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Abstract—It has been demonstrated that in wireless networks,
blackholes, which are typically generated by isolated node fail-
ures, and augmented by failure correlations, can easily result in
devastating impact on network performance. In order to address
this issue, we focus on the topology of Cognitive Radio Networks
(CRNs) because of their phenomenal benefits in improving spec-
trum efficiency through opportunistic communications. Particu-
larly, we first define two metrics, namely the failure occurrence
probability p and failure connection function g(·), to characterize
node failures and their spreading properties, respectively. Then we
prove that each blackhole is exponentially bounded based on per-
colation theory. By mapping failure spreading using a branching
process, we further derive an upper bound on the expected size of
blackholes. With the observations from our analysis, we are able
to find a sufficient condition for a resilient CRN in the presence of
blackholes through analysis and simulations.

Index Terms—Resilience, cognitive radio networks, topology,
generic failures.

I. INTRODUCTION

W IRELESS communication has experienced an explosive
growth in the past few decades, which imposes a signifi-

cant demand for the already-crowded radio spectrum. However,
a recent report by the Federal Communications Commission
(FCC) indicated that over 90% of the licensed spectrum remains
idle at a given time and location [2]. This observation immedi-
ately incurs considerable attentions [3]–[7] to Cognitive Radio
Networks (CRNs), which show great potential for improving
spectrum usage efficiency by permitting secondary networks to
coexist with licensed primary networks. On one hand, many
efforts have been devoted to understanding the performance
limits of CRNs, including maximum capacity, minimum delay
and connectivity [1], [8]–[13]. These works have presented a
very good understanding of the potential of CRNs for a variety
of applications in theory. On the other hand, the properties
and dynamics of global topology, which plays an important
role in designing fundamental networking functionalities, such
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as point-to-point routing and scheduling algorithms, has never
been well studied. The lack of knowledge about network topol-
ogy greatly hinders the practical deployment of CRNs, which
motivates the study on topological features of CRNs in this
paper.

Topology of wireless networks changes frequently due to
different factors (e.g., node mobility, failures) and in this paper,
we focus on topological transmutation by studying Blackholes
due to node failures. Such unavoidable faults can be brought out
by malfunctions of electrical devices, energy depletion, natural
disasters (fire, river overflow, earthquake, etc) or adversarial
attacks (a bomb explosion for example). Communications may
be disabled by jamming, traffic congestion or energy depletion.
In addition, causal relations often exist among failures, i.e.,
some failures happen as a result of other earlier failures. One
example of such correlated failures is traffic overloading and
energy depletion [14], that is, when a node fails to deliver
packets, the incoming and outgoing traffic is redistributed to
the neighboring nodes. Some neighbors may work under heavy
traffic loads, resulting in early energy depletion and node
failures. Such correlation among failures and cascading effects
lead to Blackholes (i.e., components of failed nodes, see formal
definition in Section II) in the network, where information
cannot be transmitted or forwarded.

Understanding the properties of Blackholes in the CRNs, or
in particular, investigating structure and size of Blackholes, is of
great importance in the design of basic networking operations.
For example, a number of networking protocols exploit geomet-
ric intuitions for simple and scalable data delivery, such as geo-
graphical greedy forwarding [15], [16]. These algorithms based
on local greedy advances may not work properly in the presence
of Blackholes, where routing messages will be lost. Backup and
restoration methods, such as face routing on a planar subgraph,
can help packets get out of Blackholes, but also create high
traffic on hole boundaries and eventually undermine network
lifetime [15], [16]. In addition, a number of routing schemes
address explicitly the importance of topological properties and
propose routing with virtual coordinates that are adaptive to
the intrinsic geometric features [17]. However, constructing
these virtual coordinate systems requires the identification of
topological features, especially Blackholes first in order to
proceed routing.

Therefore, Blackholes have been extensively explored in
wireless networks [18]–[20]. For example, Fang et al. [18]
studied the difficulties imposed by Blackholes on geographic
routing and proposed a distributed algorithm to build a path
bypassing such holes. Wang et al. [19] focused on topology
discovery and presented an algorithm to identify Blackholes.
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The spatial features of the holes and their impact on data preser-
vation have been investigated in [20]. These results significantly
improve our understanding of the disadvantageous impact of
Blackholes on network performance.

Meanwhile, it is evident that all of these studies presume a
few interesting but more fundamental questions. First, what is
the driving force in the formation of Blackholes and how large
are these holes? Failure correlation [20], [21] has been recog-
nized as one of the most important factors for the occurrence
of Blackholes and Xu et al. [21] further studied how an initial
failure may incur a giant hole spanning over the entire network.
Given its detrimental consequences, the occurrence of giant
hole needs to be avoided in the initial network design [21] such
that node failures can result in many finite holes in the network.
However, how to quantify the finite size of these holes has not
been discussed. Moreover, existing works [18]–[20] are focused
on locating and bypassing these holes in the network. But a
fundamental question is whether we can always find alternative
routes to bypass all holes. If such routes do not exist, routing
protocols may not be a good solution, which is a fundamental
issue in multihop networks. Particularly, the ability of wireless
networks to maintain global communication in the face of these
Blackholes is a central concern for these routing protocols.
And a network may be considered to be resilient if the largest
connected component of operational nodes are distributed to the
whole network and alternative routes bypassing dysfunctional
nodes always exist in a resilient network. Therefore, network
resilience is a premise for the applications of the existing
solutions.

In this paper, we aim to provide insightful understanding of
the above questions. In particular, we first study the process of
how an initial failure “explodes” to a Blackhole and present
theoretical analysis to quantify the scope of Blackholes. Using
combinatorial arguments, we prove that the distribution of
Blackhole size decays exponentially and we further provide an
upper bound on the expected size of Blackholes by mapping
failure spreading to a branching process. Then we investigate
network resilience in the presence of Blackholes. A network
is said to be resilient to node failures when there exists a
large connected component of “surviving” (not failed) nodes
spanning over the entire network. We have identified a sufficient
condition for a resilient CRN against Blackholes by using
techniques in percolation theory [22].

Our contributions to the understanding of topological re-
silience are as follows:

• We investigate the formation of Blackholes due to explo-
sive spreading of random failures, and prove that each
Blackhole is exponentially bounded and provide an upper
bound on its expected size.

