists a cutoff point on α, below which the latency has a heavy
tail and above which the tail of the latency is bounded by
some Gamma distributions. As the network grows large, the
latency is asymptotically scalable (linear) with respect to the
dissemination distance (e.g., the number of hops or Euclidean
distance). An interesting observation is that although the density
of primary users adversely impacts the expected latency, it makes
no influence on the dichotomy of the latency tail in finite networks
and the linearity of latency in large networks. Our results
encourage CRN deployment for real-time and large applications,
when the mobility radius of secondary users is large enough.

Index Terms—Latency, Cognitive Radio Networks, Scalability,
Generic Mobility

I. INTRODUCTION

An increasing number of users, homes, and enterprises rely

on wireless technologies (such as cellular and wifi networks)

for their daily activities. However, the growth of wireless

networks has been hindered by the scarce and inefficient

usage of radio spectrum. Currently, spectrum access is reg-

ulated by government agencies, for example, by the Federal

Communications Commission (FCC) of the United States,

which allocates spectrum by assigning exclusive licenses to

users to operate their networks on a long term basis in large

geographical regions. A recent report from FCC reveals that

under this static allocation, merely 5% ∼ 15% of the spectrum

is utilized on average [1]. This leads new wireless applications
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starving for spectrum, while large chunks of it remaining idle

most of the time under their current owners.

To overcome the artificial shortage of spectrum due to this

misallocation, CRN has been proposed to improve spectrum

efficiency for opportunistic communication and become an

integral component in the future communication regime [1],

[2]. In cognitive radio networks, there are two types of users:

(i) primary users who have license from the regulator and

thus have priority to utilize spectrum, and (ii) secondary users

who opportunistically access spectrum without interfering with

the coexisting primary users. Using CRNs, secondary users

can gain access to the spectrum and primary users can gain

financial incentives to lease their idle spectrum.

Many efforts have been made recently to understand the

characteristics of CRNs such as to enable their deployment

for realistic applications, including capacity limits, spectrum

sensing, spectrum mobility, and spectrum sharing [3]–[8].

These works have presented a very good understanding of the

potential of cognitive communications in optimizing spectrum

utilization. However, the key question to the deployment of

CRNs is not whether the spectrum efficiency is improved, but

whether CRNs are able to support applications. For example,

spectrum can be overly used, with a very high throughput, but

the latency may become extremely long, falling into the tradi-

tional problem of the tradeoff between network throughput and

latency [9]–[12]. To this end, we aim to study a fundamental

problem, i.e., what the stochastic properties of end-to-end

latency in cognitive radio networks are. The understanding

of end-to-end delay offers a straightforward interpretation of

the potentials of CRNs for time-sensitive applications. For

example, when a CRN is used for emergency rescue in

the aftermath of disasters or traffic accidents (e.g., vehicular

networks), we need to ensure that help or warning messages

can be disseminated to a chosen destination in time, which

becomes more important than other performance metrics, such

as the total network capacity in these circumstances.

Despite its importance, the latency is an under-explored

problem and not well understood in multihop wireless net-

works. The pioneering work in [13], [14] studied the packet

latency for the fully connected wireless ad-hoc networks and

showed that there exist bounds on the latency which are

tight when the number of nodes is large enough. Instead of

full connectivity, some studies [15], [16] further showed that

the latency scales asymptotically at least linearly with the

transmission distance in wireless sensor networks when these

networks are percolated. These results have greatly advanced

our understanding of the nature of latency, and also laid a

good foundation to approach the problem. Unfortunately, these
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results may not be applicable to CRNs because (i) asymptotic

results were obtained by assuming that wireless nodes are

static; and (ii) these results [13]–[16] are only derived for large

networks when the number of nodes approaches to infinity;

(iii) these results are derived for homogeneous networks in

which every node has the same capacity in propagation.

Particularly, mobility plays a critical role on the latency,

which has been evidenced by earlier results. For instance,

the seminal work [17] showed that mobility can improve the

capacity in large wireless ad hoc networks at the cost of

the delay. This result is obtained by assuming that nodes

move according to an ergodic process that is equally likely

to visit any portion of the network area. That is, the nodes

are spatially homogeneous. With the similar assumptions,

capacity-delay tradeoffs have been extensively studied under

various mobility models, such as the i.i.d model [9], the

Brownian motion [10], the reshuffling model [11] and variants

of random walk and random way-point models [18], [19].

Later on, spatial inhomogeneity has been taken into account

in [20], [21] where the nodes are either restricted to move

within an randomly chosen cell or the coverage of a home

point. These studies motivate an interesting question about the

latency under general mobility.

It is evident that the asymptotic results, though, providing

good insights into network performance, may not explain the

latency properties when the number of nodes in real appli-

cations is finite. In other words, the stochastic properties of

latency distribution in finite networks lead to understanding of

real networks, rather than the large networks. As the last point,

CRNs feature heterogeneity in wireless nodes, since there are

two types of nodes, primary and secondary nodes [22], which

is left open for study on the impact of latency distribution.

Putting all together, in this paper we study the latency

distribution in finite networks, and the scaling law for large

networks with infinite number of secondary nodes under

general mobility where spatial inhomogeneity is considered in

addition to common features of a variety of mobility models.

We find that in finite CRNs, the latency of information dis-

semination depends on the mobility radius α, which indicates

how far a mobile node can reach in spatial domain. Moreover,

there exists a cutoff point on α, below which the latency has

a heavy tail; and above which the tail of its distribution is

bounded by some Gamma distribution. In addition, as the

network grows large, the latency asymptotically scales linearly

with respect to the distance in terms of the number of hops

or the Euclidean distance between the source and destination

nodes if the network remains fully connected or percolated. It

is interesting, though not surprising, that the density of primary

nodes presents an adverse influence on the expected latency,

but showing no obvious effect on the dichotomy of the latency

tail in finite networks and linear scaling law of the asymptotic

latency with respect to dissemination distance.

The rest of this paper is organized as follows. We describe

the mobility and network models, and formulate the latency

problem in Section II. Our main results are summarized in

Section III. In Sections IV and V, we present the proofs and

simulations results of our findings on dissemination latency

in detail. Section VI concludes the paper with two promising

primary users

vi vj

RI RI

Fig. 1. Primary-secondary interference.

applications of CRNs.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first describe the network models and

then collect basic assumptions, notations and definitions of

the metric of interest that will be used throughout the paper.

A. Network Models

We consider a CRN consisting of n mobile secondary users

{v1, . . . , vn} in a torus surface Ωn = [0,
√

n
λ ]2 (λ is the spatial

density of secondary users). Denote V (t) = (v1(t), . . . , vn(t))
as the positions of secondary users at time t. A set of m
channels {ch1, . . . , chm} are assumed to be accessible by

secondary users. For any 1 ≤ k ≤ m, an overlay network

of primary users with spatial density λpk are transmitting

with channel chk. We assume that λpk = λp for any k for

simplicity. To model the dynamics of the primary traffic, we

adopt a synchronized slotted structure, which has been used in

[23] to study the connectivity of a large single-channel CRN.

Particularly, time is slotted into units and at any time slot,

primary users transmitting on any channel chk are assumed to

be uniformly and independently distributed in Ωn, and such

distribution is i.i.d across slots.

1) Interference Models: In CRNs, there are two types of

interference for information dissemination among secondary

users: secondary-secondary and primary-secondary interfer-

ence. The former interference can be characterized by the well-

known protocol model [24], which has been widely adopted in

homogeneous networks [9], [14], [17], [24]. Particularly, with-

out interference with primary users, a successful transmission

from a mobile secondary user vi to vj is achievable at time t if

‖vi(t)−vj(t)‖ ≤ r and for any other simultaneously transmit-

ting node on the same channel vl, ‖vl(t)−vj(t)‖ ≥ (1+∆)r,

where r is the transmission radius of secondary users, and ∆
models the guard zone around vj in which any simultaneously

transmission on the same channel causes collision at vj .

