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Spectrum Activity Surveillance: Modeling and
Analysis from Perspectives of Surveillance

Coverage and Culprit Detection
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Abstract—Spectrum activity surveillance (SAS) is essential to dynamic spectrum access (DSA)-enabled systems with a two-fold
impact: it is a primitive mechanism to collect usage data for spectrum efficiency improvement; it is also a prime widget to collect misuse
forensics of unauthorized or malicious users. While realizing SAS for DSA-enabled systems appears to be intuitive and trivial, it is,
however, a challenging yet open problem. On one hand, a large-scale SAS function is costly to implement in practice; on the other
hand, it is not clear how to characterize the efficacy and performance of monitor deployment strategies. To address such challenges,
we introduce a three-factor space, composed of spectrum, time, and geographic region, over which the SAS problem is formulated by a
two-step solution: 3D-tessellation for sweep (monitoring) coverage and graph walk for detecting spectrum culprits, that is, devices
responsible for unauthorized spectrum occupancy. In particular, our system model transforms SAS from a globally collective activity to
localized actions, and strategy objectives from qualitative attributes to quantitative measures. With this model, we design low-cost
deterministic strategies for dedicated monitors, which outperform strategies found by genetic algorithms, and performance-guaranteed
random strategies for crowd-source monitors, which can detect adversarial spectrum culprits in bounded time.

F

1 INTRODUCTION

D YNAMIC spectrum access (DSA) has been envisioned
as one of the key technologies for high-speed wire-

less systems [1], e.g., 5G networks [2], since it is expected
to boost spectrum efficiency by allowing wireless devices
to temporally operate beyond their designated spectrum
bands, so as to mitigate the gap between the increasing
frequency demand and the diminishing available spectrum.
DSA is important on both individual and system levels: it is
essential to advanced cognitive radio (CR) technologies, e.g.,
CR non-orthogonal multiple access (CR-NOMA) [3]; and it
is also preliminary to abstraction of wireless resources in a
system, e.g., wireless network virtualization (WNV) [4], [5].
So multiple DSA alliances are formed to advocate, develop
and standardize DSA technologies. However, despite its
great potential, the open and opportunistic nature of DSA-
enabled systems bears an intrinsic demand for spectrum
activity surveillance (SAS), as both a prerequisite and a sup-
plement to such spectrum-agile systems.

A SAS process is expected to carry out continuous scans
of spectrum activities on the frequencies of interest, for the
purpose of usage data collection, and spectrum regulation
policing/enforcing. On a systematic level, surveillance logs
reflect the spectrum usage in wireless systems, and can be
analyzed for system management, as well as data disclosure
[6] purposes; on an individual level, real-time spectrum
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usage near an individual can serve as a crude input to
its spectrum sensing action [7] for opportunistic spectrum
access, which is the key to DSA-enabled systems. In this
regard, Google [8] and Microsoft [9] have launched their
spectrum database projects, providing availability of TV white
space over the entire United States, as a preliminary step
toward the construction of radio environment map (REM) [10].

On the other hand, as an immediate beneficiary of the
opportunistic environment toward higher spectrum effi-
ciency, spectrum culprits, which refers to overly-aggressive
or malicious users, may undermine the ‘right-of-way’ of
legitimate users, and even downgrading performance of the
entire system, by occupying unauthorized frequency bands
that are promised to other legitimate users. This problem is
especially severe in DSA-enbaled systems with distributed
spectrum sharing schemes, where a simple Listen-Before-
Talk (LBT) mechanism [11] is preferred due to its scala-
bility and comparable throughput performances. In such
systems, it is easy for ‘smart’ spectrum culprits to abuse the
DSA-enabled system, owing to the application of machine
learning in cognitive radios [12], [13]. Consequently, SAS is
expected to act as the ‘spectrum-police’, detecting spectrum
misuse, guarding the rights of legitimate users, and preserv-
ing forensics for further actions.

Therefore, SAS is both a premise to leverage spectrum
efficiency in compliance to policy enforcement, and a proac-
tive approach to catch the spectrum culprits. Such a system-
level function of a DSA-enabled system is completed by
spectrum monitors, who take advantage of spectrum sens-
ing, networking, and data processing techniques, to collect
occupancy measurements, and identify spectrum culprits
based on collected data. In other words, a spectrum mon-
itor is logically composed of three building blocks: sensing
hardware, measurement/detection algorithm, and commu-
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nication protocol. For a large-scale commercial DSA-enabled
system, e.g., a multi-operator LTE-WiFi overlay network in
the 5 GHz unlicensed frequency bands described in [11], it
is necessary to include, and coordinate multiple monitors to
provide reliable and timely-updated SAS results.

In this regard, existing literature on SAS can be broadly
summarized into two categories: single-monitor technique,
and multiple-monitor orchestration. The former develops
prototypes [7], [14], techniques, and algorithms [15], [16], for
individual spectrum monitors, that can effectively differen-
tiate spectrum misuse or abnormalities from normal activ-
ities, e.g., statistical significance testing [15], and the spec-
trum permit mechanism [16], for security enhancement and
attack mitigation. In contrast, the latter focuses on deploy-
ment and cooperation of multiple monitors for the purpose
of better surveillance coverage [17], lower switching cost
[18], or faster detection of culprits [19]. To this end, spectrum
occupancy measurement with dedicated monitors has been
studied in [10], while the crowd-source sensing/monitoring
paradigm is proposed for cost reduction, taking advantage
of collaboration [18] and distributed data decoding [20].

In prior studies of multiple monitor deployment strate-
gies (e.g., [17], [18], [19]), an implicit assumption is made
for spectrum monitors to be sufficiently powerful, such
that they can watch over the entire geographical region of
interest and tune/move without any limit. The fact, how-
ever, is that most spectrum activities, including communi-
cations, attacks/jamming and monitoring/sniffing, are local,
i.e., confined in both the frequency domain and the space
domain during a fixed-length time interval, as noted in pro-
totype design [14], and spectrum occupancy measurements
[10]. This discrepancy is especially pronounced in wide-
band wide-area monitoring, e.g., spectrum database or REM
construction, which naturally leads to an open question: how
to perform spectrum activity surveillance (SAS) and design SAS
strategies (with multiple monitors) for DSA-enabled systems?

Hindered by the constraints on spectrum license and
high deployment expenses, studying the SAS problem via
field tests is not a viable option, especially at the early
stage when development of prototypes [7], [14], as well
as standardization for CR and DSA, are still underway.
Therefore, considering various monitor settings and SAS
scenarios, this paper takes a modeling approach to study
SAS processes from perspectives of surveillance coverage
and culprit detection. Seemingly trivial, the SAS problem
is actually challenging due to the following reasons. First,
objectives of SAS, such as data collection and culprits de-
tection, are by-and-large global and collective, lacking a
consolidated measure, through which a SAS strategy can
be fairly evaluated. Second, if spectrum is considered as a
1-D domain, the surveillance problem over a geographical
region is naturally extended to a 3-D space, in which track-
ing surveillance coverage is non-trivial.

To address these challenges, we construct a spectra-
location space that incorporates spectra, temporal and geo-
graphical domains, in which the locality of spectrum ac-
tivities are captured by limited range and closed spaces.
With respect to the modeling, design, and analysis of a SAS
process, our contributions can be summarized as follows:

Modeling: We formally define monitoring power, switch-
ing cost, and switching capacity to characterize monitors’ and

culprits’ activities, and formulate the SAS process into a
tractable graph walk process with space-tessellation, such
that a collective surveillance function are transformed into
localized (even distributed) actions of individual monitors.

Metrics: We translate the qualitative data collection and
culprit detection objectives of SAS processes into two quan-
titative metrics in the time domain, i.e., the coverage time
and detection time, such that different SAS (monitors deploy-
ment) strategies can be evaluated, and fairly compared.

Strategy Design: We present a deterministic SAS strat-
egy with low switching cost for systems with dedicated
spectrum monitors, and randomized strategies specialized
to protect against adversarial spectrum culprits, which is
suitable for crowd-source surveillance scenarios. Despite
the switching capacity limit, randomized strategies of m
monitors can achieve a full sweep coverage over a spectra-
location space of n assignment points in Θ( nm lnn) time, and
detect a persistent or adversarial culprit in Θ( nm ) time.

This paper focuses on modeling and analysis of the
efficacy of SAS strategies from perspectives of coverage and
detection. The rest of this paper is organized as follows.
We describe the system model, define performance metrics,
and formulate the SAS problem in Sec. 2. Then a two-
step solution is proposed in Sec. 3 to make the problem
tractable. Sec. 4 presents a deterministic strategy to achieve
low switching cost. Addressing the detection of adversar-
ial culprits, randomized monitoring strategies without and
with switching capacity limit are proposed and examined in
Sec. 5 and Sec. 6, respectively. Sec. 7 concludes this paper.

2 PROBLEM FORMULATION

In this section, we formally define the spectra-location
space1, spectrum activities and performance metrics to for-
mulate the spectrum activities surveillance (SAS) problem.

2.1 Preliminaries

Let time t proceed in discrete steps, i.e., t ∈ T = {1, 2, · · · }.
Consider a DSA-enabled system that is deployed in a geo-
graphical region A ⊂ R2. The spectrum of interest, S , refers
to the spectrum blocks that are shared2 among K radio
access technologies {RATi}Ki=1 allowed in this system.