• We identify a sufficient condition when a CRN is resilient
to blackholes, which can be used as a prerequisite for
the blackhole locating and bypassing algorithms in the
existing works [18]–[20].

Although we only addressed topological features and re-
silience of CRNs, questions presented in this paper are im-
portant yet remain unanswered in general multihop networks
(e.g., wireless sensor networks and wireless ad hoc networks).

Letting spatial density of primary users λp = 0, our results
can be extended to other wireless multihop networks, which
serves a timely complement to existing studies on restoration
algorithms and protocols [18]–[20].

The rest of this paper is organized as follows. In Section II,
we introduce network models and formulate the problem. In
Section III, we present our main results about Blackhole size
and network resilience, along with discussions of applications
of our observations. We provide detailed proofs for our ana-
lytical results about size of Blackholes and network resilience
in Sections IV and V, respectively. In Section VI, we use
simulations to explain and validate our analysis, followed by
the conclusions in Section VII.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first present a brief description of prelim-
inaries, then describe the network models, basic assumptions
and notations, and formulate the problem last.

A. Preliminary

Before introducing network models, we need a brief intro-
duction of common models and tools used to study wireless
networks for clarification. A continuum graph consisting of
nodes X placed in space R

2, with edges added to connect pairs
of nodes which are close to each other, can be used to model
wireless networks [21], [23]–[26]. Rather than any specific
positions, nodes X are usually assumed to be a Poisson point
process for the following reasons. First, precise configuration
of points may not be known. In addition, Poisson point process
represents an average case. Some properties of graphs are
unfeasible to compute for large graphs, and understanding their
average behavior may be a useful alternative to exact compu-
tation. For example, given a Poisson point process X ⊂ R

2,
the graph, denoted by G(X , r), with vertex set X and edges
connecting those pairs {x1, x2} ∈ X with ‖x1 − x2‖ ≤ r, is
called Boolean model and has been used in [23] to represent
a large wireless network. If edge between x1 and x2 is added
with probability g(‖x1 − x2‖), the resulted graph G(X , r, g) is
called random connection model and has been used in [21] to
study failure spreading.

Recently, Percolation theory, especially continuum percola-
tion, has been widely used to study the coverage, connectivity,
capacity and resilience of large-scale wireless networks [14],
[21], [23]–[26]. A percolation process resides in a random
geometric graph, where nodes or links are randomly designated
as either “active” or “inactive”. When the graph structure
resides in continuous space, the resulting model is described
by continuum model [14], [22]. A major focus of continuum
percolation theory is the random geometric graph induced
by a Poisson point process with density λ. A fundamental
result for continuum percolation concerns a phase transition
effect whereby the macroscopic behavior of the system is very
different for densities below and above some critical value
λc. For λ > λc, there exists a giant component containing an
infinite number of points with positive probability; otherwise
any component in the graph is finite.
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Fig. 1. Primary-secondary interference.

B. Network and Failure Models

In this paper, we consider a large CRN consisting of n
secondary users {v1, . . . , vn}, which are modeled by a random
geometric graph G(Hλ, r), where Hλ = {x1, . . . , xn} denotes
the node set and r denotes the node transmission radius. In this
model, x1, . . . , xn denote the random locations of secondary
users and they are independently and identically distributed
(i.i.d) in a region Ω = [0,

√
n
λ ]

2 for some constant λ. By
definition, Hλ is a Poisson Point process with density λ as
n → ∞ [27]. The secondary users are assumed to share a
set of m channels {ch1, . . . , chm} with coexisting primary
users. Particularly, we assume that for any 1 ≤ k ≤ m, an
overlay network of primary users with spatial density λpk are
transmitting with channel chk, and λpk = λp for any k for
simplicity. A synchronized slotted structure has been adopted
to model the dynamics of the primary traffic, which has been
used in [24] to study the connectivity of a large single-channel
CRN. Particularly, time is slotted into units and at any time slot,
primary users transmitting on any channel chk are assumed
to be uniformly and independently distributed in Ω, and such
distribution is i.i.d across slots.

1) Interference Models: In CRNs, there are two types of
interference for information dissemination among secondary
users: secondary-secondary and primary-secondary interfer-
ence. The former interference can be characterized by the well-
known protocol model [28]. Particularly, without interference
from primary users, a successful transmission from a secondary
user vi to vj is achievable if ‖xi − xj‖ ≤ r and for any
other simultaneously transmitting node on the same channel
vl, ‖xl − xj‖ ≥ (1 + Δ)r, where r is the transmission radius
of secondary users, and Δ models the guard zone around vj
in which any simultaneous transmission on the same channel
causes collision at vj . For the latter interference, denote RI

as the interference range of primary users. And as shown in
Fig. 1, the secondary users vi is permitted to use channel
chk to transmit to some other secondary user vj only when
there are no primary users on chk in the neighborhood, i.e.,
‖xi(t)− u(t)‖ > RI for any primary user u transmitting with
chk, where u(t) is the position of u at time t.

2) Failure Model and “Explosion”: In wireless networks,
nodes fail unavoidably due to adversary attacks, natural haz-
ards, resource depletion, etc. Node failures are often not in-
dependent and causal relations exist among these failures, i.e.,
some failures happen as a result of other earlier failures. Traffic
overloading and energy depletion [14] is an example as a result

Fig. 2. An example of Blackholes.

of failures spreading. Because of failure correlation, each initial
failure will “explode” and impact a component of nodes in
the neighborhood. An illustration of such process is shown in
Fig. 2. In this example, random failures initially occur at nodes
v1, v5, v8, v12, v14 and v15. As a result of the failure on v1,
node v2 fails subsequently and spreads the failure further away
to nodes v3 and v4. Similarly, nodes v6, v7, v9, v9, v10, v11,
v13, and v16 fail subsequently due to random failures on v5,
v8, and v12. In Physics, a Blackhole is a region of spacetime
from which nothing, not even light, can escape [29]. Likewise,
in a wireless network, any information (e.g., routing packets)
transmitting to components of failed nodes will be absorbed
(lost). This similarity motivates us call a component of failed
nodes incurred by a particular initial failure (see the shaded area
in Fig. 2) a Blackhole for convenience.