In terms of the latter interference, let us denote RI as the

interference range of primary users. And as Fig. 1 shows, two

secondary users vi and vj are permitted to use the channel

chk only when there are no primary users on chk in the

neighborhood, i.e., ‖vi(t) − u(t)‖ > RI for any primary user

u transmitting with chk, where u(t) is the position of u at

time t.
We assume that r < RI W.O.L.G.
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2) Mobility Models: We consider a general mobility model,

M(Φ, Ψ, α), which is characterized by three parameters Φ, Ψ,

and α over the region Ωn. First, spatial heterogeneity, which

accounts for the scenario that mobile nodes are more likely to

be found in some area (e.g., the neighborhood of their home

in the case of people, or the neighborhood of the garage in

the case of vehicles), is taken into account. Particularly, we

consider that a node spends most of its time in a small region,

and rarely visits the areas far away from it. We model this

behavior by assuming that each node vi has a home point

[21], located at vh
i . Nodes move “around” their home points

according to independent stationary and ergodic processes. We

assume that each home point vh
i is associated with a fixed

point vc
i , which is called the center point of vi. The center

points are regularly placed in Ωn. For example, {vc
1, . . . , v

c
n}

are placed regularly at positions ( 1
2
√

λ
+ i√

λ
, 1

2
√

λ
+ j√

λ
)

with 0 ≤ i ≤ √
n − 1 and 0 ≤ j ≤ √

n − 1 ( since

we do not have knowledge about the specific positions of

center points, this layout represents an average scenario and

simplifies our analysis.). We describe the distribution of the

home point vh
i around vc

i by a non-increasing probability

density function Φi(x) = Φ(x − vc
i ), which is assumed to

be invariant in all directions and used as the first parameter in

the mobility model. The second parameter, Ψi(x) = Ψ(x−vh
i )

is used to describe the probability density of a node vi around

vh
i , which is again a non-increasing and direction-invariant

function. We assume that Ψi is non-zero in and only in a region

characterized by a constant α; that is, Ψi(x) = Ψ(x−vh
i ) > 0

when ‖x − vh
i ‖ < α and Ψi(x) = Ψ(x − vh

i ) = 0, otherwise.

We refer α as mobility radius.

Remark 1: The idea of “home points” is not new [21]

and it has been used to describe the spatial inhomogeneity

incurred by the mobility of a particular wireless node. We

introduce an additional concept, “center points” to model

the heterogeneously spatial distribution of the home points,

which characterizes the spatial inhomogeneity incurred by

heterogeneous mobility of different wireless nodes. This two-

level mobility model accounts for a wide range of mobility

patterns. For example, if the probability density function Φ(x)
is a constant function independent of x (i.e., home points

are uniformly distributed over Ωn), M(Φ, Ψ, α) reduces to

the Uniform Anisotropic model in [21]. Furthermore, if the

probability density function Ψi(x) = Ψ(x− vh
i ) = δ(x− vh

i ),
where δ(x) is the Dirac impulse function, M(Φ, Ψ, α) reduces

to the static model in [24], where nodes are assumed to be

static and uniformly distributed; if Ψ(x) is also a constant

function independent of x and α, M(Φ, Ψ, α) reduces to

the homogeneous mobility model in [17]; and if Ψ(x) is a

threshold function whose value is zero when x ≥ α and a

nonzero constant when x < α, M(Φ, Ψ, α) reduces to the

constrained i.i.d model used in [16].

Mobility of Secondary Users: In this paper, we assume

that secondary users are mobile under the general mobility

M(Φ, Ψ, α).

To facilitate the study of the dissemination latency of

secondary users, we consider three classes according to the

spatial inhomogeneity of home points:

primary users secondary users

center points mobilityhome points

α

Fig. 2. An illustration of the general mobility M(Φ, Ψ, α).

• Extremely Inhomogeneous Home Points (EIHP) mobil-

ity M(ΦE , Ψ, α): Home points are fixed and regularly

placed over Ωn. Here ΦE(x) = δ(x).
• Partial Inhomogeneous Home Points (PIHP) mobility

M(ΦP , Ψ, α): As shown in Fig. 2, center points {vc
i }n

i=1

partition the Ωn into n subregions {Oi}n
i=1 as Voronoi

diagrams. In this class, the home point vh
i is randomly

distributed in Oi.

• Homogeneous Home Points (HHP) mobility

M(ΦH , Ψ, α): Home points {vh
i }n

i=1 are independently

and uniformly distributed over Ωn. Here ΦH(x) is a

constant density function independent of x.

Mobility of Primary Users: Mobility of primary users (spatial

dynamics) influences the probability of the existence of links

between secondary users (spectrum dynamics, see Section

II-A1). As shown in [16], a network of mobile nodes is

equivalent to a network of stationary nodes with dynamic

links, in terms of spectrum dynamics, and the latter is much

easier to be analyzed. Thus instead of mobile primary users,

we assume stationary primary users with dynamic links in this

paper.

B. Problem Formulation

We denote [Fm,n,M(Φ, Ψ, α), (λ, λp)] as a CRN Fm,n,

where n secondary users opportunistically access m channels

and are mobile under M(Φ, Ψ, α), and the spatial densities

of secondary users and primary users on any channel are λ
and λp respectively. We further denote L(t) as the set of

communication links among secondary users at time t and L(t)
is obviously dynamic due to the mobility of the secondary and

primary users.

In this paper, we focus on the dissemination latency, i.e.,

how fast information can be disseminated from the source

to the destination secondary user. Therefore, rebroadcasting

and “store-carry-and-forward” communication paradigm (also

named mobility-assisted routing) are considered. Specifically,

by omitting the propagation delay, when the source vs broad-

casts a message at time 0, all the secondary users connected

to vs in L(0) receive the message instantly. Denote li,j as a

communication link between secondary users vi and vj and

V(t) as the set of secondary users that have received the

message at time t.
Definition 1: The first hitting time between vi and vj is

defined as Th(vi, vj) , inf{t ≥ 0 : li,j ∈ L(t)}.
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Definition 2: The dissemination latency Td from the source

vs and the destination vd is defined as:

Td , inf{t ≥ 0 : vd ∈ V(t)}.
In [Fm,n,M(Φ, Ψ, α), (λ, λp)], three metrics can be used

to characterize how far two nodes vi and vj are apart:

• d(t)(vi, vj): the distance between vi and vj at time t.
• dh(vi, vj) and dc(vi, vj): the distance between home

points and center points of vi and vj respectively.

Here the distance can be any p-norm metric function and we

consider two of the most popular metrics transmission hops

and Euclidean distance.

Definition 3: Denote D as the distance, i.e., either the

number of hops or the Euclidean distance between vs and

vd, which can be one of the three distances explained above.

We define Sd , Td

D , which characterizes how fast information

disseminates and is called dissemination speed in this paper.

Based on the definitions and system models, we can formu-

late the problem as

1) In a finite Fm,n, what the distribution of the dissemina-

tion latency Td is;

2) As the network grows large, say to infinity, whether

the dissemination latency Td is scalable with respect to

dissemination distance D, i.e., whether Sd is going to

converge.

III. MAIN RESULTS

The key question in this study is how fast information is

disseminated in both finite and large CRNs under general

mobility M(Φ, Ψ, α). We first study the dissemination latency

Td in CRNs where secondary users are mobile under the

three subclasses of models EIHP, PIHP and HHP, respectively.

Then based on the generalization of these results, we obtain

the fundamental properties of the dissemination latency Td

when secondary users are mobile under the general mobility

M(Φ, Ψ, α). We summarize our main results as follows.

Theorem 1: In a CRN [Fm,n,M(Φ, Ψ, α), (λ, λp)] with

finite users, there exists a cutoff point on the mobility range

α, above which the tail distribution of dissemination latency

Td is bounded by some Gamma distribution; below which Td

has a heavy-tailed distribution and P(Td = ∞) > 0.

Remark 2: P(Td = ∞) > 0 indicates a positive probability

that the destination will not receive the message from the

source. Thus the requirement P(Td < ∞) = 1 in mobile

wireless networks is equivalent to the connectivity in the wired

networks, which is used as a prerequisite to evaluate network

functions. Moreover, a heavy tail of the dissemination latency

Td implies a significant probability that it takes long time to

disseminate a message from the source to the destination.

Thus in addition to a bounded dissemination latency (i.e.,

P(Td < ∞) = 1), a light-tailed distributed dissemination

latency Td (i.e., E(Td) < ∞) is also crucial for time-critical

applications in CRNs. Therefore, a light-tailed distribution

of Td is assumed or required in many deployments and

performance studies of wireless networks in the literature.