2.1.1 Spectra of Interest S
Each RATi has a licensed band LBi exclusively reserved for
authorized RATi users, and an unlicensed band UBi to be
shared with users accessing via other RAT’s. Each LBi or
UBi can be viewed as an interval identified by the lowest
and highest frequency as its endpoints (or a union of such
intervals), then the union of all licensed and unlicensed
bands, S := ∪Ki=1{LBi ∪ UBi}, is the target of a SAS process
in a DSA-enabled system.

1. The notion of spectra-location space is first introduced in our prior
work [21], [22]. In this paper, this concept is re-defined with multiple
real system settings, e.g., LTE, 5G, WiFi, etc. taken into consideration.

2. There are two spectrum-sharing scopes for a DSA-enabled system:
the inter-technology DSA, which only shares the unlicensed spectrum
bands, e.g., [23], and the spectrum commons, in which licensed bands are
also included and each device has equal spectrum access right on a cost
basis, e.g., [11]. Both scopes can be described by our model.
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Fig. 1. Consider a DSA-enabled system that allows access via 5G/LTE, WiFi, and Bluetooth on the sub-6GHz frequency bands. The entire spectra
block is a union of disjoint continuous spectrum trunks, that is, S1 ∪ S2 ∪ S3 ∪ S4. Now consider a continuous spectra block of interest, e.g.,
the U-NII bands S = [5.15, 5.925] GHz. Two spectrum monitors M1 and M2 watch over S, which is divided into spectrum slices, numbered
{sL, sL + 1, · · · , sH − 1, sH}. Each spectrum slice of S can be in idle (in white) or occupied (colored) state, due to various spectrum activities.

An example. In Fig. 1a, K = 3 RAT’s are allowed in this
system: cellular (LTE/5G, RAT1), IEEE 802.11 (WiFi, RAT2),
and IEEE 802.15 (Bluetooth, RAT3). Among these, RAT1 has
the licensed 5G-NR FR1 bands [24] to itself, as indicated
by LB1, while its unlicensed U-NII bands UB1 are shared
with RAT2, such that licensed-assisted LTE access co-exists
with WiFi access [11], [23]. Meanwhile, the unlicensed ISM
bands UB3 are shared by RAT2 and RAT3. Then the spectra
of interest S = ∪3

i=1Si is the union of these blocks.
Spectrum slice. Without loss of generality3, we write S

as interval [sL, sH ] ⊂ R, and further divide it into d sH−sL∆f e
spectrum slices of width ∆f , which is determined by:

(1) Channel bandwidth of {RATi}Ki=1. There may not be
a unified channel access scheme on S when K > 1. For
instance, the U-NII bands can be accessed through LTE and
WiFi. Under the former, the standard channel bandwidth
are 1.4, 3, 5, 10, 15, and 20 MHz, while under the latter, the
channel bandwidth ranges from 10 to 160 MHz. Further, an
LTE channel is divided into resource blocks (180 KHz) that
contain 12 sub-carriers, while each IEEE 802.11n channel (20
MHz) contains 52 sub-carriers that is of 312.5 KHz wide.
Therefore, we choose the slice width ∆f as a common
divisor of all the channel bandwidths allowed by the K
RAT’s, such that a channel under each RATi contains ki
spectrum slices, where ki ∈ N+ is a positive integer.

(2) Resolution bandwidth of monitoring devices. Due to the
different sampling rates of commercial/prototype monitor-
ing hardware, e.g., 10 MS/s for USRP E310, and 2.4 MS/s
for the low-cost SDR prototype designed in [14], which
are constrained by their processing power (especially for
FFT), and the stablizing time of the sweep-tune process,
the resolution bandwidth of spectrum monitors are subject
to various limits. Typically, it is set to be 1% to 3% of the
channel bandwidth [10], [25] for observable results, but it is

3. Spectra block S in an wireless overlay system may not form
one single continuous interval, rather, it is the union of several non-
overlapping continuous intervals, i.e., S = S1 ∪ S2 ∪ · · · . We focus on
one of those intervals in this paper, for the simplicity of notation and
understanding.

also required to be greater than 1 KHz to avoid overloading
[25].

Based on these, a spectrum slice of width ∆f will be
used as the smallest4 unit of spectrum trunk to be associated
with an access specification and a observable state.

Access specifications. For each spectrum slice, admin-
istrator of the system specifies a legitimate way to access
this slice, including allowed RAT, maximum transmitting
power, maximum aggregated channel bandwidth, regis-
ter/authentication procedure, and so on. For example, an
1 KHz slice in the 5G NR FR1 (LB1 in Fig. 1a) can only
be accessed through LTE/5G, with transmission settings
specified in 3GPP technical specifications, e.g., [24]. In this
way, spectra block S is a database with d sH−sL∆f e items,
against which monitors checks activities on each slice.

State. The state of a spectrum slice i ∈ [1, d sH−sL∆f e]
(frequency range [sL + (i− 1)∆f, sL + i∆f)) is the result of
spectrum activities on this particular slice. Slice i is:

(1) Idle, when it is not occupied by any user, e.g., the
white slice i = 4 and slice i = 5 in time step t = 1 in Fig. 1b.

(2) Rightfully occupied, if it is accessed obeying the ac-
cess specification. For instance, the blue slices {17, 18} are
rightfully occupied by a primary user (PU) at time t = 2;
the green slice 8 and slices {12, 13} (with 4 marker) are
accessed by authorized secondary users (SU) at time t = 1.

(3) Illegitimately occupied, if the occupant does not comply
with the access specification of slice i. For instance, the
purple slices {11, 14} are beyond the designated spectrum
slices of the aggressive PU at time t = 3; the red slices (with
restriction sign) are used by an unauthorized SU during
t = 1 to t = 3; the yellow slices [1, 6] are jammed by an
attacker emitting a high-power signal at t = 2. We refer
to these illegitimate occupants as spectrum culprits, to be
detected by monitors.

4. Note that ∆f is not the frequency range that can be scanned by a
monitor during a time step. For example, in Fig. 1b a monitor (red/blue
box) can determine the states of 4 spectrum slices.
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Fig. 2. q(δ)-Monitoring power of a monitor is described as a δ-ball in
space X = S ×A. Coverage of a strategy is the union of a collection of
δ-balls centered at different assignment points, e.g., the blue and orange
shades on the right. The while the white space indicates the spectrum
‘hole’ that has not been monitored during the past two time steps.

2.1.2 The Spectra-location Space X
Consider the monitoring process of 1-D spectrum S over
a closed 2-D geographical region A ⊂ R2. Together, they
compose a 3-D product space S × A, referred to as the
spectra-location spaceX . Then for any point x ∈ X , there exist
projection maps pA : X → A and pS : X → S that identify
the frequency and location of any point x ∈ X respectively.
In the product space X , the spectra-location distance dSA
between point xi and point xj is defined as the product
metric induced by the Euclidean distance metrics dS and dA
in both domains, that is,

dSA(xi, xj) := ||dS (pS(xi), pS(xj)) ,
1

ε
dA (pA(xi), pA(xj)) ||2,

(1)
where || · ||p denotes the p norm, and ε > 0 is a scaling
coefficient so that dA and ds are quantitatively comparable.

In this sense, the example in Fig. 1b is a special case,
A = {a}, in which only the spectrum domain S needs to
be taken into consideration. But when the space domain
A is sufficiently large, spectrum slices are annotated with
locations, due to possible frequency re-use. In other words,
spectrum activities take place in the product space X .

2.1.3 Surveillance Model
Denote M = {M1,M2, · · · ,Mm} as the set of m monitors
in the system. During each time step, a monitor can only
determine the states of adjacent slices [10], as illustrated
by the boxes in Fig. 1b. Due to the attenuation of wireless
signal over distance, such constraint also exists in the space
domain A [10], hence the monitoring power definition.

Definition 1. (q(δ)-Monitoring Power) For a monitor M ∈
M assigned at location atM ∈ A and center frequency stM ∈ S at
time t, the monitoring power of monitor M is defined as a δ-ball
centered at stM × atM ∈ X , that is,

Ballδ(s
t
M × atM ) := {x ∈ X|dSA(stM × atM , x) ≤ δ}, (2)

inside which spectrum activities (rightful/illegitimate occupancy)
can be identified by monitor M with probability q.

Ball shape5. Parameter δ captures the locality of surveil-

5. Technically, some spectrum slices will be divided by the sphere,
excluding which the monitoring power is not a smooth ball. We still
refer to the monitoring power as δ-ball for the ease of comprehension.
The divided slices is not a problem, because: i) the slice width ∆f is
oftentimes much thinner than the width sH − sL of the spectra block
S (e.g., the 775 MHz U-NII frequency bands); ii) the δ-balls are forced
to overlap in the space-tessellation step (Sec. 3. A) such that there will
not be coverage gaps.

lance: the monitoring power of a single monitor is described
as a closed δ-ball, illustrated in Fig. 2 (left), as a result of the
trade-off between spectrum range (in spectrum distance dS)
and geographical range (in distance dA), due to the limited
sampling rate imposed by hard-ware constraints [14], [26].
To be more specific, the number of samples that a monitor
can collect per unit time is limited [10], and these samples
can be employed to cover either a larger bandwidth (large
dS) with a lower sensitivity, or a narrower bandwidth with a
higher sensitivity. In other words, large dS and large dA can
not be achieved simultaneously by a single monitor, hence
the closed ball shape. For the most commonly-used energy
detection method, e.g., in [14], [15], lower sensitivity trans-
lates to a higher power threshold, resulting in a reduced
detecting range in geographical domain, i.e., small dA.