The above example shows that the formation of Blackholes
consists of the occurrence of initial failures and explosion of
these failures. Thus we introduce the following models:

• Random failure model: each node is either surviving or
failed independently and a node may fail with probability
p (failure occurrence probability). This model describes
the initial occurrence of node failures.

• Failure explosion: We define failure connection function
g(·) to model the likelihood of failure propagation from
vi to vj . If ‖xi − xj‖ < r, failure spreads from vi to
vj with a probability g(‖xi − xj‖) that depends on their
distance but not their respective locations. If vj is beyond
the transmission radius of vi, failure cannot spread from vi
to vj directly.

In this paper, we assume that g(·) ≡ τ , which is called
failure connection probability and r = 1 by default, if there
is no specific explanation. Thus failure spreading among sec-
ondary users can be represented as a random connection model
G(Hλ, 1, τ).

Remark 1: These two models are not new. Particularly,
random failure model has been used in [23] to study topology
transition of wireless networks because of independent node
failures (without considering failure spreading) and failure
connection function has been used in [21] to determine whether
an initial failure will spread to the entire network. However, as
discussed above, the occurrence of random failures and their
subsequent explosion are inseparable, and we are interested in
this paper how these two processes together result in Blackholes
in the network.
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C. Problem Formulation

In order to understand the impact of Blackholes on network
implementation (e.g., routing), we first focus on a particular
hole, initiated by a failure on a node, say v1, w.l.o.g, and
denoted by Ov1

. Existing results on random connection model
[22] shows that there exists some critical value ζ on node
density λ, such that if λ > ζ, Ov1

may spread to the entire
network with some positive probability; and if λ < ζ, Ov1

is
finite. Given the devastating consequence of large-scale failure
spreading, previous work in [21] provided bounds on ζ, which
helps network designers to operate network at λ < ζ, making
network be resilient to cascading failures. In this paper, we are
interested in when λ < ζ, how large Ov1

is.
Definition 1: (BHG problem): For a CRN which is resilient

to large-scale failure spreading (i.e., λ < ζ), how large does a
Blackhole grow (i.e., how many failure nodes are in a Black-
hole)?

Definition 2: (Blackholes Resilient, BHR): Given the exis-
tence of Blackholes, a CRN is said to be BHR if a giant com-
ponent of surviving nodes, spanning over the entire network,
exists.

A network may be said to be resilient if the remaining
network is functional even after many node and link failures.
For example, if a wireless sensor network still manages to
collect information from a constant fraction of the sensors even
after a substantial number of node and link failures, then the
network is resilient. BHR property makes a CRN maintain
global communication capability in the presence of Blackholes,
i.e., information can bypass Blackholes and be disseminated
to the entire network through the giant component, and thus
a CRN with BHR property is considered to be resilient in this
paper. And the BHR property provides a theoretical foundation
to the existing studies on locating and bypassing Blackholes
[18]–[20]. Next, we will formally define BHR problem.

BHR property makes a CRN maintain global communication
capability in the presence of Blackholes, i.e., information can
bypass Blackholes and be disseminated to the entire network
through the giant component. And BHR property provides
theoretical foundation to the existing studies on locating and
bypassing Blackholes [18]–[20]. Next, we will formally define
BHR problem.

Definition 3: (BHR problem). For a large CRN which is
assumed to be initially connected (percolated), given node
failures characterized by random failure model and failure
explosion model, determine the condition under which the
network is BHR.

III. RESULTS AND APPLICATIONS

In this section, we present our main results concerning BHG
and BHR problems. We find that the size of Blackholes is
exponentially bounded and provide an upper bound on their
expected size. Based on the understanding of size of Black-
holes, we further identify a sufficient condition for a resilient
CRN. In addition, we further discuss potential applications of
our theoretical analysis.

A. Main Results

We summarize our main results as follows. First, following
theorems solve the BHG problem.

Theorem 1: Exponential decay of |Ov1
|. When Blackhole

Ov1
is not percolated, there exists some ε > 0 such that

P (|Ov1
| ≥ N) ≤ e−Nε for all N sufficiently large. (1)

Remark 2: Theorem 1 shows that when a failure cannot
spread to the entire network, the number of nodes that may be
infected by this failure is exponentially bounded. Exponential
distribution is not enough to show how large Blackhole Ov1

is,
since the expected value E(|Ov1

|) of |Ov1
| is unidentified, i.e.,

the parameter ε in Eq. (1) is unknown. We provide E(|Ov1
|) in

the next theorem.
Theorem 2: When Blackhole Ov1

is not percolated, its ex-
pected size is upper bounded by

β = E (|Ov1
|) ≤ 1.43πλ2τ2

1− 1.43λτ
+ 1, (2)

where λ is spatial density of secondary users and τ is failure
connection probability.

Remark 3: Theorem 2 indicates that the expected Blackhole
size grows as failure connection probability τ increases, which
corresponds to our intuition that the Blackhole is large when
nodes are prone to be infected by their neighbors. Eq. (2)
further implies that 1− 1.43λτ > 0 is necessary to guarantee
that Blackhole Ov1

is not percolated.
Theorems 1 and 2 study distribution and expected size of

Blackhole Ov1
. In particular, Eqs. (1) and (2) tells us that the

size of Blackhole is expontentlaly distributed with a bounded
mean. We note that our failure models (see Section II-B) do
not take primary users into account, because reasons incurring
failure correlation (e.g., due to traffic overloading and energy
depletion) are usually independent of primary users. In fact,
our failure models are similar to those used in general wireless
networks [21], [23]. This implies that our results concerning
Blackhole size can be directly applied to general wireless
networks. In previous work [21], Xu et al. prove a value ζ such
that when node density λ > ζ, a failure is percolated, and it is
not percolated otherwise. And our results further illustrate the
size of nodes infected by a failure when λ < ζ, which is an
important and necessary complement to the existing work.

The next theorem answers the BHR problem, providing a
sufficient condition for a resilient CRN in the presence of
Blackholes.

Theorem 3: Given a CRN where each secondary node
fails with probability p according failure models defined in
Section II-B, it is BHR if p < 1− Λeβ

1−e−β+Λ
, where

Λ =

√√√√ p�c(
1− eλd

2
l

)2

(1− (1− e−λpα)m)
, (3)

dl =
r√
5

, α = (dl + 2RI)(2dl + 2RI) and p�c is given in the
Appendix.