For example, the authors in [17] implicitly assume that the

dissemination latency is exponentially bounded (light-tailed)

so as to make their delay-capacity tradeoff analysis tractable.

Theorem 1 tells that to achieve a light-tailed dissemination

latency (note that Gamma distribution is a type of light-

tailed distribution), the mobility radius of secondary users

α need to be larger than some cutoff points, which are

specifically identified in Proposition 1 for EIHP, Proposition

2 for PIHP and Proposition 3 for HHP, respectively. This

result encourages the existing endeavor of deploying CRN

for practical applications, including time-critical applications,

such as emergency networks and military networks.

We must emphasize that the goal of this paper is to inves-

tigate the fundamental properties of the dissemination latency

Td in CRNs where secondary users are mobile according to the

general mobility patterns. However, if given more knowledge

of the CRN, e.g.,the specific mobility patterns, the same proof

can also be used to derive more specific distributions of Td

As the network size increases, we have the following

theorem on the scalability of the dissemination latency Td.

Theorem 2: Given a large connected1 cognitive radio net-

work [Fm,n,M(Φ, Ψ, α), (λ, λp)], there exists a finite con-

stant κ such that P(limD→∞ Sd = limD→∞
Td

D = κ) = 1.

Remark 3: Scalability has been one of the most fundamen-

tal problems that has discouraged the deployment of large

wireless networks [9], [24]. Theorem 2 reveals that in large

connected CRNs, the dissemination latency Td asymptotically

scales linearly with the initial distance between the source

and destination, i.e., the message sent by a source reaches its

destination at a fixed asymptotic speed. This result enables the

feasible deployment of CRNs for large applications.

It is worthy of noting that we aim to understand the

fundamental properties of the dissemination latency Td in

CRNs under general mobility. However, besides the theoretical

importance of our findings, our results can be used practi-

cally not only in the initial deployment of a CRN, but also

in evaluating the performance of network applications. For

example, in a large deployment of CRNs as sensor-actuator

networks, the result in Theorem 2 can be used to estimate the

delay elapsed between the time at which an incoming event

is sensed and the time that this event report is retrieved by

the data collecting sink. In the next two sections, we present

the proofs for Theorem 1 and Theorem 2, which studies the

distribution and scalability of the dissemination latency Td in

finite and large CRNs under EIHP, PIHP, and HHP mobility,

respectively.

IV. THE DISTRIBUTION OF Td IN FINITE NETWORKS

Here, we present the proof for Theorem 1 described in

Section III. This result tells that there exists a cutoff point on

the mobility capability α in a finite cognitive radio network

under general mobility M(Φ, Ψ, α), above which the tail of

the dissemination latency Td is bounded by some Gamma

distribution and below which Td has a heavy tail. For the

convenience of analysis, we first study the distribution of

Td under these three subclasses of mobility models, i.e.,

EIHP M(ΦE , Ψ, α), PIHP M(ΦP , Ψ, α), and HHP mobility

1We consider two types of connectivity in large CRNs: full connectivity

and percolation-based connectivity. The former is that there exists a commu-
nication path between any two nodes; and the latter is that there exists a large
component well scattered over the entire network.
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M(ΦH , Ψ, α) based on the spatial inhomogeneity of home

points defined in Section II, respectively. Then we move on

to identify the fundamental properties of Td under the general

mobility. The scalability of the dissemination latency Td in

large CRNs (Theorem 2) will be considered in the next section.

To proceed, we find the following definitions useful toward the

derivation of tail distribution of the dissemination latency Td.

Definition 4: If Z and Z ′ are random variables such that

P(Z > z) ≤ P(Z ′ > z) for all z, we say that Z is

stochastically dominated by Z ′ and write Z
D
< Z ′; and if

Z
D
< Z ′, there exists a random variable Ẑ ′, which has the

same distribution of Z ′ such that Z ≤ Ẑ ′ (Ẑ ′ is called a

coupling of Z ′ [25].)

Definition 5: If Z and Z ′ are random variables such that

P(Z > z) ≤ P(Z ′ > z) for large z, we say that the Z’s tail

is stochastically dominated by Z ′’s tail.

Remark 4: Coupling is a very important tool in probability

theory which is used throughout the paper. To use the coupling

method, stochastic domination is required (as shown in Def-

inition 4). However, in finite CRNs, we are interested in the

tail distribution of the dissemination latency Td, which implies

that only stochastic tail domination needs to be considered.

Therefore, in order to use coupling, we need the following

lemma, which bridges the gap between stochastic domination

and stochastic tail domination.

Lemma 1: Given non-negative i.i.d random variables

{Xi}∞i=1 and {Yi}∞i=1 where P(Xi > t) ≤ P(Yi > t)
for large t, i.e., the tails of the former are stochastically

dominated by the latter, there exist i.i.d random variables

{X̄i}∞i=1, which have the same tail distribution with {Xi}∞i=1

and are stochastically dominated by {Yi}∞i=1. Furthermore, for

any finite k,
∑k

i=1 Xi has the same tail with
∑k

i=1 X̄i.

Proof: (Sketch.) Assume P(Xi > t) ≤ P(Yi > t) when

t > tc for some finite constant tc. We construct {X̄i}∞i=1 as

X̄i = 0 when Xi ≤ tc and X̄i = Xi otherwise. This proves the

first part. For the second part, we only need to show P(X̄1 +
X̄2 > t) = P(X1 + X2 > t) for large t:

P(X̄1 + X̄2 > t) = P(X̄1 < tc)P(X̄1 + X̄2 > t|X̄1 < tc) +

P(X̄1 > t − tc)P(X̄1 + X̄2 > t|X̄1 > t − tc)

+P(tc < X̄1 < t − tc)P(X̄1 + X̄2 > t|tc < X̄1 < t − tc).

Note that the third item on the right hand side is equal to

its counterpart of P(X1 + X2 > t) and the first two items

are on the higher order of the third item as t → ∞. Thus

P(X̄1 + X̄2 > t) → P(X1 + X2 > t) for large t and this

completes the proof.

A. Distribution of Td under EIHP Mobility M(ΦE , Ψ, α)

Prior studies [15], [16] have shown that propagation delay

in networks whose topologies change frequently (e.g., due to

mobility) is negligible, in comparison with the latency incurred

by the topology dynamics. Therefore, Td can be coupled as

the sum of a sequence of the first hitting time Th between

secondary users along a communication path from the source

to the destination node. Hence we study Th first. In EIHP

mobility, secondary users move around home points, which

are overlaid with center points, with the Euclidean distance

between neighboring home points being

√

1
λ (see Fig. 2). The

following lemma studies the property of the first hitting time

Th(vi, vj) between vi and vj with neighboring home points.

Lemma 2: Given secondary users vi and vj in a finite CRN

[Fm,n,M(ΦE , Ψ, α), (λ, λp)] with dc(vi, vj) =
√

1
λ , we have

i) P(Th(vi, vj) = ∞) = 1 if α <

√
1

λ
−r

2 ; ii) otherwise,

E(Th(vi, vj)) < ∞ and P(Th(vi, vj) > t) ≤ e−c1t for

sufficiently large t and some positive constant c1.

Proof: At time t if and only if d(t)(vi, vj) < r, vi and vj

may communicate directly. Also, d(t)(vi, vj) > dh(vi, vj)−2α

for all t. Thus if α <

√
1

λ
−r

2 , d(t)(vi, vj) > r for all t, which

implies that vi and vj cannot communicate with each other.

This completes the proof of part i).

Now, suppose α >

√
1

λ
−r

2 . Denote Et as the event that there

exists no communication link between vi and vj at time t and

Ēt as its complement. Let ε = P(Et) be the probability of Et.

As shown in Fig. 3, a necessary condition for Ēt is that there

exist no primary users within the bigger circle centered at o,

and a sufficient condition for Ēt is that vi lies in the shaded

region S1, vj in S2 and no primary users in the bigger circle.

Therefore,

0 < 1 − (1 − πR2
I/(n/λ))m < ε = P(Et) = 1 − P(Ēt)

< 1 − (1 − πR2
I/(n/λ))mΨ̄(S1)Ψ̄(S2) < 1, (1)

where (1 − πR2
I/(n/λ))m characterizes the probability of

the necessary condition and (1 − πR2
I/(n/λ))mΨ̄(S1)Ψ̄(S2)

characterizes the probability of the sufficient condition for Ēt,

respectively. Ψ̄(S) =
∫

S ΨdS and n/λ is the area of Ωn. To

proceed, we next find an index set I such that {Et}t∈I are

independent and let ε = P(Et) for convenience.