Probabilistic outcome. Function q : R→ [0, 1] quantifies
the reliability of results within the monitoring power, or
equivalently the detection probability6 of spectrum culprits.
It has the following properties: i) q is a surjective; ii) q
is non-decreasing in R; iii) we can define its inversion
q−1 : [0, 1] → R as q−1(y) := supx>0{q(x) = y}, so
for any required reliability y ∈ [0, 1], there exists a critical
radius δ∗ = q−1(y), above which the monitoring results are
not acceptable. Consequently, if a point x ∈ X is covered
by the q(δ)-monitoring power of k monitors, illegitimate
occupancy at this point x can be detected with a higher
probability, that is, 1− [1− q(δ)]k.

Parameters. By fine-tuning function q(·), radius δ, and
parameter ε in Eq. (1), a variety of monitoring techniques
can be depicted by this δ-ball model. These parameters are
determined by hardware performances, including sensitiv-
ity, noise floor, input range, and the detection algorithm.
Radius δ refers to δ∗ = q−1(1) that can guarantee a fully
reliable detection result, if not explicitly specified hereafter.

2.1.4 Exploit Model

Recall that a spectrum culprit at time t is defined as the
occupant of a spectrum slice that does not comply with the
access specifications, as exemplified in Fig. 1b. The gist of
spectrum exploit is that, a spectrum culprit R ∈ R located
at aR ∈ A, illegitimately occupies one or multiple spectrum
slices, denote as SR ⊂ S , at time t. As a result, R leaves
a ‘mark’ Rt = SR × aR ⊂ X . The wider SR is, the larger
the ‘mark’, and the more detectable R becomes. We make
following assumptions about the culprit:

(1) Narrow SR: We consider spectrum culprits that are
most difficult to detect as the worst-case scenario. In this
case, SR shrinks to a point {sR} ∈ S , such that Rt ∈ X .

(2) Constant Presence: We assume culprits stays in the

6. For any radius δ, it is more probable to determine whether a
spectrum slice at a location is occupied or not (qc(δ)), than determining
whether the occupancy is legit (qc(δ)). Consequently, qc(δ) for occu-
pancy measurement is greater than or equal to that for culprit detection
qd(δ). We set δ = max{δ > 0 | qc(δ) = 1}, and q = qd(δ), such that
occupancy measurement is accurate, while culprit detection is not.
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system, and continues its misbehavior7 throughout time T .
Detect a culprit at time t. When the exploit mark Rt

overlaps with the monitoring power of some monitors, i.e.,
∃Mi ∈ M such that Rt ∩ Ballδ(ft(Mi)) 6= φ, culprit R is
detectable at time t with probability at least q(δ).

Exploit sequence. Over a period of time, the exploit
marks constitute an exploit sequence {Rt}t∈T of culprit R.
The detailed exploit pattern of spectrum culprits, i.e., how
a spectrum culprit R ∈ R assigns its exploit sequence, can
be either oblivious or adversarial, depending on its learning
capability, and will be discussed in Sec. 3.B.

2.1.5 Switching Model

Despite their different roles, all the entities, i.e., normal users
(denoted as U ), spectrum culprits (R), and monitors (M),
are all wireless devices that are capable of moving and
tuning. Both actions will result in a relocation of devices in
the spectra-location space X between time steps, which we
refer to as a switching swYt of device Y ∈ U ∪M∪R, that is,
a move of Y from point Yt−1 ∈ X to point Yt ∈ X at the end
of time step t − 1. For example, in Fig. 2 left, the switching
swM2 corresponds to the relocation and tuning of monitor
M between time step t = 1 and t = 2, resulting in a change
of coverage, as shown in Fig. 2 right. This common action
is also constrained by time, energy or other kind of cost, as
opposed to the assumptions in [14], [19]. This constraint is
indeed a design concern in SAS processes, to capture which
we define the switching capacity.

Definition 2. (Switching Capacity) Let Yt ∈ X denote the
location (in space X) of device Y at time t, the switching capacity
αY of Y is defined as the maximum distance in X , that device Y
can switch over by one action in a time step, that is,

αY := sup
t∈T
{dSA (Yt, Yt+1)} . (3)

Device Y is referred to as an αY -monitor or αY -culprit.

Dedicated SAS monitors. For a dedicated monitor, a
switching is composed of physical movement and/or tun-
ing. Consequently strategy design is restricted by a quanti-
tative switching cost, including time, energy, budget etc, that
is a function of the switching distances dSA(·, ·).

Crowd-source SAS monitors. Switching actions in a
crowd-source scenario are merely changes of surrogate
monitors. Therefore, if immediate communication among
participants is guaranteed, or there exists a central con-
troller capable of timely coordination, switching will not
be constrained, i.e., αM = ∞; otherwise for the case of
distributed control, which relies on local wireless communi-
cation, switching is not possible beyond the communication
range of monitors.

7. Culprits such as deliberate jammers or unregistered users, are
likely to misbehave across time, while it is also possible that a culprit
misbehaves occasionally, e.g., hogging spectrum trunks without proper
authorization at one time step t, and then behaves nicely during the
next few steps, or even leave the system and never to find again. For
the latter case, it is difficult and not meaningful to study performance of
SAS strategies when culprits come-and-go spontaneously. But it is also
possible that once the culprit convicted its first crime, some attributes
of the culprit, e.g., spectrum fingerprint [27], are known to the SAS
monitors, e.g., through reports of others, such that a match can be found
even if the culprit has stopped its misbehavior by now.

2.2 SAS Strategy and Metrics
At the beginning of time step t, each monitor Mi ∈ M is
assigned to a spectra-location point fmt (Mi) ∈ X , through
an assignment map fmt :M→ Xm, e.g., f1 and f2 in Fig. 2.
Allowing time t to proceed in T , assignment points of the
m monitors constitute a strategy.

Definition 3. (Strategy8 fmt ) A strategy {fmt }t≤T is a se-
quence of assignments during time interval [1, T ] ⊂ T , which are
carried out by the m monitors in setM, under their (switching)
capacity constraints {αMi}Mi∈M. During time step t, monitors
in set M can scan C(fmt ) =

⋃
Mi∈MBallδ (fmt (Mi)) en

masse, which is referred to as the (surveillance) coverage of
assignment fmt . Sweep-coverage of a strategy C(f) is then the
union of sequence {C(fmt )}t∈[1,T ] across time interval [1, T ].

Performance metrics. Recall the two objectives of the
SAS function, that is, spectrum occupancy measurement
and spectrum culprit detection. The former urges for a
quick sweep-scan of the entire spectra-location space X , i.e.,
minimizing the time needed to satisfy the coverage goal
X ⊂ C(f), such that spectrum (occupancy) status can be
timely recorded and updated to users. The latter requires
effective detection of spectrum culprits, such that the time
that an undetected culprit illegitimately occupies spectrum
slices can be reduced. For instance, in the special case
scenario (X = S ×{a}) illustrated in Fig. 1b, the entire X is
sweep-covered at t = 3, and the unauthorized SU (culprit)
exploited the system for two time steps before its detection
at t = 3. In other words, the efficacy of a SAS strategy can
be quantitatively evaluated and fairly compared through the
following two metrics in the time domain, with respective
to the coverage and detection goals.

Definition 4. (Coverage Time Tmf , Detection Time τR(fm))
Under strategy {fmt }t∈T , the coverage time is defined as the first
time that the sweep-coverage CT (fm) contains every point in
space X = S ×A, that is,

Tmf := min{T ∈ T | x ∈ CT (fm), ∀x ∈ X}. (4)

The detection time of a culprit R with exploit sequence
{R(t)}t∈T , is defined as the first time that culprit R can be
identified by any of the m monitors, that is,

τR(fm) := min{t ∈ T |
m∑
i=1

1Rt∈Ballδ(fmt (Mi))Di ≥ 1}, (5)

where detection outcome Di is a Bernoulli r.v. with mean q.

The detection time in Eq (5) can be further simplified to

τR(fm) := min{t ≥ 1 | R(t) ∈ C(fmt )}, (6)

if surveillance (detection) result is fully reliable, i.e., radius
of the monitoring power δ ∈ {δ∗ > 0 | q(δ∗) = 1}.

In this paper, we focus on these two metrics from the
time aspect, for delay-sensitive applications such as DSA-
related spectrum database construction. We note that there
are more aspects to consider in SAS, including energy
consumption, expenses of mounting/recruiting monitors,

8. Superscript m in fmt denotes the number of monitors, while sub-
script t denotes time. A second subscript may be added to differentiate
strategy types, e.g., fmS,t for deterministic strategy. Any of the three (m,
time, and type) may be omitted, when no confusion is raised.
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predictability to ‘smart’ culprits, and so on. In addition
to these macroscopic measures, microscopic performance
metrics, such as the turn-around time between scans over
specific frequency ranges or geographical regions, can also
be evaluated for refined strategy studies.

2.3 The SAS Strategy Design Problem
With the system model described in this section, this paper
studies the SAS strategies for a set of m αM -monitors, to
achieve the sweep-coverage and culprit detection goals in
the spectra-location space X . Specifically, we aim to design
strategies {fmt }t∈T ∈ {Xm}T for dedicated and crowd-
source surveillance scenarios, and examine their efficacy by
answering the following questions:

1) What is the the coverage time Tf of the designed
strategy fm, by which time spectra-location space
X is sweep-covered, i.e., X ⊂ C(fm)?

2) Under the strategy f , what is the detection time
τR(fm) of an αR-spectrum culprit R ∈ R with the
exploit sequence {Rt}t∈[1,T ]?