Remark 4: BHR problem is not only important in CRNs, it
also remains unanswered in general wireless networks. Setting
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spatial density of primary users λp = 0, Theorem 3 also pro-
vides BHR condition for a general wireless network.

B. Applications

Besides the theoretical importance of our findings, our results
can be used practically not only in the initial deployment, but
also as a theoretical foundation in evaluating protocol designs.
Here are some examples.

• In the initial deployment, an appropriate value for spatial
density λ of wireless nodes can be decided to guarantee
that any random failure can only spread within a prede-
fined area, if failure connection probability τ is known.

• There are many routing protocols [18]–[20] proposed to
identify a path to bypass Blackholes through the entire
network. However, when the network is not BHR, such
path does not exist and thus these protocols will not work
properly and waste network energy. Our result concerning
BHR can be used as a prerequisite in determining whether
adopt these routing protocols, or as a benchmark in evalu-
ating the efficiency of these protocols.

• In wireless networks, node failures affect the communica-
tion connectivity and in turn impair network functionality.
As mentioned in [30], redeploying additional nodes is nec-
essary to replace failed nodes so that a connected network
topology can be maintained. Let Ti (1 ≤ i ≤ n) denote the
lifetime of node vi before it is failed. Given survival func-

tion S(t)
Δ
= P(Ti > t) (thus failure occurrence probability

p = 1− S(t)), our results provide network designers a
guideline on the optimal time that the redeployment of
additional nodes should be carried out.

IV. HOW LARGE IS A BLACKHOLE?

In this section, we demonstrate how to obtain the results con-
cerning size of Blackhole Ov1

given in Section III. Specifically,
we investigate how many nodes will be infected by occurrence
of failure on v1. We first study the distribution of |Ov1

|.

A. The Distribution of |Ov1
|

Using percolation theory, Xu et al. [21] determine the condi-
tion under which Ov1

may be percolated to the entire network.
However, when Ov1

is not percolated, how large |Ov1
| is,

remains unknown. To study distribution of |Ov1
|, our approach

takes following procedures. We first map failure spreading pro-
cess defined on continuous plane onto a discrete lattice, whose
edges are declared open if certain properties are met (closed
otherwise). In the discrete lattice, we then investigate the size
of components consisting of open edges using combinatorial
arguments. With a careful definition on the open edge in the
lattice, a relation between the size of Blackholes and size of
components of open edges can be derived. Finally, we obtain
the distribution of Blackhole size |Ov1

| in Theorem 1. The
detailed proof is presented as follows.

Proof of Theorem 1: When studying topology of contin-
uum graph, an useful technique is the discretization of the
graph on R

2 into lattice on integer space Z
2, since topological

Fig. 3. An illustration of mapping from continuum graph to discrete lattice.

Fig. 4. An example of open path and the union of its associated boxes.

properties of the latter are easier to be analyzed [31]. One of
the technical uses of such a discretization lies in the availability
of combinatorial arguments for enumerating the sets in Z2. To
proceed, we shall require a variety of notations. A set A ⊂ Z

2 is
said to be symmetric if −x ∈ A for all x ∈ A. Vertices x, y ∈ A
are said to be A-adjacent(x ∼A y) if and only if y − x ∈ A.
A subset S ⊂ Z

2 is A-connected if it induces a subgraph with
adjacency relation ∼A. The following lemma, which says that
the number of A-connected subsets of Z2 of size N containing
the origin grows at most exponentially, is helpful.

Lemma 4: (Peierls argument, see page 178 in [27]) Let
A be a finite symmetric subset of Z2 with |A| elements. The
number of A-connected subsets of Z2 containing the origin, of
cardinality N , is at most 2|A|N .

In this paper, we consider a discrete lattice L = dl × Z
2

with side length dl. The coordinates of the vertices of L are
(dl × i, dl × j) for (i, j) ∈ Z

2. Adjacency is defined by A =
{z ∈ L : ‖z‖1 = dl} where ‖ · ‖1 denotes 1-norm distance, i.e.,
an edge connects x, y ∈ L only when ‖x− y‖1 = dl (see solid
lines in Figs. 3 and 4). For any z ∈ L, we construct a box Bz

of size dl centered at dl × z (see the dash lines in the Figs. 3
and 4). As Fig. 3 shows (for figures in this paper, solid dots and
circles denote failed and surviving nodes respectively), failure
spreading, represented by random geometric graph G(Hλ, r, τ)
(i.e., graph consisting of failed nodes and edges connecting
them), induces a realization of the bond percolation on L by
setting an arbitrary bond zz′ ∈ L to be open if there exists an
edge uv ∈ G(Hλ, r, τ) such that u ∈ Bz and v ∈ Bz′ . That is,
given one or more failed nodes in Bz , at least one failed node
connects to some some nodes in Bz′ . And an example of open
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bond zz′ is shown in Fig. 3. Let C(v1) denote the cluster of
open bonds and |C(v1)| denote its size. It is obviously true that
if |Ov1

| < ∞, then |C(v1)| < ∞, and vice versa. The mapping
between the cluster of failed nodes and the cluster of open
bonds allows us to find |C(v1)| and thus use it to study |Ov1

|.
Particularly, when Ov1

is not percolated, C(v1) is not perco-
lated. Bond percolation on discrete lattice (see Theorem 6.75
in [31]) shows that if C(v1) is not percolated, then there exist
constants μ > 0, n0 > 0 such that

P (|C(v1)| ≥ N) ≤ e−μN , N ≥ n0. (4)

By Peirels argument (Lemma 4), there is a constant γ such
that, for all N , the number of open paths of L of cardinality
N containing the origin is at most γN . If |C(v1)| < N and
|Ov1

| > KN + 1, then for at least one of these open paths, the
union of associated boxes Bz contains at least KN nodes of Hλ

(an example of such path and its associated boxes are shown in
Fig. 4 as the bold line and shaded area). Therefore, we have

P [{|C(v1)| < N} {|Ov1
| > KN + 1}]
≤ γN

P
[
Po

(
Nλd2l

)
≥ KN

]
, (5)

where Po(·) denotes Poisson distribution. To continue, we need
the following lemma (see (1.12) in [27]).