Denote ρ as a renewal interval for secondary users, i.e., for

any t > 0, {vi(t
′) : t′ ≤ t} and {vi(t

′′ + ρ) : t′′ ≥ t} are

independent. Denote {ρi}∞i=1 as a sequence of i.i.d random

variables with the same distribution as ρ. Now we consider the

index set It = {0, t1, . . . , tN(t)} ⊂ (0, t], where tk =
∑k

i=1 ρi

and N(t) = |It| = max{k : tk ≤ t}. Observe that

P(Th(vi, vj) > t) ≤ P(∩s∈It
Es) =

∏

s∈It

P(Es) (2)

where the last equality is by the independency of {Es}s∈It
and

by conditioning on N(t), we have

P(Th(vi, vj) > t) ≤ E(εN(t)) = E(e−βN(t)), (3)

where β = − log ε > 0. In addition, for any τ > 0,

E(e−βN(t)) = E(e−βN(t)I{N(t)≤τt}) +

E(e−βN(t)I{N(t)≤τt}) ≤ P(N(t) ≤ τt) + e−βτN(t).

Note that the finite sum of exponentially bounded random

variables is still exponentially bounded [25], [26]. Thus, if we

can show that P(N(t) ≤ τt) is exponentially bounded, we will

finish the proof. In order to proceed, we assume that the tails of

renewals {ρi}∞i=1 are exponentially bounded. This assumption

is reasonable considering the network is finite, which has been

well-explained in many mobility models [16]–[18], [21], [26].

We next show that P(N(t) ≤ τt) is exponentially bounded.
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Fig. 3. Calculation of the first hitting time under EIHP Mobility.

By letting k = τt, P(N(t) ≤ τt) = P(
∑τt

i=1 ρi > t) =

P(
∑k

i=1 ri > k
τ ). The last item is obviously bounded by some

exponential variable considering {ρi}∞i=1 are exponentially

bounded. This completes the proof.

We next present our main result on the tail distribution of

the dissemination latency Td under EIHP mobility.

Proposition 1: Given [Fm,n,M(ΦE , Ψ, α), (λ, λp)] with

finite users, if α >

√
1

λ
−r

2 , the tail of the dissemination latency

Td is stochastically dominated by a Gamma distribution,

Γ(2
√

n, c2), and the tail of the dissemination speed Sd is

stochastically dominated by Γ(
√

λD, c2

D ) for some positive

constant c2; otherwise, Td has a heavy tail and P(Td = ∞) >
0.

Proof: As the end to end latency, Td is clearly bounded

by the transmission delay along any path from the source vs

to destination vd. Theorem 2 shows that, if α >

√
1

λ
−r

2 , a link

exists between two neighboring secondary users with positive

probability. Therefore, we can identify a Manhattan path

through which vs first transmits the message vertically until

the message reaches the secondary user whose center point has

the same horizontal coordinate with vc
d, and then transmits

the message horizontally to vd as shown in Fig. 4. Denote

{Xk}∞k=1 as a sequence of random variables with identical

distributions as the first hitting time between neighboring

secondary users. Note that a Manhattan path consists of at

most 2
√

n communication links and thus Td ≤ ∑2
√

n
k=1 Xk.

The next challenge is that the first hitting time of neighbor-

ing links, i.e., Xi and Xi+1 are not independent. To tackle this

challenge, we assume that after receiving the message, each

secondary user will hold this message for a renewal time ρ
before it tries to relay the message. Let {ρi}∞i=1 be a sequence

of renewals and Yk = Xk +ρk. It is clear that Td ≤ ∑2
√

n
k=1 Yk.

Note that Yk is bounded by exponential(c2) (since both

Xk and ρk are both exponentially bounded) and {Yk}∞k=1

are clearly independent. Let {Ŷk}∞k=1 be a sequence of in-

dependent random variables distributed as exponential(c2),
we have

P(Td > t) ≤ P(

2
√

n
∑

k=1

Yk > t) ≤ P(

2
√

n
∑

k=1

Ŷk > t), (4)

where the last inequality is from Lemma 1 and coupling (Def-

inition 4). By the moment generating function technique [27],

we know that Y follows a Gamma distribution, Γ(2
√

n, c2).
This completes the proof for Td.

center points secondary users mobility

primary users Manhattan path

vs

vd

Fig. 4. A Manhattan path between vs and vd under EIHP mobility.

To further describe how fast information can be dissemi-

nated, we study the dissemination speed Sd = Td

D . We need

first to specify the distance D between vs and vd. As analyzed

above, since for any vi under EIHP mobility, the number

of secondary users that can communicate with vi directly is

finite, and thus when vd is beyond the transmission range of

vi, hop by hop communication is necessary, in which case

transmission hops can describe “how far” more accurately

than the Euclidean distance. Therefore, D here denotes the

Manhattan distance between vc
s and vc

d by which the maximum

number of transmission hops between vs and vd can be

expressed as
√

λD. Then it follows Sd = Td

D ≤
P

√
λD

K=1
Yk

D .

Similarly, let Y ′ =
P

√
λD

K=1
Ŷk

D and P(Sd > t) ≤ P(Y ′ > t)

by coupling. Then Y ′ is distributed as Γ(
√

λD, c2

D ) from [27],

which obtains the result for Sd.

When α <

√
1

λ
−r

2 , Theorem 2 says that the first hitting time

between any two secondary users Th(vi, vj) = ∞. Therefore,

Td = ∞, which completes the proof.

Remark 5: Proposition 1 shows that the tail of the dissem-

ination speed Sd is bounded by Y ′ ∼ Gamma(
√

λD, c2

D ).

Note that the mean E(Y ′) =
√

λc2 and the variance,

var(Y ′) = λc2
2/D. As D increases, var(Y ′) → 0, which

leads to Y ′ =
√

λc2 for large D. Intuitively, this implies that

in large CRNs where D is usually large, Sd may be bounded by

some constant and its tail disappears as D increases. Actually,

in Section V, we will rigorously prove that in large CRNs, Sd

approaches to some constant, which agrees with our intuition

here.

In addition to the distribution, we further study the aver-

age delay E(Td). We begin with studying the average first

hitting time E(Th(vi, vj)). Based on E(Th(vi, vj)) =
∫

t ·
dP(Th(vi, vj) > t), we obtain an upper bound on the average

first hitting time from Eq. (3). From the proof of Proposition

1, we have E(Td) ≤ ∑2
√

n
k=1 E(Th(vi, vj)), which presents

an upper bound on the average delay E(Td). Note that this

result is for generic mobility and we can derive more accurate

delay for specific models. For example, We next derive the

average delay for discrete models. Particularly, if we assume

that at each time t = 0, 1, 2, . . . , the nodes are independently

distributed, and independent of all locations at previous time

slot (note that such discrete assumption is well adopted and

the i.i.d models in [16] is one of such examples), then we

have:

Corollary 1: Given [Fm,n,M(ΦE , Ψ, α), (λ, λp)] with fi-
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nite users, if α >

√
1

λ
−r

2 , the expected delay E(Td) < 2
√

n
ε

for discrete models, where ε is given by Eq.(1) and n is the

number of secondary users.

Proof: Note that the probability that there exists no com-

munication link between vi and vj at any time slot t ε = P(Et)
is given by Eq.(1). Thus, P(Th(vi, vj) = k) = εk−1 · (1 − ε)
and

E(Th(vi, vj)) =
∞
∑

k=1

P(Th(vi, vj) = k) · k =
1

ε
. (5)

Therefore, based on the proof of Proposition 1, we have

E(Td) ≤
2
√

n
∑

k=1

E(Th(vi, vj)) =
2
√

n

ε
. (6)

This completes the proof.

B. Distribution of Td under PIHP Mobility M(ΦP , Ψ, α)

Note that the main difference between PIHP and EIHP

mobility is that home points in the former are randomly

located, and thus for neighboring secondary users vi and vj

with dc(vi, vj) =
√

1
λ , dh(vi, vj) 6=

√

1
λ in PIHP mobility.