3 A TWO-STEP SOLUTION

In essence, designing a SAS strategy {fmt }t∈T ∈ {Xm}T
is equivalent to finding a sequence of assignment points in
the spectra-location space X , for every monitor M ∈ M
at every time instant t, subjecting to the switching capacity
constraint αM . Two major challenges arise in this process:
First, for every time t, the solution space Xm is of infi-
nite size, which hinders both the analysis approach and
the search-based experiment approach. Second, switching
actions of monitors, i.e. the tuning (a move in the spectrum
domain S) and/or relocation (a move in the geographical
space domain A), are constrained in range, due to the
switching cost they incur, which further complicates the
problem. To overcome these challenges, we propose a two-
step solution: first, the continuous strategy space {Xm}T is
reduced to a discrete and finite space {V m}T through space-
tessellation; then any surveillance strategy is formulated as a
walk on the graph, whose edges illustrate possible switching
path of monitors. In this way, SAS as a global activity is
transformed into a chain of individual actions, i.e., switching
(walking) of monitors and culprits, such that design of SAS
strategies becomes tractable.

3.1 Space Tessellation: Reducing the Strategy Space
Driven by the sweep-coverage and culprit detection objec-
tives, the assignment points {ft(M)}t∈[1,Tf ] of a good SAS
strategy should have the following properties:

(1) Least points. To timely update the spectrum occupancy
data, monitors are expected to sweep-scan the entire space
X as quickly as possible, that is, for a strategy {ft}t∈[1,Tf ]

to achieve the coverage goal X ⊂ ∪Tft=1C(ft) with as few
(m ∗ Tf ) assignment points as possible.

(2) Minimal overlapping. To quickly detect culprits, every
assignment ft is expected to cover as much space (large
C(ft)) as possible, which translates to a minimal overlap-
ping of monitoring powers during every assignment9.

9. Though overlapping monitoring power permits a higher detection
probability inside the δ-ball than that of a single coverage, it is not
necessary when the detection probability q is sufficiently high.

Fig. 3. Each cell in the Kelvin structure is a truncated octahedron (left)
with eight hexgonal faces and six square faces. The discrete assignment
space V of a rectangular region A is composed of cell centers (right),
arranged in inter-leaving ‘full’ (black) and ‘middle’ (red) layers.

These requirements can be jointly satisfied if the contin-
uous space X is divided into a minimum number of non-
overlapping cells, each covered/contained by a δ-ball, i.e.
the monitoring power of a monitor, and every assignment
map ft takes value from the set V of cell centers, instead of
the entire X . In this way, the first step becomes a tessellation
problem of space X .

3.1.1 Solution to the Space-Tessellation Problem

Space tessellation, or honeycomb, in the 3-D space X , refers
to the close packing of 3-D cells without overlaps or gaps.

Choices of cells. A cell in the tessellation can be re-
garded as the non-overlapping part of a δ-ball (monitoring
power), and comes in various forms in the solution to
this classic problem, e.g., cube, hexagon-prism, tetrahedra,
etc. The higher volume-efficiency ρ of a cell, that is, the
volume ratio of the cell over its insubscribed δ-ball, the more
efficient the form of the cell, due to the less overlap between
adjacent monitoring power (δ-balls). It would be ideal to
fully utilize δ-balls to fill the space. However, direct packing
of solid balls always leaves gaps, i.e., spectrum holes in the
sweep-coverage, which can be eliminated by pushing the
‘elastic’ balls into each other. Meanwhile each ‘squeezed’
balls (the resulting cells) should be inscribed to a δ-ball, i.e.
the maximum distance of any two points on the cell surface
is required to be smaller than 2δ.

Kelvin structure. The space tessellation problem is
closely related to the Kelvin problem [28], which aims to
find the most efficient bubble wrap form to fill a space
with the least surface area. In the Kelvin problem, efficiency
is quantified by the isoperimetric quotient [29], and the ball
shape (as the monitor power in our model) has the highest
isoperimetric quotient value of 1. Therefore, the most effi-
cient cell form in the tessellation problem is the one that
has the highest isoperimetric quotient. In this sense, the best
solution for wide (large |S|) spectrum is the Kelvin structure
(with isoperimetic quotient value 0.757), whose cells are
truncated octahedrons (Fig. 3 left), arranged in a layered
manner (Fig. 3 right). The truncated octahedron cell has
the highest volume-efficiency ρ compared to other forms,
as shown in Table 1. Centers of these cells correspond to
assignment points composing the discrete and finite assign-
ment space V , whose size n = |V | can be obtained from the
following proposition.
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TABLE 1
Volume Efficiency of Different Cell Forms

Cell Form Volume Efficiency ρ Isoperimetric Quotient Size of Assignment Space |V |
Cube ≥ 2√

3π
' 0.368 1

216
d
√
3|S|
2δ
e · d 3|A|

8(εδ)2
e

Hexagon-prism ≥ 3
√
3

2
α
√

(1− α2) ≤ 0.585 3
√
3b

2(3
√
3+12b)3

, where b =

√
|S|2

4δ2−|S|2
2|A|

3
√
3(1−α2)(εδ)2

e

Truncated octahedron ≥ 24
5
√
5π
' 0.683 0.757 d 5

√
5|S||A|

16ε2δ3
e

Proposition 1. (Size of the Assignment Space |V |) When the
spectrum block S is narrow (|S| = 2αδ, 0 < α << 1), the size
of the assignment space n = |V | can be determined by tessellation
with hexagon-prism cells, i.e.,

nhex = d 2A

3
√

3(1− α2)(εδ)2
e, (7)

where A denotes the area of region A, δ corresponds to the
monitoring power and ε is the scaling coefficient in Eq. (1).
Otherwise, size n is achieved by tessellation with truncated
octahedron (Kelvin structure) cells, and

no ≥ d
5
√

5|S|A
16ε2δ3

e. (8)

Further, if the geographical region A is rectangular,

no ≥ d
√
5|S|
4δ
e · d5A+ 2

√
5Aδ(3− 2ε) + 4δ2(1− ε)2

8(εδ)2
e, (9)

where e = 2√
10
δ is the edge length of cells.

Proof of Proposition 1 can be found in Appendix A.

3.1.2 Exploit Patterns of Culprits in Assignment Space V
By space-tessellation, sweep-coverage of X is guaranteed as
long as the assignment maps {ft}t are jointly surjective on
the finite assignment space V of cell centers. In other words,
it is enough for monitors (M) to switch among assignment
points in V , which greatly reduces the size of the solution
space (from ∞ to |V |m) for every time step. For the ease
of notation and discussion, we can also restrict the range
of exploit points to V , because any point x in X can be
uniquely mapped to a cell with its center vx in V , and the
probability of a spectrum culprit R ∈ R being detected at
Rt ∈ X is the same as that at Rt = vx. In this context, we
categorize the exploit patterns of spectrum culprits, i.e., how
a spectrum culprit R ∈ R determines its exploit point Rt for
the next time step, with respect to its learning capabilities.

Definition 5. (Persistent Culprit Rp) A persistent culprit
Rp ∈ R refers to a culprit, whose exploit pattern does not
change over time, that is, {Rt}t is composed of i.i.d. r.v.’s Rpt ,
all distributed with PMF gRp(v), where v ∈ V .

Persistent culprit Rp can describe a variety of exploit-
ing strategies with different PMF gRp(v). For instance, as
shown in Table 2, Rs is a stationary culprit that can only
access a selective range of frequencies; Rsd corresponds to a
DSA-enabled stationary culprit; and Rmd is a mobile DSA-
enabled culprit that can move in region A.

As opposed to oblivious persistent culprits, machine
learning-assisted radio access technology [12], [13] allow
sophisticated culprits to steer the game toward their benefit,

by actively dodging monitors [19]. The intuition behind
adversarial culprits is that, once a SAS strategy is known10

by a culprit Ra, Ra can then switch to points that are less
probable to be monitored in the next time step.

Definition 6. (Adversarial Culprit Ra) An adversarial culprit
Ra ∈ R is a culprit with prior knowledge of the current
strategy {fmt }t∈T , that is, Ra knows the set of probabilities {v ∈
∪

Mi∈M
fmt (Mi)}v∈V ahead, and determines its current exploit

point Rat with PMF gtRa(v) = 1
|Void(t)| , for point v ∈ Void(t),

where Void(t) = arg minv∈V P
(
v ∈

⋃
Mi∈M ft(Mi)

)
.

Note there is no switching constraint in Def. 5 and Def.
6, which describes the most powerful culprits in terms of
switching, i.e., αR =∞. For culprits with switching capacity
αR < ∞, the range of Rt+1 will be restricted to a smaller
subset N(Rt) = {v ∈ V | dSA(v,Rt) ≤ αR} of V , with the
selecting probability of a point v ∈ N(Rt) recalculated as
P(Nt+1 = v) = gR(v)∑

u∈N(Rt)
gR(u) .

Through space-tessellation, the continuous (and hence
infinite) strategy space {Xm}T is reduced to discrete and
finite {V m}T for both monitors and culprits. Next, we
discuss how to incorporate switching capacity constraints
(of monitors and culprits) in the design of SAS strategies.

3.2 Graph Walk: A Chain of Switching Actions
Over the discrete time span T , any SAS process is now a
chain of switching actions in the assignment space V . Recall
that a switching swYt is a relocation (tuning in S and/or
movement in A) of a device Y ∈ M ∪ R (monitor or
culprit11) from time t−1 to t, whose range is upper-bounded
by the switching capacity αY . Next, we discuss switching
actions from range (how far) and time (how quick) aspects,
to formulate the SAS process into a graph walk problem.