Lemma 5: Let Po(λ) be a Poisson random variable with
density λ. If K > e2λ, then

P [Po(λ) ≥ K] ≤ e−(
K
2 )log(

K
λ ). (6)

Letting K ≥ e2d2l λ and putting Eq. (6) into Eq. (5), we have

P [{|C(v1)|<N} {|Ov1
|>KN+1}]≤γNe

−(KN
2 )log

(
K

d2
l
λ

)
.

(7)
If we take K sufficiently large, we see from Eqs. (4) and (7)

that P(|Ov1
| > KN + 1) decays exponentially in N , so that

Eq. (1) follows. �
After proving exponential distribution of Blackhole Ov1

, we
next study its expected size.

B. The Expected Value of |Ov1
|

In this subsection, we investigate the expected number of
nodes in Blackhole Ov1

and prove the upper bound Eq. (2)
given in Theorem 2. Specifically, we model failure spreading
in CRNs as a branching process [32]. By studying the number
of offspring in this branching process, we obtain our result. The
detailed proof is given as follows.

Proof of Theorem 2: Denote our network with a graph
G(Hλ, 1, τ). Let x1, x2, . . . be the points of the Poisson process
Hλ and assume that a failure initially occurs to x1 (thus x1 is
initial member of the 0-th generation of the branching process,
as shown in Fig. 5). The children of x1 in this branching process
are points which can be infected by x1 directly. According to
failure spreading model in Section II-B, each point of Hλ which
lies in the ball B(x1, 1) = {y ∈ R

2 : ‖y − x1‖ ≤ 1} (see the
big circle in Fig. 5) may be a child of x1 with probability
τ . If we take another Poisson process X1 with density λ · τ ,

Fig. 5. An illustration of the branching process for the failure spreading.

independent of Hλ and let x1,1, . . . , x1,n1
be all the points of

X1 which lie in the ball B(x1, 1), the children of x1 in the
branching process are equivalent to these points x1,1, . . . , x1,n1

by thinning theorem [22].
Let xk,1, xk,2, . . . , xk,nk

be the members of the k-th gener-
ation of the branching process. To obtain the children of xk,i,
we consider a Poisson point process Xk+1,i of density λ · τ on
R

2, where Xk+1,i is independent of all the processes described
as yet. The children of xk,i are those points of the process
Xk+1,i which fall in the region B(xk,i, 1) \ B(xk−1,j , 1) (see
the shaded area in Fig. 5), where xk−1,j is the parent of xk,i.
The type of a child is defined as the distance between this
child and its parent. For example, the type of xk,i is defined
‖xk−1,j − xk,i‖ ∈ (0, 1) (e.g., the length of the solid line in
Fig. 5). Clearly, the distribution of the number and types of
children of xk,i depend only on xk,i and its type. Indeed, the
distribution of the number of children of xk,i whose types
lie in (a, b), 0 ≤ a < b ≤ 1 depends only on the area of the
region (B(xk,i, 1) \ B(xk−1,j , 1)) ∩ {y : ‖y − xk,i‖ ∈ (a, b)},
and this area depends on xk−1,j only through the distance
‖xk−1,j − xk,i‖, which is precisely the type of xk,i. Also, the
distribution of the number and types of children of an individual
xk,i does not depend on its generation k.

Given that xk,i is of type h, i.e., ‖xk,i − xk−1,j‖ = h, let
f(w|h) be the length of the curve given by (B(xk,i, 1) \
B(xk−1,j , 1)) ∩ {y : ‖y − xk,i‖ = w}. A precise expression
for f(w|h) follows from an elementary trigonometric calcula-
tion, which yields

f(w|h) =
{
2w cos−1 1−h2−w2

2hw if 1− h < w < 1
0 if 0 < w ≤ 1− h.

Recalling our earlier discussion on the independence proper-
ties of the offspring distribution, we easily see that the expected
number of children whose types lie in (a, b) of an individual
whose type is h is given by

∫ b

a λτf(w|h)dw. Moreover, given
that an individual is of type h, the expected total number of
grandchildren of this individual whose types lie in (a, b) is
given by

∫ 1

0

(∫ b

a

λ2τ2f(w|t)dw
)
f(t|h)dt. (8)
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In other words, if we let

f1(w|h) =
∫ 1

0

f(w|t)f(t|h)dt,

the integral in (8) reduces to

λ2τ2
∫ b

a

f1(w|h)dw.

Thus defining recursively,

fi(w|h) =
∫ 1

0

fi−1(w|t)f(t|h)dt,

we easily see that the expected number of members of the
n-th generation having types in (a, b) coming from a particular
individual of type h as an ancestor n generations previously is
given by

λiτ i
∫ b

a

fi(w|h)dw.

Hence the expected total number of individuals in the branch-
ing process if we start off with an individual of type h is

∞∑
i=1

λiτ i
∫ 1

0

fi(w|h)dw. (9)

The node density λ is small enough to make Eq. (9) converge
by the assumption that failure is not percolated. To estimate
Eq. (9), we define

T (h) =

∫ 1

0

f(w|h)dw.

It is easy to see that
∫ 1

0

fi(w|h)dw = T i(h).

Thus Eq. (9) reduces to

∞∑
i=1

λiτ iT i(h). (10)

By using Hilbert-Schmidt operator and standard numerical
methods of calculating eigenvalues (see page 87 of [22]), we
can show that T (h) < 1.43. Thus Eq. (9) reduces to

∞∑
i=1

λiτ iT i(h) ≤
∞∑
i=1

λiτ i1.43 =
1.43λτ

1− 1.43λτ
. (11)

Come back to the 0-generation node x1. By thinning theorem
[22], the expected number of children of x1 is πλτ . Note that
the expected total number of individuals starting of any child
x1,j of x1 is upper bounded by Eq. (11), thus the expected
number of nodes in each hole is upper bounded by Eq. (2). This
completes the proof. �

Now we have proved distribution and expected size of Black-
hole Ov1

given in Theorems 1 and 2, which solve the BHG
problem. Next, we formally solve the BHR problem defined in
Section II-C, i.e., given exponentially distributed Blackholes,

does there exist a giant component of surviving nodes spanning
over the entire network?