But under PIHP mobility, dh(vi, vj) is still bounded and we

have P(dh(vi, vj) ≤
√

5
λ) = 1. Thus, by similar proof to

Theorem 2, we are able to see that for any vi and vj with

dc(vi, vj) =
√

1
λ , if α >

√
5

λ
−r

2 , the first hitting time

Th(vi, vj) is exponentially bounded; and if α <

√
5

λ
−r

2 ,

P(Th(vi, vj) = ∞) > 0. Therefore, through the similar proof

as that of Proposition 1, we have the following results about

the dissemination latency Td and speed Sd in finite CRNs

under EIHP mobility:

Proposition 2: Given [Fm,n,M(ΦP , Ψ, α), (λ, λp)] with

finite users, if α >

√
5

λ
−r

2 , the tail of Td is stochastically

dominated by a Gamma distribution Γ(2
√

n, c3) and the tail

of Sd is stochastically dominated by Γ(
√

λD, c3

D ); otherwise,

Td has a heavy tail and P(Td = ∞) > 0. c3 is some positive

constant.

Remark 6: In Propositions 1 and 2, the distance D between

the source and destination nodes vs and vd has been considered

as Manhattan distance between their center points vc
s and vc

d.

Note that under both EIHP and PIHP mobility, the mobile

region of any secondary user vi is constrained to the coverage

of home point vh
i and thus the number of nodes that can

communicate with vi directly is finite. Hence information can

only be delivered from the source to the destination hop by

hop under these two mobility. Thus Manhattan distance, which

characterizes the number of transmission hops between the

source and destination, is an appropriate metric to measure

the distance between nodes vs and vd. Also note that we can

derive average delay for PIHP mobility by similar proof to

that of EIHP model. We skip this due to the page limit.

C. Distribution of Td under HHP Mobility M(ΦH , Ψ, α)

When HHP mobility is considered, home points are ho-

mogeneously distributed in the whole network Ωn. Therefore,

unlike EIHP and PIHP mobility, the distance between home

p

n
2λ

Ωn

C
dh(vi, vj)

vh
j

r αα

vh
i

Fig. 5. An illustration of the first hitting time in HHP mobility.

points of secondary users vi and vj is homogeneous and may

be any value in the interval (0,
√

n
2λ ) (see Fig. 5, where Ωn is

a torus surface without border effect). We next show that, to

overcome the randomness of dh(vi, vj), secondary users need

to move around the whole network (large mobility capability

α) to eliminate the heavy tail of the first hitting time.

Lemma 3: Given a CRN [Fm,n,M(ΦH , Ψ, α), (λ, λp)]

with finite users, if α >

√
n
2λ

−r

2 , the first hitting time

Th(vi, vj) is exponentially bounded; and if α <

√
n
2λ

−r

2 ,

Th(vi, vj) has a heavy tail and P(Td = ∞) > 0.

Proof: As shown in Fig. 5, there may exist a communi-

cation link between vi and vj (i.e., P(Th(vi, vj) < ∞) = 1),

if and only if vh
j is located in the solid circle C centered at

vh
i . Thus the probability that vh

j is distributed outside C (i.e.,

P(Th(vi, vj) = ∞) > 0), will incur a heavy tail of Th(vi, vj)
(that is, E(Th(vi, vj)) = ∞). Therefore, to eliminate the heavy

tail, C must cover the whole network Ωn, which requires

2α + r >
√

n
2λ ⇒ α >

√
n
2λ

−r

2 . When α >

√
n
2λ

−r

2 , vi

and vj may communicate with each other with some positive

probability at any time. Hence, with the similar proof of

Theorem 2, we can show that Th(vi, vj) is exponentially

bounded. This completes the proof.

Different from the above two scenarios (i.e., EIHP and

PIHP), under HHP mobility, any secondary user vi may

receive the message directly from the source vs, and any vi

that carries the message may in turn copy this message to all

secondary users it encounters along its trajectory. Hence, we

cannot apply the coupling method in calculating Td hop by

hop along the end to end path for HHP mobility. Instead, we

use a stochastic model to analyze Td and obtain the following

result:

Proposition 3: Given [Fm,n,M(ΦH , Ψ, α), (λ, λp)] with

finite users, if α <

√
n
2λ

−r

2 , Td has a heavy tail and P(Td =

∞) > 0; and if α >

√
n
2λ

−r

2 , the tail of Td is stochastically

dominated by a Gamma distribution.

Proof: When α <

√
n
2λ

−r

2 , there exists some positive

probability that all the home points {vh
j , j 6= s} are located

outside the circle centered at vh
s with radius 2α + r, which

implies P(Td = ∞) > 0 and thus a heavy tail.

When α >

√
n
2λ

−r

2 , Lemma 3 shows that the tail of the first

hitting time Th(vi, vj) between any vi and vj is stochastically



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2015.2398420, IEEE Transactions on Mobile Computing

8

dominated by exponential(c4) for some constant c4. If we can

show that when Th(vi, vj) is distributed as exponential(c4),
the tail of the resulting dissemination latency T ′

d is stochasti-

cally dominated by a Gamma distribution, then by Lemma 1

and coupling, which shows that P(Td > t) < P(T ′
d > t) for

large t, we complete the proof.

Assume Th(vi, vj) ∼ exponential(c4) for any vi and vj .

Denote ζ as the number of secondary users, which carry the

message sent by source vs before this message is successfully

delivered to the destination vd. The proof is based on modeling

ζ as an absorbing finite-state Markov chain. The Markov chain

consists of states k = 0, 1, 2, . . . , n − 1. The state k > 0
denotes ζ = k and the state 0 denotes the absorbing state that

vd successfully receives the message as shown in Fig. 6.

When secondary users hit each other, messages will be for-

warded to the ones without a copy of the message. Therefore,

when there are k secondary users carrying the message, the

message is sent to another secondary user at rate c4k(n−1−k)
with the transition from k to k + 1, and to destination vd at

rate c4k with transition from k to 0, as shown in Fig. 6. The

chain jumps from state k to k + 1 with probability n−1−k
n−k

and transits from k to 0 with probability 1
n−k . The sojourn

time Sk in state k is exponentially distributed with intensity

c4k(n−k). Since S1, S2, . . . , Sn−1 are mutually independent.

Thus P(ζ = k) = 1
n−k

∏k−1
j=1

n−1−j
n−j = 1

n−1 . Conditioning T ′
d

on ζ, we have T ′
d |(ζ = k) =

∑k
j=1 Sj , which is clearly expo-

nentially bounded and therefore, P(T ′
d > t) =

∑n−1
k=1 P(ζ =

k)P(T ′
d |(ζ = k) > t) = 1

n

∑n−1
k=1 P(T ′

d |(ζ = k) > t)
is exponentially bounded (note that the sum of exponential

variables is still exponentially distributed). That is, the tail

of T ′
d is bounded by exponential(c5) = Gamma(1, c5) for

some positive constant c5. This completes the proof.

Remark 7: Unlike EIHP and PIHP mobility, given α >√
n
2λ

−r

2 , home points under HHP mobility are homogeneously

distributed and secondary users move around the whole net-

work according to some stationary process. Thus Td is ho-

mogeneous for any pair of secondary users and the distance

between vs and vd D has no obvious impact on Td. Therefore

here we only study the distribution of the dissemination latency

Td.

We further study the expected delay in HHP mobility model.

Based on the proof of Proposition 3, we have

E(Td) = E(T ′
d ) = E(T ′

d |(ζ = k))

=

n−1
∑

k=1

E(T ′
d |(ζ = k))P(ζ = k)

=
1

n − 1

n−1
∑

k=1

E(T ′
d |(ζ = k))

=
1

n − 1

n−1
∑

k=1

k
∑

j=1

E(Sj)

=
c4

n − 1

n−1
∑

k=1

k
∑

j=1

j(n − j)

=
c4 · n2 · (n + 1)

12
, (7)

where c4 = E(Th(vi, vj)), as shown in the proof of Proposition

3. Note that this result is for generic mobility and given

specific mobility models, we can derive more accurate c4 and

thus more accurate expected delay E(Td). For example, we

have the following corollary for the discrete models used in

the Corollary 1:

Corollary 2: Given [Fm,n,M(ΦH , Ψ, α), (λ, λp)] with fi-

nite users, if α >

√
n
2λ

−r

2 , the expected delay E(Td) <
n3(n+1)

12(1−πR2

I
/(n/λ))mλπr2

for discrete models, where λ, r and

n are the density, communication range and the number of

secondary users, RI is the interference range of primary users

and m is the number of channels, as defined in Section II.