3.2.1 Range Aspect (Switching Capacity)
The switching range refers to the maximum distance dSA
over which one switching action is possible. A switching
action induces cost, in the form of time, energy, budget,
and so on, and may hence be constrained. For instance,
to dedicated monitors fully controlled by the SAS system

10. We consider the most powerful culprit (with full knowledge of
a strategy) as an extreme case to examine the performance of an SAS
system against compromised strategies. A weaker culprit can at least
observe the long-term visiting probability of any point v ∈ V as
knowledge. In other cases, SAS strategies are required to be disclosed.
For instance, in a crowd-source scenario, any participants will need
to acquire information of the strategy, which increases the risk of a
strategy being leaked to culprits.

11. Switching actions of normal users in U do not have any impact on
the performance of SAS strategies, and are hence not considered here.
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TABLE 2
Persistent Spectrum Culprits and Their Detection under Deterministic Strategy fmS

Type Description PMF gR∗ (·) Expected Detection Time E (τ∗(fS))

Rs Stationary fix-frequency culprit gRs (v) = 1vs (v), ∀v ∈ V Ts
2

, where Ts is discussed in Sec. 4.2.

Rsd Stationary DSA-enabled culprit gRs (v) =

{
1
|Vsd|

, if v ∈ Vsd,
0, otherwise.

≤ n
m
' Ts

Rmd Mobile DSA-enabled culprit gRmd (v) = 1
n
, ∀v ∈ V n

m
' Ts

operations, switching is completed via physical movement
and/or tuning of individual monitors, so switching cost
scales with spectra-location distance dSA. In this case, we
need a quantitative metric to accurately measure the switch-
ing cost for strategy design. This SAS scenario is discussed
in Sec. 4, for which a low switching-cost strategy is proposed
for dedicated monitors.

Switching in a crowd-source scenario is a change of
surrogate monitors, that is, wireless devices (spontaneously)
participating in the SAS process. In this case, the switching
cost may not scale with the spectra-location distance. In-
stead, a switching between any two assignment points vx
and vy ∈ V , can either be possible with a fixed amount
of cost (e.g., time and coordination budget), or impossible
during one time step. To be more specific, when immedi-
ate communication is guaranteed among all participants, a
‘handover’ between any two monitoring surrogates (switch-
ing) will be possible in one time step, i.e., αM = ∞;
otherwise for distributed crowd-source monitoring that re-
lies on short-range wireless communication to coordinate,
any switching action is only possible between two mon-
itors within their communication ranges, i.e., αM < ∞.
For crowd-source monitoring scenarios under unlimited
(αM = ∞) and limited (αM < ∞), strategy design is
discussed in Sec. 5 and Sec. 6, respectively.

3.2.2 Time Aspect (Switching Rates)
In addition to range, the rate of switching, that is, how
many switching actions can be done in one time step, is also
constrained by the hardware. Intuitively, a faster-switching
culprit will be more difficult to catch, due to the shorter
time that the culprit remains in the monitoring power of
any monitors. It is not an issue in coverage time, which is
irrelevant to switching actions of culprits. So, we examine
its impact on the detection time.

Consider spectrum monitors with q(δ)-monitoring
power, that is, when a culprit shows up in the cell assigned
to a monitor (referred to as co-location), the probability that
it is detected by that monitor during one time step is q. Let
q · p(s) (s ∈ [0, 1]) denote the detecting probability when
the co-location time s is less than one full time step, where
the non-decreasing function 0 ≤ p(s) ≤ 1 captures the
attenuated detection probability due to the decreased co-
location time, and has the property of p(0) = 0, p(1) = q.

Lemma 1. (Detection of a Faster Culprit) Suppose culprit R1

differs from R2 only in switching rates: R1 can switch k ∈ N+

times during one time step, while R2 and monitors can switch
only once. The detection time of R1 is stochastically dominated by
that of R2, that is, for any strategy f ,

τR1(f)
d
≤ τR2(f), (10)

when the following condition holds:

p(
1

k
) ≥

1− [1− q · P
(
R2(t) ∈ C(fmt )

)
]
1
k

q · P
(
R2(t) ∈ C(fmt )

) . (11)

Proof of Lemma 1 can be found in Appendix B.
The condition in Eq. (11) easily holds when probability

P
(
R2(t) ∈ C(fmt )

)
is small, i.e., when the size of the assign-

ment space |V | is sufficiently large, such that it is difficult
for a culprit to co-locate with any monitor. Otherwise, when
the assignment space V contains few assignment points,
though catching the faster culprit R1 takes more time than
the slower R2, the expected detection time can be derived
as E(τR1) = 1

kq·p( 1
k )P(R2∈C(fmt ))

, which will not be large,

if function value p( 1
k ) ≥ 1

k . Consequently, the difference
between the detection time of R1 and R2 will be small.
Based on this observation, it is reasonable to assume both
culprits and monitors switch once in every time step.

3.2.3 Graph Walk on (GM , GR)

Accounting switching capacity, the assignment space V is
more than a set of points, rather, a subspace that inherits
the dSA metric from space X . Then, this subspace gives rise
to a structure that incorporates the possibility of switching
actions, i.e., a composite graph of:

(1) Monitoring subgraph GM = (V,EM ), in which an
edge (u, v) ∈ EM exists, if and only if dSA(u, v) ≤ αM . An
arbitrary strategy {fmt }t∈T can be seen as a joint walk by
m = |M| monitors on the monitoring subgraph GM .

(2) Exploiting subgraph GR = (V,ER), in which the
edges are constructed the same way under the switching
capacity αR of the culprit. Then, the exploiting sequence
{Rt}t of R, which contains the assignment points exploited
by culprit R, also corresponds to visited vertices of a walk
on the exploiting subgraph GR = (V,ER).

Graph GR and GM have the same vertex set V , and are
both sub-graphs ofKn, i.e., the complete graph with n = |V |
vertices, which corresponds to SAS scenario of unlimited
switching capacities (αM = αR = ∞). The SAS process,
particularly culprit detection, then becomes a graph walk
on the composite graph G = (GM , GR), in which culprit
R is first detected when R and any of the monitors in M,
co-locate at an assignment point, i.e., meet on a vertex in G.

An example. Fig. 4 illustrates a graph walk on the
assignment space V = {a, b, c, d, e, u, v, x} for two time
steps. Two monitors M = {M1,M2} (marked with black
dot in the center) walk on the monitoring subgraph GM ,
whose edges EM are shown in blue lines, while a culprit R
(marked with red ‘×’ in the center) walks on the exploiting
subgraph GR, whose edges ER are shown in red lines. By
time t = 2, the sweep-coverage Ct = {a, b, c, e} has not
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Fig. 4. SAS process as a graph walk: Two monitors (M1 and M2, blue
dots) and one culprit (R, red dot) move on composite graph (GM , GR),
in which the monitoring subgraph GM = (V,EM ) (blue edges) is
sparser than the exploiting subgraph GR = (V,EM ) (red edges), due
to the weaker switching capacity αM < αR. The culprit R is detected at
time t = 2 when it co-locates with monitor M1 at assignment point a.

covered the assignment space V yet, indicating the coverage
time Tf > 2. The detection time τR(f) = 1, because monitor
M1 meets with the culprit Rt at assignment point a ∈ V ,
during time step t = 2.

Formulating the SAS process into a graph walk makes
strategy design more tractable, in the sense that the strategy
space is now discrete and finite, such that both the theoretic
and simulation approaches are viable. Under this formula-
tion, we discuss strategy design and performance evaluation
for the dedicated and crowd-source monitoring scenarios, in
the following Sec. 4 and Sec. 5, respectively.

4 DETERMINISTIC STRATEGIES FOR DEDICATED
MONITORS

Dedicated monitors refer to the specialized monitoring
equipment mounted on towers, drones, vans, etc. which
are widely used by governmental and commercial agents,
e.g., FCC, NTIA, and AT&T, to collect spectrum measure-
ment data [6]. For DSA-enabled systems relying on dedi-
cated monitors, deterministic monitoring strategies, in which
monitors traverse a predetermined route to sweep-scan the
spectra-location space, are the sensible choice, due to its
simpleness, e.g., measurement taken in [10].

Design concern. For such strategies, the switching cost,
in the form of time, energy or budget, is the key concern
in deploying dedicated monitors. The reason behind this
is that, switching cost, induced by tuning (in spectrum
domain S) and movement (in space domain A), scales with
distances in both domains, so it is essential to optimize
the strategy for a reduced cost, given that all the monitors
are under the control of the SAS function. Therefore, we
first define a comprehensive switching cost metric, based
on the optimization of which, we propose the low-cost
deterministic SAS strategy fS .

Definition 7. (Switching Cost Γ) The switching cost from point
xi to xj ∈ X , is defined as the sum of tuning cost and relocation
cost, that is,

γ(xi, xj) := βSdS(pS(xi), pS(xj)) + βAdA(pA(xi), pA(xj)),
(12)

where βS and βA are cost coefficients for tuning and relocation
respectively. The cost of strategy {fmt }

Tf
t=1 is then

Γmf :=

Tmf∑
t=2

m∑
i=1

γ(fmt (Mi), f
m
t−1(Mi)), (13)

where Tmf is the coverage time defined in Eq. (4).