V. IS A LARGE CRN BLACKHOLE RESILIENT?

In this section, we study the macroscopic structure of a
large CRN in the face of Blackholes and formally prove the
sufficient condition for a BHR network addressed in Theorem 3.
As mentioned in Section II-A, percolation theory [22] is a
useful tool to investigate topology of wireless networks. For
example, by using percolation theory, Sun et al. [25] study
the connectivity of a large CRN without failures, and identify
a critical density λc, above which (i.e., node density λ > λc)
there exists a giant component of nodes. Xu et al. [21] prove a
value ζ such that when node density λ < ζ, a failure can only
spread among a finite number of nodes. In this paper, we are
interested in the scenario that λc < λ < ζ. That is, the CRN
is percolated initially. As time goes on, random failures may
occur and each failure may infect a finite number of neighboring
nodes, i.e., a sequence of Blackholes may appear. An interesting
question is that in the event of Blackholes, whether the network
remains percolated, or the giant component breaks into many
small components. Next, we aim at answering this question.

A. Challenges and Differences With Earlier Work

As mentioned earlier, node failures and their impact on
network topology have been studied in [21], [23]. Particularly,
under a subtle assumption of no failure correlations, Xing et al.
[23] provide a condition for a percolated network when random
failures may occur independently. On the other hand, Xu et al.
[21] focus on a particular failure and study the condition when
this failure may spread to the entire network due to failure cor-
relations. Note that existing results in percolation theory [22],
[27] are based on the fundamental assumption that the nodes are
distributed as a Poisson point process. Thinning theorem [22],
[27] ensures that nodes after failures in [21] and [23] are still
distributed as Poisson point process and hence existing results
can be applied directly. For example in [23], nodes are initially
distributed as a Poisson point process with spatial density λ
and each node may fail independently with probability p. By
Thinning theorem, the resulted network of surviving nodes is a
Poisson point process with density λ(1− p). Percolation theory
[22], [27] states that a Poisson distributed network is percolated
when node density is above some critical value φ, and therefore
a condition for network percolation in [23] is λ(1− p) > φ.

In contrast to these two extreme scenarios investigated in
[21], [23], we studied a generic scenario that initially, random
failures may occur independently, and then each failure may
explode and incur an exponentially bounded Blackhole. There-
fore, Thinning theorem [22], [27], which requires independent
failures, cannot be used here and obviously surviving nodes are
no longer distributed as a Poisson point process. This indicates
that existing results in percolation theory cannot be used to solve
BHR problem directly. Fortunately, reference [22] (Page 181)
shows that percolation phenomenon (see Section II-A) happens
not only in the Poisson point process, but in any stationary
point process. The occurrence of Blackholes does not change
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Fig. 6. Mapping from continuous to discrete percolation. (a) continuous; (b)
discrete.

Fig. 7. Illustration of events and cell size. (a) Events; (b) Determination of
cell size.

the stationary property of the original Poisson point process,
which motivates us to use some fundamental proof techniques
in percolation theory to study the BHR problem.

B. Sufficient Condition for a Resilient CRN

In this section, we determine the BHR condition provided
in Theorem 3 by using the technique of continuous-to-discrete
percolation mapping. Specifically, we divide the network area
into many small square cells and thus the graph consisting
of surviving nodes and their connections now appear on the
background of these cells, as illustrated in Fig. 6(a). The size of
components of surviving nodes is studied via bond percolation
on a discrete grid, as shown in Fig. 6(b). In particular, to obtain
this discrete grid, we represent a cell in Fig. 6(a) by a site
located at the center of this cell and two neighboring sites
are connected by a bond, which represents the neighborhood
between the two corresponding cells. We choose the size of
each cell small enough such that given two arbitrary locations
in two neighboring cells, one in each, their distance is at most
r (r is the transmission range of secondary users defined in
Section II-B). This small cell size guarantees that a secondary
node is able to communicate with every node in the neighboring
cell. Two nodes are separated farthest as shown in Fig. 7(b), in
which their distance is dl

√
5 and dl is side length of the cell.

Letting dl
√
5 = r, we obtain dl =

r√
5

. To proceed, we need the
following notations for a given bond b = sisj .

• Event Asi : At least one surviving secondary node lies in
the cell Γi associated with site si (see Fig. 7(a)).

• Event Csisj : The rectangle Recb associated with bond b is
defined as the union of two squares associated with si and
sj respectively (e.g., see the solid rectangle in Fig. 7(a)).
Particularly, denote dl as the length of the square (see
Fig. 7(b)), and (Xsi , Ysi) and (Xsj , Ysj ) as coordinates

of sites si and sj respectively. Then Recb
Δ
= [Xsi −

dl

2 , Xsi +
3dl

2 ]× [Ysi − dl

2 , Ysj +
dl

2 ]. The extended

rectangle is defined as RecEb
Δ
= [Xsi − dl

2 −RI , Xsi+
3dl

2 +RI ]×[Ysi − dl

2 −RI , Ysi +
dl

2 +RI ] (see the dash
rectangle in Fig. 7(a)), where RI is the interference range
of primary users. We define event Csisj as the set of
outcomes for which the following condition is satisfied:
there exists at least one channel chk such that no primary
users using chk lie in RecEb.

Note that event Csisj guarantees that for some channel
chk, the distance between primary users using chk and any
locations within Recb is larger than the interference range of
primary users RI , which indicates that chk can be used by
any secondary users in Recb. We next define a bond sisj to
be open when events Asi , Asj and Csisj occur simultaneously.
Particularly, let Po be the probability that any bond is open.
Then we have Po = P(Asi ∩Asj ∩ Csisj ). By this definition,
an open bond sisj implies that surviving nodes exist in Γi and
Γj respectively, and some channel can be used by these nodes.
This is equivalent to saying that an open bond sisj implies an
communication link across Γi and Γj . By this mapping, bond
percolation on the discrete lattice ensures percolation of CRN.
Therefore, we next investigate bond percolation condition for
the discrete grid, which is sufficient for a BHR network.