Proof: Given the discrete models in Corollary 1, there

exists a link between vi and vj at any time slot t when

given vi, vj is located within r, and no primary users within

distance RI . Note that when α >

√
n
2λ

−r

2 , nodes are uniformly

distributed over the whole network, given the network is in a

torus surface. Thus the probability that vi can communicate

with vj at any time slot is given by λπr2

n (1 − πR2
I/(n/λ))m

and Th(vi, vj) is a geometric distribution over time slots.

Therefore, c4 = E(Th(vi, vj)) = n
λπr2(1−πR2

I
/(n/λ))m . Thus

the result by putting c4 = E(Th(vi, vj)) into Eq. (7). This

completes the proof.

Remark 8: From Propositions 1, 2 and 3, it seems that

the dissemination latency Td is independent of the density of

primary users.

We need to clarify here that this “independency” is related

to the stochastic anatomy. However, the density of primary

users may have a negative impact on dissemination latency

Td and thus the speed Sd (see simulation results in Fig.

7). Particularly, as shown in the proof of Theorem 2, the

expected first hitting time E(Th(vi, vj)) and thus the expected

dissemination latency E(Td) (Corollaries 1 and 2) obviously

increase as the number of primary users m increases (see

Figs. 7). On the other hand, in terms of the statistically

macroscopic structure (i.e., light-tailed distribution or heavy-

tailed distribution), the proofs for Proposition 1, 2 and 3

demonstrate that Td is independent of the primary users, a

dichotomy structure on the mobility radius α in mobile CRNs

under general mobility.

The results in Propositions 1, 2 and 3 collectively suggest

that when secondary users are mobile under any subclass of

the general mobility M(Φ, Ψ, α), there exists a dichotomy

structure on the mobility radius α. Above the cutoff point

the dissemination latency Td is bounded by some Gamma

distribution (light-tailed), and below which Td has a heavy tail

and P(Td = ∞) > 0. The cutoff value also increases as the

spatial homogeneity of home points increases (i.e., increases in

the order EIHP, PIHP and HHP). This is equivalent to saying

that the cutoff point exists in CRNs under the general mobility

M(Φ, Ψ, α), which completes the proof of Theorem 1. We

next further explain and validate the theoretical cutoff anatomy

through simulations.

D. Simulation Results and Discussions

We perform a series of simulations to verify our theoretical

analysis on the distributions of the first hitting time Th and
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Fig. 6. Illustration of the Markov chain. Each state represents the number
of secondary users carrying the message.

the dissemination latency Td. Because there is no real CRN

trace that contains both information of primary user activities

and secondary user mobility, we perform our simulations

based on uniform distribution for primary users and generic

mobility model for secondary users. More specifically, we

here consider a finite CRN with n = 16 mobile secondary

users within an area 2 × 2 square meters (i.e., λ = 4). The

time is partitioned into unit slots. In each time slot, primary

users are uniformly distributed at random within the network

area and secondary users are uniformly distributed around their

home points (i.e., Ψ is uniform). Furthermore, home points

are uniformly distributed around the center points under PIHP

mobility (i.e., ΦP is uniform). The transmission range r of

secondary users and the interference range RI of primary

users set r = 0.1 meter and RI = 0.3 meter, respectively.

The probability is calculated based on the average of 1000
independent simulations. Fig. 7 shows the complementary

distribution (CCDF) of the dissemination latency P(Td > t)
on a log-log scale for EIHP, PIHP and HHP models with

different values of mobility radius α and the density of primary

users λp. It is observed in Fig. 7 that as the density of

primary users λp increases, the curves move right-ward, which

indicates increasing expected dissemination latency. However,

regardless of the value of λp, when α = 0.4 meter, which

is larger than the cutoff point under EIHP but smaller than

those under PIHP and HHP, the dissemination latency Td has

a light tail under EIHP but heavy tails under PIHP. As α
increases to 0.8 meter, which is larger than the cutoff point

in PIHP, but still less than that in HHP, the heavy tail of Td

in PIHP disappears, but Td in HHP presents a heavy tail. The

complementary distribution (CCDF) of the first hitting time

P(Th > t) on a log-log scale for EIHP, PIHP and HHP are

shown in Fig. 8, which demonstrates a similar quantitative

behavior to Fig. 7. In particular, a similar dichotomy property

of the tails of Th on mobility radius is observed for all three

mobility models in Fig. 8. These results are in good agreement

with our theoretical analysis in Propositions 1, 2 and 3, and

arguments in Remark 8.

Note that the major objective of this paper is to build ana-

lytical models for node mobility and investigate the stochastic

properties of information delivery latency, in finite as well

as large-scale CRNs. Therefore, in this simulation for finite

networks, we focus on illustrating the “dichotomy” property

of the first hitting time Th and the dissemination latency Td

over the node mobility.

V. THE SCALABILITY OF Td IN LARGE CRNS

We next prove Theorem 2, which states that the dissem-

ination latency Td asymptotically scales linearly with the

dissemination distance in large mobile CRNs. We studied

the distribution of Td in Section IV and demonstrated that

E(Td) → ∞ as the network size grows large, which implies

that the distribution of Td cannot be used to measure how

fast information is disseminated in large CRNs. Therefore in

large CRNs, instead of the distribution, we will investigate

the scalability of Td, i.e., the scaling behavior of Td with

respect to the distanceD between the source vs and destination

vd, which can be characterized by the dissemination speed

Sd = Td

D .

The results in finite networks have presented an implication

that the tail of Sd may disappear as the network size increases

(see Remark 5 in Section IV), which will be validated in this

section. We must emphasize that the derivation in Section IV

is based on the assumption that the number of nodes n is

finite. However, n may approach to infinity in large CRNs.

Therefore, the proofs and results in finite CRNs may not be

applied here. Instead, we will use the large number theory to

demonstrate that Td asymptotically scales linearly with D, i.e.,

limD→∞ Sd converges to some positive constant. Specifically,

the main tool used in this section is the following theorem:

Theorem 3 (Liggett’s subadditive ergodic theorem, [28]):

Let {Zh,q} be a collection of random variables indexed

by integers satisfying 0 ≤ h < q. Suppose {Zh,q}
has the following properties: (i) Z0,q ≤ Z0,h + Zh,q,

(ii) For each q, E(|Z0,q |) < ∞ and E(Z0,q) ≥ cq
for some constant c > −∞. (iii) The distribution of

{Zh,h+k:k≥1} does not depend on h. (iv) For each k ≥ 1,

{Zqk,(q+1)k : q ≥ 0} is a stationary sequence. Then:

(a) ζ = limq→∞ E(Z0,q)/q = infq≥1E(Z0,q)/q. (b)
Z = limq→∞ Z0,q/q exists almost surely. (c) E(Z) = ζ.

Furthermore, (v) If k ≥ 1, {Zqk,(q+1)k : q ≥ 0} are ergodic,

then (d) Z = ζ almost surely.

Liggett’s theorem provides a method to study the limiting

behavior of a large random process, which will be used to

study the limit of the dissemination speed Sd in this section.

Before we proceed, we first make some clarification about

our models. To study the dissemination latency Td and speed

Sd in large CRNs, we progressively increase the number of

secondary users n in Ωn. The homogeneously distributed sec-

ondary users are asymptotically distributed as a Poisson point

process with density λ. Similarly, to facilitate the analysis, we

will prove the scalability of Td under EIHP, PIHP and HHP

models respectively.

A. Sd under EIHP and PIHP Mobility in Large CRNs

Since the study of the first hitting time Th(vi, vj) between

neighboring secondary users vi and vj under EIHP or PIHP

models in Section IV is independent of the network size, these

results still hold for large CRNs. That is, when the mobility

radius α >

√
1

λ
−r

2 for EIHP or α >

√
5

λ
−r

2 for PIHP mobility,

the first hitting time Th(vi, vj) is exponentially bounded.

Otherwise, Th(vi, vj) and thus Td have heavy tails independent

of the transmission distance D(i.e., Td is unscalable with D).
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Fig. 7. CCDF of the dissemination latency Td under general mobility.
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Fig. 8. CCDF of the first hitting time Th(vi, vj) between neighboring secondary users vi and vj .