Settings of βS and βA. Switching cost Γf can be applied
to describe time, energy, and budget. For example, the
cost coefficients can be set to εβA >> βS to describe the
switching time, since the time it takes a radio head to tune
to a different center frequency is approximately 1 ms [30],
during which the physical movement of any mobile device
is negligible. It could also be the case that re-configuring
the center frequency of a radio head is more expensive (in
terms of budget) than physical movements, e.g., specialized
devices with narrow frequency ranges, such that εβA < βS .
Accounting for switching cost between assignment points in
space V , the resulting monitoring sub-graph GM becomes a
weighted complete graph Kn, in which the weight of each
edge reflects the switching cost along that edge.

4.1 Low Cost Deterministic Strategies fS

A good deterministic strategy for dedicated monitors is a
strategy {fmS,t}t∈T , whose total switching cost Γmf is mini-
mized in the strategy space {V m}T . In this sense, finding an
optimal strategy {fmS,t}

Ts
t=1 is equivalent to finding m vertex-

disjoint ‘shortest’ paths (in terms of switching cost) that
jointly cover the assignment space V by time TmS = d nme.
This problem is actually an open-path multi-depot multi-
travailing salesmen problem (MD-MTSP), which is known
to be NP-hard [31].

Solution to this NP-hard problem. Observing the struc-
ture of assignment space V (as shown in Fig. 3 right)
over a rectangular region A, we present upper bounds
on the minimum switching cost Γmmin for small m, as an
extension of our prior work [21], which accounts for all
cost coefficient settings. Let L and D denote the number of
assignment points along the length and width of A, and H
denote the number of assignment points along the spectra
axis S . For instance, the assignment space V in Fig. 3 has
L = D = 3 and H = 4. Then total number of points
n = |V | = LDH + (L − 1)(D − 1)(H − 1). Let γ1 = βSa,
γ2 = βAεa and γ3 = a

2 (
√

2βAε + βS) denote the switching
cost of type-1,2, and 3 edges, which are the single-hop paths
to the nearest point if only one switching action is allowed
in spectrum (alone), in space (alone), and in both domains,
respectively.

Theorem 1. (Min. Switching Cost) For a set of m ≥ 3
monitors on the assignment space V with parameters L, D and
H , the switching cost Γmmin can be upper bounded by

Γmmin ≤
{

Γ1
∗ −A∗(m− 1), if m = 2k + 1,

Γ2
∗ −A∗(m− 2), if m = 2k + 2,

(14)
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where k ∈ N+, ∗ = f if βS ≥ 2−
√

2
2 βAε, and ∗ = g otherwise.

Quantities Γ1
∗, Γ2
∗ and A∗(·) are determined by

Γ1
∗ = K1γ1 +K∗2γ2 +K∗3γ3,

Γ2
f = Γ1

f − (2D − 1)γ2 + γ3 + (
H

2
γ1 + γ2)e(L),

Γ2
g = Γ1

g − 2γ2 − γ1 + 2γ3,

A∗(x) = min{K1, x}γ1 + min{K∗3 , [x−K1]+}γ3

+ [x−K1 −K∗3 ]+γ2,

where K1 = LD(H − 1) + (L − 1)(D − 1)(H − 2), Kf
2 =

(L−1)D+(L−2)(D−1), Kf
3 = 2(D−1), Kg

2 = L+D−2,
Kg

3 = 2(L− 1)(D− 1), and function e(L) = 1 when L is even,
e(L) = 0 otherwise.

Proof outline. Proof of Theorem 1 can be found in Ap-
pendix. C. For the single- or double-monitor cases (m = 1
or 2), considering that type-1, 2 and 3 edges are the least
expensive edges in the complete graph Kn in terms of
switching cost, the main idea of design (and the proof
of Theorem 1) is to construct a traversing route with the
most number of least expensive edges (type-1 or type-2
depending on quantity βS− 2−

√
2

2 βAε), and as few necessary
longer edges as possible. The optimal strategy for these
two cases, and their accompanied minimum switching costs
Γ1
min and Γ2

min, are presented in Lemma 2 and Lemma 4,
respectively. Then for m > 2, the switching cost can be
upper bounded by evenly dividing the low-cost routes of
m = 1 or m = 2, and then removing the induced dividing
edges. As a constructive proof, it also sketches the proposed
deterministic strategy fmS .

Simulation setting. Configuration of numerical simu-
lations is enumerated in Table 3. Note that the width of
the spectrum block S does not have any unit (similarly for
monitoring power parameter δ). We eliminate the unit, in-
stead of plugging in parameters of real-world hardware e.g.,
[7], [14], because there will be a (mere) change of constant
when different units are applied, which is insignificant (and
more confusing) in validating the efficiency of the proposed
deterministic strategies.

Discussion. The proposed strategy (black bars on the
far left in Fig. 5, labeled as fS) is compared with the best
solutions found by genetic algorithm (red-toned bars in
Fig. 5.a and b, labeled as GA), which is a commonly used
heuristic for MTSP, and those found by a greedy-based
random search (blue-toned bars in Fig. 5.c and d, labeled
as RS). in particular, GA [31] is chosen as a benchmark due
to its capability of finding near-optimal solutions for MTSP
with a large search space within a short running time [32],
in comparison with other heuristics, such as the ant colony
algorithm (ACO) [33], and costly exact algorithms, such as
the brute-force search. The proposed fS achieves a very
close switching cost to that of the best solution/strategy
output by GA after more than 10,000 iterations, under
different switching cost coefficient settings. In fact, when
m is small, the best solution provided by GA bears great
resemblance to the proposed strategy, in terms of traversed
edge types, as well as the breaking points (i.e. the way to
divide the optimal path of m = 1). Similar observations
can be obtained in the comparisons with random search,

despite that the optimal solution can not be easily found by
the random search due to its greedy nature.

4.2 Detection time of the deterministic strategy fS
Though deterministic strategy fS proposed in Theorem 1
proves to be a good strategy in terms of the coverage time
(TmS = d |V |m e) and switching cost, its detection performance
is not satisfying. In fact, it suffers from a ‘wandering hole’
problem when adversarial spectrum culprits are present.

Detecting a persistent culprits Rp. The expected detec-
tion time E(τp(fS)) of different persistent culprits Rp under
strategy fS are presented in Table 2 (proofs in Appendix E),
given that the initial spot of Rp is chosen randomly from the
assignment space V . As can be seen, the expected detection
time E(τp(fS)) are bounded above by the coverage time TmS .

Detecting an adversary culprit Ra. To maintain a low
switching cost in the long run, the deterministic strategy fS
will be repeated (in forward/reverse direction for odd/even
sweep-coverage cycles) after TS = d nme time. Consequently,
it is possible for culprits with learning capabilities to observe
the switching pattern of monitors (e.g., by recording the
points and time they encounter the SAS monitors), and even
predict where monitors will not be (e.g., the coverage hole
shown in Fig. 2 right) in the next time step. Then culprits
can continue chasing the hole, as if hiding in a ‘wandering
hole’ of the dynamically changing coverage Ct(fS,t).

Definition 8. (Wandering Hole) Strategy {ft}t∈T suffers from
a wandering hole problem, if an adversarial culprit Ra can exploit
the system indefinitely, i.e., E

(
τa(ft)

)
=∞.

An example. Fig. 6 illustrates a SAS scenario where
activities in spectrum block S are being monitored bym = 5
monitors, over the region A = [0, 4]2. Red dots indicate
the assignment points in V , calculated by the Kelvin struc-
ture tessellation (Sec. 3.A), while space enclosed by shaded
spheres corresponds to the monitoring power of the de-
ployed monitors12, whose tuning frequency is indicated by
the darkness of the shade. The white space outside of these
spheres corresponds to spectrum slices and locations where
a culprit can exploit without being detected, i.e., a spectrum
hole in the monitoring coverage Ct. At time t = 1, consider
an adversarial culprits Ra located at (3, 3) occupying lower
frequency portion in the ‘hole’. From previous observations,
culprit Ra can easily find spectra-location points to exploit
in the next time slot t = 2, i.e., Void(2) identifies the
‘hole’ exactly where the probability for these space to be
monitored during t = 2 equals to zero. Consequently, Ra
can safely stay at the current location, and continue occu-
pying the current spectrum slice without being detected.
In other words, adversarial culprit Ra can swiftly hide in
the ‘wandering hole’ indefinitely, unless the deterministic
deployment strategy fS changes. In fact, the wandering hole
problem exists in any deterministic monitoring strategy.
Once the SAS strategy (or more precisely, its probability
distribution of visiting) is known by an adversarial culprit
Ra, this prior knowledge can be leveraged by Ra to actively
dodge monitors, whenever there is a hole in the current
coverage, i.e., X \ Ct 6= φ.