In Section IV, we have shown that the number of failed nodes
in each Blackhole Ov1

is upper bounded by Υ ∼ Exp(−β),
where the expected size β of Ov1

is given in Eq. (2). That is,
any node vi may be infected by at most Υ− 1 nodes. Thus let
Pl denote the probability that a node vi is surviving (not failed)
and we have

Pl =

∞∑
ι=1

P(vi is surviving|Υ = ι)P(Υ = ι)

=

∞∑
ι=1

(1− p)ι (P(Υ ≥ ι)− P(Υ ≥ ι+ 1))

=
∞∑
ι=1

(1− p)ι(1− e−β)e−βι

=
(1− e−β)(1− p)e−β

1− (1− p)e−β
. (12)

And

P (Asi) ≥ Pl

(
1− eλd

2
l

)
. (13)

And by the assumption that primary users on any channel chk

are distributed as a Poisson point process with density λp, we
have

P
(
Csisj

)
= 1− (1− e−λpα)

m
, (14)

where α = (dl + 2RI)(2dl + 2RI) denotes the area of RecEb

(as illustrated in Fig. 7(a)).
To obtain Po = P(Asi ∩Asj ∩ Csisj ), another challenge is

that Asi and Asj are not independent. To continue, we need
introduce the following concept and inequality.

Definition 4: For two geometric random graphs G and G′, a
partial ordering � is defined as G � G′ if and only if G′ can be
induced from G by adding more (Poisson) points. Then an event
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E is said to be increasing (decreasing) if ∀G � G′, 1E(G) ≤
1E(G′)(1E(G) ≥ 1E(G′)), where 1E is the indicator function
of event E.

Lemma 6: (KFG’s inequality [22]) If two events E1 and E2

are both increasing or decreasing, then

P(E1 ∩ E2) ≥ P(E1)P(E2).

By our definition, the more points in Γi, the more likely Asi

occurs. Thus Asi is increasing. Therefore, we have

Po =P(Asi ∩Asj ∩ Csisj )

=P
(
Asi ∩Asj

)
P
(
Csisj

)
≥ P (Asi)P

(
Asj

)
P
(
Csisj

)

≥P
2
l

(
1− eλd

2
l

)2 (
1−

(
1− e−λpα

)m)
. (15)

Finally, by using the percolation condition in square lat-
tice, we can achieve the sufficient BHR condition given in
Theorem 3.

Proof of Theorem 3: As analyzed above, by careful defi-
nition of open bond in the square lattice, bond percolation on
the mapped lattice guarantees the BHR property of CRN. In
the Appendix, we derived a probability p�c such that if bond is
open with probability Po > p�c , the square lattice is percolated,
which further indicates a BHR CRN. Plugging Eq. (15) and
solving

P
2
l

(
1− eλd

2
l

)2 (
1−

(
1− e−λpα

)m)
> p�c , (16)

we arrive at

Pl > Λ, (17)

where Λ is given in Eq. (3). Then substituting Eq. (12) into
Eq. (17), we have

1− p >
Λeβ

1− e−β + Λ
, (18)

which indicates that p < 1− Λeβ

1−e−β+Λ
is sufficient for a BHR

CRN. This completes the proof. �

VI. SIMULATIONS

In this section, we have performed a series of simulations in
MATLAB to explain and demonstrate the occurrence of Black-
holes, and validate our theoretical analysis. In the simulation,
secondary users are distributed independently and uniformly
with density λ. Time is slotted into units, and at each time slot,
primary users on any channel are distributed as a Poisson point
process with density λp. The transmission range r of secondary
users and interference range RI of primary users are set as
r = 50 (meters) and RI = 80 (meters) respectively.

We consider a CRN deployed within area [0, 1000]2 (me-
ters) with m = 4 channels, λ = 0.0008(per meter2) and λp =
0.00001(per meter2). To study Blackholes, we first investigate
the occurrence of random failures (according to the random
failure model in Section II-B). Assume that each secondary
node fails independently with probability p = 0.1, as shown in

Fig. 8. Network percolation in the event of random failures. (a) Random
failures. (b) A percolated CRN in the event of random failures.

Fig. 8(a) (in Figs. 8–11, solid dots and circles represent failed
and surviving nodes respectively, a line connecting two failed
(surviving) nodes denotes a failure connection (communication
link), and the positions of primary users are not shown in
the figures for simplicity). Ignoring failure correlation, the
condition of whether a network is percolated in the event of
such independent failures has been studied in [23]. An example
of a percolated CRN in the face of independent failures has
been shown in Fig. 8(b). On the other hand, to understand the
failure correlation, we simulate the scenario studied in [21].
Specifically, a particular failure occurs initially, as shown in
Fig. 9(a) (see the solid dot in square area). This failure may
infect its neighbors, according to the failure explosion model
defined in Section II-B, and similarly, infected neighbors may
further impact more nodes. Xu et al. [21] determine when this
failure will spread to the entire network and an example of such
failure percolation has been shown in Fig. 9(b).

In contrast, we will study the random failures and then
their explosion subsequently. In particular, random failures may
occur initially according to the random failure model, as shown
in Fig. 8(a). Each random failure then explodes according to the
failure explosion model. By using the results in [21], we can set
network parameters to ensure that each failure will not spread
to the entire network. Therefore, each failure only infects a
finite number of nodes and thus a sequence of Blackholes occur
(see the components of solid dots in Figs. 10(a) and 11(a), and
two examples of Blackholes have been circled in Fig. 10(a)).
The size of Blackholes depends on the failure connection
probability τ in the failure explosion model (Blackhole size
increases as τ increases, as shown in Eq. (2)). And Blackholes
in Figs. 10 and 11 are incurred by setting τ = 0.2 and 0.3
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Fig. 9. An initial failure explodes to the entire network. (a) An initial failure.
(b) Failure percolation.

Fig. 10. Network is percolated in the event of small Blackholes. (a) Small
Blackholes. (b) Network percolation in the face of Blackholes.

respectively. When Blackholes are small, CRN is percolated
(see the giant component of surviving nodes in Fig. 10(b)). As
Blackholes grow, this giant component may disappear and CRN
is not percolated, as shown in Fig. 11(b). This motivates our

Fig. 11. Network is not percolated in the face of large Blackholes. (a) Large
Blackholes. (b) Non-percolation in the face of Blackholes.

study on the size of Blackholes (BHG problem) and determine
when the network is percolated in the presence of Blackholes
(BHR problem).