Therefore, we only need to study the scalability of Td with

exponentially bounded Th(vi, vj). In addition, when it comes

to the distance D between the source vs and destination vd,

it can be any p-norm metric function and we consider two

of the most popular metrics transmission hops and Euclidean

distance. As analyzed in Section IV-A and IV-B, hop by hop

communication is necessary for EIHP and PIHP mobility,

which indicates that transmission hops can describe “how

far” more accurately than the Euclidean distance in these two

models. Therefore, D here denotes the Manhattan distance

between vc
s and vc

d by which the maximum number of trans-

mission hops between vs and vd can be expressed as
√

λD. To

proceed, we make the following assumption about information

dissemination between secondary users vi and vj under EIHP

and PIHP models, by ignoring border effects.

Assumption 1: Information may be delivered directly be-

tween secondary users vi and vj only when dc(vi, vj) =
√

1
λ .

Remark 9: According to the interference model in Section

II-A1, vi may communicate with vj directly when 2α + r >

dh(vi, vj). Given α >

√
1

λ
−r

2 for EIHP (or α >

√
5

λ
−r

2

for PIHP), vi and vj with dc(vi, vj) =
√

1
λ clearly satisfy
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Fig. 9. Illustration of the dissemination direction.

the requirement 2α + r > dh(vi, vj), which implies that As-

sumption 1 conforms to the interference constraint. However,

Assumption 1 is clearly more restrictive than the interference

constraint since the former ignores some border effect. For

example, given vi and vk under EIHP with dh(vi, vk) =

dc(vi, vk) =
√

2
λ and α >

√
2

λ
−r

2 , vi may communicate

directly with vk by the interference constraint but this possible

communication link is ignored by Assumption 1. Assumption

1 simplifies the notations and description of our proof, and

thus highlights the fundamental properties of the dissemination

latency Td in large CRNs. However, as shown later, our proof

techniques do not require Assumption 1 and hence the derived

results can be easily extended to the scenario which takes the

border effect into account. We next present our main results.

Proposition 4: Given α >

√
1

λ
−r

2 for a large net-

work [Fm,n,M(ΦE , Ψ, α), (λ, λp)] (or α >

√
5

λ
−r

2 for

[Fm,n,M(ΦP , Ψ, α), (λ, λp)]), there exists some finite con-

stant κ such that P(limD→∞ Sd = limD→∞
Td

D = κ) = 1.

Because of the page limit, we only prove the result for

EIHP mobility. The proof for PIHP mobility is similar. To

initiate the proof of Proposition 4, we first define the following

notations. In Section IV, we argued that D should be specified

as Manhattan distance between the center points of the source

and destination under EIHP and PIHP mobility models. Here

we further denote d
(1)
c (vi, vj) as the Manhattan distance

between center points vc
i and vc

j for any vi and vj . Let Nh

be the set of secondary users with h hops away from the

source vs, i.e., Nh , {vi : d
(1)
c (vs, vi) = h

√

1
λ} (note that

the length of each hop is

√

1
λ ). Denote the straight line joining

vc
s and vc

d g(vs, vd) as the dissemination direction between vs

and vd (as shown in Fig. 9) and v(h) as the secondary user

which is h hops away from vs on the dissemination direction

g(vs, vd), i.e., v(h) , {vi : vi ∈ Nh and g(vs, vd) ∩ Oi 6= ∅}
(Oi is the cell associated with vc

i , see the shaded region in

Fig. 9). We next define the collection of indexed variables

by Th,q as the dissemination latency between v(h) and v(q)
(thus Td = T0,D

√
λ). Therefore, Proposition 4 is equivalent to

showing P(limq→∞
T0,q

q = κ
√

λ) = 1, which will be proved

by Liggett’s theorem next.

Particularly, if we can verify that the sequence {Th,q, h ≤ q}
satisfies the conditions (i)− (v) of Liggett’s theorem, we will

finish our proof by the conclusions of Liggett’s theorem. By

definition, T0,q is the shortest time that v(q) will receive the

message from v(0), which is clearly at most T0,h + Th,q.

Condition (i) is thus verified. We have shown that the first

hitting time Th(vi, vj) is exponentially bounded and thus

0 < E(Th(vi, vj)) < ∞, which verifies condition (ii).
Conditions (iii) and (iv) are clearly verified, as Th,q is defined

in a stationary way. The following lemma is to prove that

the sequence Th,q is ergodic, i.e., {Th,q, h ≤ q} satisfies

condition (v). In fact, we show that Th,q is mixing (i.e.,

roughly speaking, asymptotically independent), which is a

stronger property than ergodicity.

Lemma 4: The sequence {Tq,q+1, q ≥ 0} is mixing.

Proof: We compute Tq,q+1 by the following construction:

Denote Nq,k as the set of secondary users that are within k

hops from v(q), i.e., Nq,k , {vi : d
(1)
c (v(q), vi) < k

√

1
λ},

and T (k)
q,q+1 as the transmission delay from v(q) to v(q + 1)

only using nodes v ∈ Nq,k as relays. Observe that

lim
k→∞

P

(

T (k)
q,q+1 < t

)

= P

(

Tq,q+1 < t
)

for all t. We can show that {Tq,q+1} is mixing by

lim
k→∞

P

(

(Tq,q+1 < t) ∩ (Tq+2k,q+2k+1 < t′)
)

= lim
k→∞

P

(

(T (k)
q,q+1 < t) ∩ (T (k)

q+2k,q+2k+1 < t′)
)

= lim
k→∞

P

(

Tq,q+1 < t
)

P

(

T k
q+2k,q+2k+1 < t′

)

∀t, t′.

The second equality follows that T (k)
q,q+1 and T k

q+2k,q+2k+1

are independent, as they depend on non-intersected node sets

Nq,k and Nq+2k,k .

We can see that {Th,q, h ≤ q} satisfies all the conditions of

Liggett’s theorem and thus prove Proposition 4.

Remark 10: Note that our proof for Proposition 4 does not

depend on Assumption 1. Specifically, Assumption 1 simpli-

fies the description and definition of the dissemination process

{Th,q, h ≤ q} , but the proof to show that {Th,q, h ≤ q}
satisfy the conditions of Liggett’s theorem is independent of

Assumption 1. Without Assumption 1, we can still define

dissemination process as {T ′
h,q, h ≤ q} similarly and then

show that {T ′
h,q, h ≤ q} satisfy the conditions of Liggett’s

theorem by the same process. This completes the proof. Next

we study the dissemination speed Sd under HHP mobility.

B. Sd under HHP Mobility in Large CRNs

In the previous analysis of information dissemination in

large CRNs under EIHP or PIHP, a fundamental assumption

is that the mobility radius α is large enough, which is actually

used to ensure that the networks are fully connected. That

is, there exists a communication path (may be dynamic over

time) between any two secondary users with high probability.

However, such a full connectivity requirement may be overly

restrictive in large CRNs with HHP mobility. For example,

it is well-known that to achieve the full connectivity in a

large homogeneous networks with n static wireless nodes

distributed as a Poisson process, the required transmission

range is Θ(
√

log n) [24]. By ignoring the interference from

primary users to secondary users, a large CRN under HHP

with mobility radius α and transmission range r can be

mapped as a static Poisson distributed homogeneous networks

with transmission range 2α + r [16]. This indicates that

2α + r = Θ(
√

log n) is required for full connectivity, which
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is impractical to be satisfied when the number of nodes n is

large.

Therefore instead of full connectivity, we will investigate

information dissemination in large CRNs under HHP mobility

from a percolation perspective, which has been extensively

studied recently [15], [16], [22], [29], [30]. The main re-

sult of percolation theory concerns a phase transition in the

macroscopic behavior of large random networks [31], [32].

Specifically, it demonstrates that there exists a finite and

positive value of the transmission range, or equivalently of

the node spatial density, above which the network is percolated

(supercritical) and under which the network is not percolated

(subcritical). This is called critical phenomenon in percolation

theory. When the network is percolated, there exists a large

connected component (usually called giant component) of

nodes spanning almost the entire network. When the network

is not percolated, it consists only of small isolated components

of nodes. Note that the ultimate goal of the full connectivity

requirement is to ensure that information can be disseminated

through the whole network (thus the network is considered

functional). When the network is percolated, information can

still be disseminated to the entire network (through the giant

component). But the conditions to achieve the latter are much

less restrictive (only requires finite transmission range r, or

equivalently a finite α). Therefore, we will only study how

fast information is disseminated in large percolated (instead

of fully connected) CRNs under HHP.