12. Since we are interested in the closed space S × A, spheres are
trimmed when they intersect with the boundary of S ×A.
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TABLE 3
Simulation Configuration

Parameter Description Value Parameter Description Value
n # of assignment points 394 m # of monitors [1, 5]
A geographical region of interest [0, 10]2 |S| width of spectrum block 18
ε scaling coefficient in dSA 5 δ monitoring power of monitors

√
5
2

(L,D,H) tessellation coefficients (5,5,10) βS , βA switching cost coefficients (0, 1)
GA-k genetic algorithm with 10k iterations {2, 3, 4, 5} RS-k random search algorithm with 10k iterations {2, 3, 4, 5}

1 2 3 4 5
No. of Monitors m

0

6000

S
w

it
ch

in
g
 C

o
st

 

(a) GA βS = 0.1, βA = 0.9

1 2 3 4 5
No. of Monitors m

500

1400

S
w

it
ch

in
g

 C
o

st
 

(b) GA βS = 0.8, βA = 0.2

1 2 3 4 5
No. of Monitors m

200

600

S
w

it
ch

in
g

 C
o

st
 

(c) RS βS = 0.1, βA = 0.9

1 2 3 4 5
No. of Monitors m

600

800

S
w

it
ch

in
g
 C

o
st
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Fig. 5. The proposed strategy (black on the far left) achieves a lower switching cost, compared to the genetic algorithm solution (red bars in (a-b))
and that the greedy-based random search solution (blue in (c-d)), in different switching cost coefficients (βA and βS ) settings.
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Fig. 6. Illustration of a wandering hole in S ×A: Five monitors are deployed in region A = [0, 4]2 with δ =
√
5

2
. Their coverage Ct at each time step

t, is the union of the enclosed space of the blue (partial) balls and the box boundaries. The assignment points (V ) are shown with red dots. The
outter white space of the blue spheres corresponds to the spectrum ‘hole’ that is ‘wandering’ (changing) in space X over time.

5 OVERCOMING THE ‘WANDERING HOLE’ PROB-
LEM WITH RANDOMIZED STRATEGIES

The wandering hole problem exposes a defect of determinis-
tic strategies against adversarial culprits Ra. Taking advan-
tage of its prior knowledge, that is, the difference in visiting
probabilities in the next time step, adversarial culprit Ra is
able to determine the spectrum ‘hole’ to exploit, i.e., Void(t).
The sharper the difference, the clearer the boundary of the
‘hole’, and the larger its chance to dodge monitors in the
next time step. For instance, under the deterministic strategy
shown in Fig. 6, a culprit Ra located at a = (3, 2) can easily
identify Void(2) ⊂ S × {a} (the ‘bar’ on the left in Fig. 7)
due to the prominent difference in probability.

Intuition behind the solution. Knowing the root cause
of the ‘wandering hole’ problem, a straight-forward coun-
termeasure is to better protect, or frequently change the
SAS strategy, which requires constant effort in the deploy-
ment stage, such that obtaining visiting probabilities, or
the strategy implementation, are more difficult for culprits.
Nonetheless, we can achieve the same goal if we carefully
design a SAS strategy, from which no useful ‘knowledge’
can be derived, even if it is known to the culprit. In other
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Fig. 7. Root cause of the wandering hole problem is the difference in
probability density acrossX in a deterministic strategy fS . For example,
an adversarial culprit located at (3, 2) in Fig. 6 can infer hole Void(2) with
clear boundary, which is not the case for a randomized strategy fI .

words, fully randomize the deployment, such that every
assignment point is visited with the same probability in
the long run. In this way, there will not be any probability
difference, and hence no boundary of spectrum holes for
culprits to locate, as illustrated by the uniform grey ‘bar’ in
Fig. 7. In addition, monitors follow no pattern at all when
switching to a different assignment point, so that historic
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record will not add to the knowledge of culprits.
From switching cost to switching capacity. As we shift

focus from low-cost sweep-coverage to quick culprit detec-
tion, we switch gear from switching cost to switching capac-
ity, which for SAS with dedicated monitors can be regarded
as a range determined by a threshold in switching cost. On
the other hand, considering that a switching action is actu-
ally a change of surrogate monitors, randomized strategies
are natural for the crowd-source monitoring scenario. With
a centralized coordinator or guaranteed communication
among participants, switching between surrogate monitors
can be timely coordinated, so the entire assignment space
V is contained in the switching capacity of all monitors,
which translates to the unlimited switching capacity case,
i.e., αM = ∞. In case of distributed control, when change
of surrogate monitors needs to be completed with local
communication, the switching capacity of monitors will
be upper-bounded, i.e., αM < ∞, due to their limited
communication ranges.

5.1 Randomized SAS Strategies
We consider two randomized strategies that requires dif-
ferent levels of coordination and switching capacities: the
independent I-strategy fI and the distributed D-strategy fD .

I-strategy fI . During each time step, each monitor
Mi ∈ M switches to point vi ∈ V uniformly at ran-
dom, and independently of others, within its switching
capacity αM . The surveillance process is then equivalent
to a composite random walk of m = |M| walkers, each
independently generating a sequence {fmt,I(M)}t∈T , on the
monitoring subgraph GM . When graph GM is (close to)
regular, i.e., the number of assignment points reachable in
one switching action is almost the same for every point in
V , the uniform transition probability leads to a convergence-
guaranteed stationary distribution of visiting probabilities,
that is, πv = 1

n , ∀v ∈ V .
D-strategy fD . Assignment space V is first evenly di-

vided into m disjoint subsets {Vi}Mi∈M, such that points in
each subset Vi are within monitors’ switching capacity αM ,
and {Vi}Mi∈M compose a partition of V . During time step
t, each monitor Mi ∈M switches to point fmt,D(Mi), chosen
uniformly at random from Vi, which contains nm = d nme
assignment points. Thus, the D-strategy can be viewed as
m independent single-walker random walks, each on the
complete graph Knm . Moreover, graph Knm is regular, so
the stationary visiting probabilities are also uniform.

Based on this design, we first discuss the basic case of
αM = αR = ∞, i.e., SAS strategy without switching con-
straint, in this section. As we will show, both the coverage
time and detection time of the two randomized strategies:
(i) are bounded, indicating their efficacy in both coverage
and detection objectives; and (ii) scale as O( 1

m ) with respect
to the number of monitors m, revealing their efficiency.

5.2 Coverage Time TmI and TmD
Because of the unlimited switching capacity of both moni-
tors and culprits, the underlying monitoring subgraph GM
are complete graphs, and both the I- and D-strategy are
equivalent to random walks, on Kn and Knm , respectively.
The coverage time TI and TD become well-defined r.v.’s

that take value in [1,∞), and their expected value E(T∗)
are referred to as the cover time [34].

5.2.1 Coverage Time of the I-strategy TmI
For an I-strategy fmI carried out bymmonitors, the expected
coverage time E(TmI ) can be bounded by the following
theorem.

Theorem 2. (Coverage Time of fmI ) For a set of m = |M|
monitors that follow the I-strategy {fmt }t∈T in the assignment
space V , the expected coverage time is upper bounded by

E(TmI ) ≤ e(n− 1)

[
0.562 + 0.768

Hn
m

]
, (15)

where n = |V | is the number of assignment points in V .

Proof of Theorem 2 can be found in Appendix D. Though
not a tight bound, Theorem 2 reveals the scaling law of the
expected coverage time with respect to size n of space V ,
and number of monitors m, that is, E(TmI ) = O(n lnn

m ).

5.2.2 Coverage Time of the D-strategy TmD
The expected coverage time of D-strategy fmD can be
bounded above with the help of Lemma 5.

Theorem 3. (Coverage Time of fmD ) For a set of m monitors
following D-strategy fmD on the assignment space V of size n, the
expected coverage time E(TmD ) is upper bounded by

E(TmD ) ≤ nmHnm +
nm
√
m− 1

2(nm − 1)

[
7(nm)2 − 11nm + 2

] 1
2 ,

(16)
where nm = d nme.

Proof of Theorem 3 can be found in Appendix D.

5.2.3 Simulation Validation
Fig. 8 illustrates the expected coverage time of I-strategy
(E(TmI ), blue ‘#’ markers) and D-strategy (E(TmD ), red ‘×’
markers) with respect to m ∈ [1, 10], number of monitors,
and n = |V | ∈ [50, 500], size of the assignment space,
respectively. Numerical samples of TI and TD are shown
in dots, while their mean and standard deviation are shown
with markers and bracketed bars. The case of four monitors
(m = 4) is zoomed in the inner box of Fig. 8 (a), from which
it can be seen that even the sliding average of coverage time
(round and ‘×’ markers) are upper bounded.

Observations. We have the following observations from
the comparison between simulation and bounds: (i) Theo-
rem 3 (red dashed line) is a tight bound on the coverage
time of D-strategy when m is small; (ii) Theorem 2 (blue
dotted line), though not a tight bound, accurately describes
itsO( nm lnn) scaling behavior; (iii) I-strategy and D-strategy
have very close coverage time performances, not only in the
mean sense, but also in distribution, as shown in the inner
boxes of Fig. 8 (b), which implies that the more demanding
I-strategy (in terms of level of coordination and switching
capability of monitors) can be safely substituted by the
distributed D-strategy, with the same coverage goal guar-
anteed; iv) both expected coverage times can be described
as O( nm lnn) (blue dotted line in (b)), indicating that this
scaling law can be used to predict the number of monitors
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Fig. 8. Expected coverage time of both I- (E(TI)) and D-strategy (E(TD)) are O( n
m

lnn), as predicted by Theorem 2 and Theorem 3, respectively.

needed to reach the coverage goal of a given spectra-location
space with a certain resolution.

Discussion. Note the unit of the coverage time is time
step, whose length can be evaluated when parameters in
Table 3 are determined in a real-world scenario. We do
not incorporate specific units in the analysis or simulation,
because the focus of this paper is the scaling behavior of
strategy performance with respect to the problem size (in
this case n) and the number of monitors (m). Compared
with the deterministic strategy fS in Sec. 4, that can achieve
a n
m coverage time, randomized strategies seem to be at

disadvantage in fulfilling the coverage goal, but as we will
show in the following subsection, they are favorable in
spectrum culprits detection.