To study the size of Blackholes Ov1
, we run the simulation

with λ = 0.0008 and λp = 0.00001 within [0, 1000]2 1000
times independently for variant failure connection probability
τ . The probability P(|Ov1

| = N) is calculated by the frequency
of the occurrence of Blackholes with size N . Using this method,
the complementary distributions (CCDF) of Ov1

under τ = 0.2,
0.25, 0.3 have been calculated and shown in Fig. 12 on a semi-
log scale. As illustrated in Fig. 12, CCDFs under different τ are
approximately linearly under semi-log scale, which validates
our analysis in Theorem 1 that the size of Blackholes Ov1

decays exponentially. In addition, Fig. 12 further shows that
the CCDF of Ov1

decreases, which indicates the expected
size of Blackholes E(|Ov1

|) decreases, as failure connection
probability τ decreases. This corresponds to our result about
expected size of Blackholes in Theorem 2.

The major objective of this paper is to build analytical models
for failure spreading and investigate the stochastic properties of
Blackholes, and derive theoretical conditions for resilience to
these Blackholes in closed-form. Therefore, in the simulations,
we focus on illustrating the spreading of failures, the formation
of Blackholes, the existence of “percolation phenomenon” in
the face of the Blackholes and more importantly verifying
the stochastic results (e.g., the exponential tail of Blackholes
verified in Fig. 12). Note that the exact value of critical density
cannot be derived in the closed form even for the fundamental
Boolean model [27], given the random positions of nodes.
Therefore, we focus simulations on verifying such stochastic
properties of the Backholes rather than trying to find the exact
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Fig. 12. CCDF of Blackhole size Ov1 under different failure connection
probability τ (see Section II-B) on a semi-log scale.

value of the Backhole size. We will focus on obtaining more
accurate quantitative values via both analysis and simulations
in the future work.

VII. CONCLUSION

In this paper we have studied the topology and resilience
of large CRNs in the presence of node failures. When there
exist causal relations, a single failure may initiate a component
of related failures, and thus random failures may trigger a
sequence of Blackholes in the network. In order to understand
network topology in the face of Blackholes, two metrics, failure
occurrence probability p and failure connection function g(·)
are defined to characterize the occurrence of random failures
and their spreading to neighbors, based on which we prove
that when a Blackhole cannot spread to the entire network, it
is exponentially bounded. By mapping failure spreading to a
branching process, we derive an upper bound on the expected
size of Blackholes. After studying Blackhole size, we then
investigate network resilience. A network is said to be resilient
to Blackholes if there exists a giant component of surviving
nodes spanning through the entire network. By coupling with a
continuum percolation process on the random geometric graph,
we further obtain a sufficient condition for a resilient CRN to
a sequence of Blackholes. We finally confirm correctness of
our theoretical results by simulations. It is worthy of pointing
out that although our results concerning Blackhole size and
resilience are derived for CRNs, nevertheless, by setting spatial
density of primary users λp = 0, these results can also be
applied practically in general wireless networks. For instance,
Fang et al. [18] described a distributed algorithm to build routes
around Blackholes in wireless sensor networks, and our results
can be used to determine the feasibility of such routes, and thus
validate this algorithm.

APPENDIX

A. Calculation of Critical Probability p�c

Let p�c be the bond percolation probability of the square lat-
tice mapped from CRN (see Fig. 6(b)). It was proved in [31] that

Fig. 13. A finite open cluster at the origin, surrounded by a closed circuit in
the dual lattice.

bond percolation probability in square lattice is 1
2 . In discrete

percolation theory, the open or closed state of every edge (or
vertex) is independent from others. In our discrete lattice map-
ping, the state of an edge depends on, however, how primary
and secondary nodes are distributed around this edge, which
implies that adjacent edges are not independent. Therefore, we
cannot directly use the result in discrete percolation theory and
we need to find out alternative percolation conditions for our
mapping. Our method is based on the following observation.

Consider square lattice and its dual L and L′ (see Fig. 13).
The construction of L′ is as follows: let each vertex of L′ be
located at the center of a square of L. Let each edge of L′ be
open if and only if it crosses an open edge of L, and closed
otherwise. Now a key observation is that if the origin belongs
to an infinite open edge cluster in L, for which the event is
denoted by EL, then there cannot exist a closed circuit (a circuit
consisting of closed edges) surrounding the origin in L′, for
which the event is denoted by EL′ , and vice versa (see page 17
in [31]). This is illustrated in Fig. 13. To proceed, we further
need the following lemma.

Lemma 7: Given a lattice L containing the origin 0 and its
dual L′, let σ(z) be the number of paths with length z in L (i.e.,
comprising z edges) that start at 0, and ρ(z) be the number of
circuits in L′ with length z and containing 0 in their interiors,
then σ(z) ≤ 4 · 3z−1 and ρ(z) ≤ 2 · (z − 2) · 3z−2.

Proof: See Lemma 3 in [23]. �
Let Cz be a circuit of the lattice L′ with length z con-

taining the origin in its interior, then P(Cz is closed) =
P(all z edges are closed). Based on the open edge definition
described in Section V-B, edges a and b are independent if their
distance is larger than max{RI , dl} (the distance between two
edges is defined as the minimum distance between any two
points on edges a and b). This implies that an independent
subset of edges among z edges of Cz can be obtained by
selecting an edge in every � 2RI

dl
+ 1� edges. Thus at least κ =

� z
�2RI/dl+1� � have independent states among z edges of Cz . Let

q be the probability of any edge being closed, i.e., q = 1− p�c ,
then for any Cz , P(Cz is closed) is upper bounded by qκ. Thus
the probability that there exists a closed circuit surrounding the
origin in L′ is,

∑
Cz,∀z

P(Cz is closed) ≤
∞∑

z=4

qκρ(z). (19)
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Therefore,
∑∞

z=4 q
κρ(z) < 1 indicates that the probability of

no closed circuit surrounding the origin in L′ is strictly greater
than 0, which provides a lower bound of p�c . For example, if
RI < dl

2 , κ = � z
2� and thus

∑
Cz,∀z

P(Cz is closed) ≤
∞∑

z=4

q� z
2�ρ(z) = 4(9q)2

9(1− 9q)2
.

When q < 1
15 , 4(9q)2

9(1−9q)2 < 1 and thus the lattice is percolated,

which implies p�c > 14
15 .
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