Ren et al. [22] studied the percolation of a large static ran-

dom CRN. Given the density and interference range of primary

users, they identified a critical value on the transmission range

of secondary users, above which the CRN is percolated. By

mapping the CRN under HHP mobility to a large static random

CRN (similar to [16]), we can derive the similar conditions

for percolation of the former easily. Because of the page limit,

we will skip this step and directly focus on the dissemination

latency Td and speed Sd in large percolated CRNs under HHP,

by assuming that the mobility radius α or transmission range r
is large enough to satisfy the percolation conditions. We have

the following results on Td and Sd:

Proposition 5: Given [Fm,n,M(ΦH , Ψ, α), (λ, λp)], where

the large CRN Fm,n is percolated 2, for any two nodes vs and

vd in the giant component of Fm,n, there is a finite and positive

constant κ such that P(limD→∞ Sd = limD→∞
Td

D = κ) = 1.

Proof: (Sketch.) Instead of proving our results by using

percolation theory from the scratch, we will map our networks

to the existing models [15], [16], [22], [29], [30] and thus

use the existing results to save space. Particularly, Kong et

al. [16] studied a percolated wireless homogeneous networks

where home points {vh
i } are uniformly distributed and wireless

nodes vi is independently and uniformly mobile within the

circular region A(vh
i , α) centered at vh

i (called initial positions

in [16]) with radius α > 0. Kong et al. demonstrated that

the limiting dissemination latency scales linearly with the

2 [15] defines two types of percolation for mobile networks: permanent
percolation and cumulative percolation. The former is that the network is
percolated at any time instant; the latter is that the network is not percolated at
any time instant, but it is percolated over time. When we mention percolation
of mobile networks, we refer to the latter in this paper.

dissemination distance D (Euclidean distance between home

points) in such a percolated network. Note that the positions

of home points and the mobility of secondary users in our

network [Fm,n,M(ΦH , Ψ, α), (λ, λp)] are similar to those in

[16], which motivates us to extend the result in [16] to our

network. If we can validate the extension, we will finish the

proof. We next verify the extension. There exist two main

differences between our model [Fm,n,M(ΦH , Ψ, α), (λ, λp)]
and the network in [16]. First, in our model, the secondary

user vi is independently mobile within A(vh
i , α) according to

some stationary distribution Ψ (not necessarily the uniform

distribution as in [16]). Furthermore, there exist primary users

in our network, which interferes with the communications

among secondary users. However, we find that the proofs

in [16] require neither uniform distribution of vi around vh
i ,

nor non-interference from other nodes (e.g., primary users).

Indeed, the fundamental requirement for proofs in [16] is that,

given any two nodes vi and vj with dh(vi, vj) = ‖vh
i −vh

j ‖ <
2α+r, the expected first hitting time E(Th(vi, vj)) < ∞. This

requirement has been proven in Theorem 2, which indicates

that the result of the dissemination speed in [16] can also be

applied in [Fm,n,M(ΦH , Ψ, α), (λ, λp)]. This completes the

proof.

Remark 11: Propositions 4 and 5 together complete the

proof for Theorem 2, which demonstrates that information

spreads linearly in large connected (full connected or perco-

lated) CRNs under general mobility and seem to be indepen-

dent of primary users. Note that this independency refers to the

linearity, not the specific value, of the dissemination speed. As

shown in Propositions 4, 5 and Liggett’s theorem, the specific

value of the asymptotic speed is proportional to the expected

first hitting time E(Th(vi, vj)) between neighboring secondary

users vi and vj , which adversely depends on the density of

primary users (see Theorem 2). Furthermore, as shown in

[22] and Fig. 11(a), the required transmission range r (or

mobility radius α) for percolation increases as the density of

the primary users increases. When the density of the primary

users is larger than some threshold value, the CRN is not

percolated even with infinitely large r or α. Therefore our

dissemination speed analysis in Proposition 5 is based on the

implicit assumption that the density of primary users is not

high so that the network is percolated.

C. Simulation Results and Discussions

As simulation proves to be an effective tool in studying

large-scale network, we conduct a series of simulations to fur-

ther validate our theoretical results concerning the asymptotic

latency. In these simulations, time is partitioned into unit

slots. In each time slot, secondary users are independently

and uniformly distributed around their home points. Fig. 10

shows the dissemination speed in CRNs under EIHP and

PIHP models respectively, where the transmission range r
of secondary users and the interference range RI of primary

users are set as r = 0.1 km and RI = 0.3 km, and the

spatial densities of secondary users and primary users are set

λ = 4 (per km2) and λp = 0.5 (per km2). As shown in

Fig. 10(a) and 10(b), no matter how large the mobility radius
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Fig. 11. Percolation conditions and the dissemination speed in large percolated CRNs.

α is, the dissemination latency Td scales linearly with the

dissemination distance D (Manhattan distance) as D increases,

which agrees with Proposition 4. Moreover, as the density of

primary user λp increases, the curves in Fig. 10(a) and 10(b)

move downward, which indicates decreasing dissemination

speed. These observations also demonstrate that the density

of primary adversely affects the dissemination speed, but has

no influence on the linearity of dissemination speed in large

networks. Fig. 10(c) compares the dissemination speed under

EIHP mobility with and without taking Assumption 1 into

account. The main difference is that the latency is smaller in

the latter. However, we observe that their qualitative behaviors

are similar, which verifies our arguments in Remarks 9 and

10. The dissemination speed in large percolated CRNs under

HHP mobility is shown in Fig. 11. Particularly, Fig. 11(a)

shows the simulated percolation conditions under different

network parameters and Fig. 11(b) gives an example of such a

percolated CRN. Fig. 11(c) shows that in percolated CRNs, the

dissemination latency Td scales linearly with the dissemination

distance D (Euclidean distance) as D increases. Fig. 11

validates the Proposition 5 and arguments in Remark 11.

As we mentioned in Section IV-D, the major objective

of this paper is to provide analytical models and study the

stochastic properties of distribution latency Td, rather than ob-

taining the exact value of Td, which is not practical to achieve

given so many random factors in the wireless networks. And

for large CRNs, we investigate the scaling behavior of Td with

respect to the distanceD between the source vs and destination

vd. Therefore, as shown in Fig. 10 and Fig. 11, we focus on

demonstrating the linear scalability of latency Td for different

mobility models in this simulation.

VI. CONCLUSIONS AND APPLICATIONS

We have studied in this paper the distribution of the in-

formation dissemination latency Td in finite CRNs and the

scalability of Td in large CRNs under general mobility. We

found that in finite networks, there exists a cutoff point on

the mobility radius α of secondary users, above which the

tail distribution of Td is bounded by some Gamma distri-

bution and below which Td has a heavy-tailed distribution.

When networks become large, the dissemination latency Td is

(linearly) scalable with respect to the dissemination distance.

Our results demonstrate that when secondary users can move

in a large region, a Gamma distributed (light-tailed) latency

in finite networks, or a scalable latency in large networks, is

achievable.

Our results encourage the deployment of CRNs for real-time

and large applications. One possible application is CRN-based

smart metering in the next generation smart grid. Smart meters

can dynamically utilize unused spectrum to communicate with

each other and with network gateway. The network gateway

can connect with a spectrum database and determine which

channels to use for smart meters based on their locations

and bandwidth requirement. Upon CRN-based smart metering,

accurate real time energy consumption information can be

provided to user and utility companies in order to save energy

and money. Another application is CRN-based vehicular com-

munications for information dissemination. As radio frequen-

cies allocated for vehicular networks are limited, vehicular

users equipped with spectrum sensing technologies can use

additional spectrum for emergency message dissemination. In

an emergency situation, vehicles can coordinate with primary

users around an accident area to opportunistically access
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spectrum. Under high vehicle mobility and large mobility

radius, short dissemination latency is expected through CRN-

based vehicle communications. In summary, CRN is promising

in supporting large applications that require short latency, such

as CRN-based smart metering and vehicular communication.
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