5.3 Bounded Detection Time of Adversarial Culprits
the advantage of adversarial culprits over deterministic
strategies is lost, when facing monitors running randomized
strategies fI and fD , because their prior knowledge (visiting
probabilities) is compromised by the uniform probability
distribution in fI and fD . Consequently, randomized strate-
gies do not suffer from the ‘wandering hole’ problem, that
is, the detection time is bounded.

Theorem 4. (No Wandering Hole in Randomized Srategies)
Under strategy fmI and fmD , the expected detection time of an ad-
versarial culprit Ra is upper-bounded, if the detection probability
q is lower-bounded by a positive constant q∗ > 0. Particularly,

E
(
τa(fmI )

)
=
[
1− (1− q

n
)m
]−1

, (17)

E(τa(fmD )) =
n

qm
. (18)

Proof of Theorem 4, as well as the closed-form upper
bounds, can be found in Appendix F. Technically, it is
possible that detecting probability q is minimal, due to the
large radius δ in the q(δ)-monitoring power, so the resulting
detection time E(τa(fmI )) and E(τa(fmD )) tend to infinity.
However, this can be easily fixed if the radius parameter
δ is adjusted in the space-tessellation step, so that q is

boosted to an acceptable level. Consequently, we conclude
that randomized monitoring strategies (fI and fD) do not
suffer from the wandering hole problem.

Numerical Simulation. To validate the advantage of
randomized strategies against adversarial culprit, stated in
Theorem 4, culprit detection is simulated under the same
spectra-location space setting as the sweep-coverage vali-
dation. Detection time samples are shown as light-blue (I-
strategy) and light-red (D-strategy) dots of Fig. 9, which
corresponds to the imperfect detection (q = 0.8 < 1) case.

Observations. From the bounds and simulation results,
we have the following observations. (i) Not only are the
detection time of I-strategy and D-strategy bounded (and
hence no ‘wandering hole’ problem), their expectations can
be accurately calculated with Eq. (17) and (18), once the
number of monitors m and size of the assignment space
n are fixed. (ii) Bounds in Eq. (17) and (18) hold for the
imperfect detection case, as shown in Fig. 9. (iii) The detec-
tion performance of the I- and D-strategy are fairly close,
which indicates that D-strategy can be a good distributed
alternative to the I-strategy.

Discussion. TheO( 1
m ) scaling behavior in both coverage

and detection time, indicates a linear ‘speed-up’ in SAS
performance, when multiple monitors are employed in the
randomized strategies. This behavior implies, as same as
in the deterministic strategies, increasing the number of
monitors (m) is an efficient performance-boosting measure.
In addition, the bounds on detection time (or rather, accu-
rate results in Eq. (17) and (18)) add to the predictability
of randomized strategies, which can be fairly useful in the
design stage of a SAS function, e.g., estimating the needed
number of monitors.

6 SAS UNDER LIMITED SWITCHING CAPACITIES

Recall in Sec. 3.2, the switching capacity αY is defined as the
maximum distance that a device (monitor or culprit) Y can
switch over in one time step. In this section, we consider a
SAS process ofm independent αM -monitors (with detection
probability q = 1) and an αR-culprit on the assignment
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Fig. 9. The expected detection time of an adversarial culprit in the assignment space of size n is O( n
m

), under both the I and the D-strategy with
reliabiltiy q = 0.8.

space V . Let rαM (v) denote the degree of point v ∈ V in the
monitoring subgraph GM , under constraint αM , and rαR(v)
denote the degree of v in the exploiting subgraphGR, under
constraint αR. Then GM and GR are both subgraphs of the
complete graph Kn, which corresponds to the unlimited
case discussed in Sec. 5. When αM = αR, the culprit and
the monitors can be viewed as walking on the same graph,
i.e., GM = GR. However, for cases when monitors are more
‘powerful’ than the culprit (αM > αR), edges in GR are
strictly sparser, i.e., ER ⊂ EM , and vise versa.

Scenarios. Constrained switching capacity (αM < ∞)
applies to the fully-distributed crowd-source SAS scenario,
in which a switching is only possible if the two devices are
within each other’s communication range. Such a capacity
limit can also be viewed as a binary quantification of the
switching cost, in the sense that it cuts off any edge (vi, vj)
(in a complete graph), whose associated switching cost
γ(vi, vj) exceeds a threshold.

Challenges. The two-step solution introduced in Sec. 3
turned the SAS process into a walk on the composite graph
(GM , GR), but analysis is still impeded by two challenges:
(i) theoretic analysis of random walks on general graphs
is difficult, if at all possible, because existing mathematical
tools are developed for graphs with special structures, e.g.,
the complete graph Kn; (ii) monitors and culprits may
switch/walk on different graphs, when αR 6= αM , which
was not addressed by existing research on graph walk.

6.1 Solution: Regular Graph Approximation

Observe that assignment points (cell centers in the Kelvin
structure) in space V are quite ‘structured’, as shown in
Fig. 3 (right). As a result, subgraph GM (respectively GR)
(e.g., the weaker monitors v.s. powerful culprit case shown
in Fig. 10) that build upon it is also ‘structured’, in the
sense that degrees of most vertices in GM (GR) are roughly
the same, except for the few near the boundary. Denote
rM = 1

n

∑n
i=1 rαM (vi) as the average degree of the monitor-

ing subgraph GM , and rR as that of the exploiting subgraph

(a) Monitoring subgraph
GM with αM = 5.

(b) Exploiting subgraph
GR with αR = 10.

Fig. 10. Weaker monitors against a powerful culprit: edge set ER of the
induced exploiting subgraphGR has much more edges thanEM , edges
of the monitoring subgraph GM .

GR. We first approximate GM and GR as rM - and rR-
regular graphs (GrM and GrR) respectively,13, on which
mathematical tools [34], [35], [36] come in handy.

6.1.1 Coverage Time TmrM
Let TmrM denote the coverage time of m independent mon-
itors on rM -regular graph GrM , to differentiate from the
actual coverage time TmI on the original monitoring sub-
graph GM . On regular graph GrM , asymptotic bounds for
E(TmrM ) have been studied by multiple researchers. Among
these, Alon et.al. [34] proved E(TmrM ) ∼ Θ(n lnn

m ), as n→∞;
Cooper, Frieze and Radzik [36] provided a similar but
more accurate asymptotic result for random regular graphs,
when the number of random walkers is not large, i.e.,
m = o( n

ln2 n
). It is shown in [37] that a uniformly chosen

r−regular (r ≥ 3) graph Gr is ‘nice’ with high probability
(tending to one as n→∞), such that the expected coverage
time TmrM follows from [36, Thm. 2], that is,

E(TmrM ) ∼ rM − 1

rM − 2

n lnn

m
. (19)

13. This average-degree-based approximation is reasonable, but also
introduce a gap when determining SAS performance for both sweep-
coverage and culprit detection, which is discussed in Sec. 6.B.
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An extension. Under an I-strategy, each monitor
switches to any assignment point within its switching capac-
ity uniformly at random, resulting in a uniform stationary
distribution πv = 1

n over the assignment space V . In other
words, each assignment point is visited roughly the same
number of times as time proceeds, so we say the spectra-
location space X is ‘evenly’ covered. Nevertheless, if a
certain region (subspace of X) needs special attention, e.g.,
due to higher presence of misbehavior, the probability to
switch to a target assignment point can be adjusted, such
that a desired (possibly non-uniform) stationary distribution
over V can be achieved through well-articulated algorithms,
e.g., the Metropolis-Hasting algorithm.

6.1.2 Detection Time τR(rR, rM )

Unlike coverage time, for which existing research leads to
direct solution, there is no proper mathematical tool to
directly address the culprit detection problem, in which the
monitors and the culprit may walk on different graphs, due
to their different switching capacity limits. So we address
the weaker monitors vs. powerful culprit (αM < αR) case
(and its reverse αM > αR) in this subsection.

Let τR(rR, rM ) denote the detection time of a culprit
R (walking on the rR-regular graph GrR ), by m-monitors
(walking on the rM -regular graph GrM ). There are two
possible cases:

Case 1. Same switching capacity. Monitors M and
the culprit R have the same switching capacity, such that
rR = rM = r, and GrR = Grm = Gr , i.e., both monitors
and culprit R walk on an r-regular graph Gr. Applying
the predictor-and-prey model [36, Theorem 3], the expected
detection time of culprit R can be asymptotically bounded,
that is,

E(τR(r, r)) ∼ r − 1

r − 2
· n
m
. (20)

Case 2. Different switching capacities. Monitors walk
on a different graph from the culprit, i.e., rR 6= rM such that
GrR 6= Grm . We obtain the upper bound of the detection
time by considering a composite random walk.

Proposition 2. (Bounded Detection Time on Regular
Graphs) Let K = (n−1)!

(n−m−1)! . Under an I-strategy with m moni-
tors, the expected detection time of a culprit on graph (GrM , GrR)
is upper bounded, i.e.,

E (τR(rR, rM )) ≤ 1 +
K

nm
(4K2 − 1). (21)

Proof of Proposition 2 can be found in Appendix G.
Proposition 2 holds for every n, which is the number of
assignment points in V . However, when n is large, it is not
easy to calculateK and nm in Eq. (21). For this case, we have
the following scaling law on the expected detection time.

Corollary 1. (Scaling Law of Detection Time) The expected
detection time of a culprit for a SAS process under the I-strategy
on graph (GrR , GrM ) satisfies

E (τR(rR, rM )) = Θ(
n

m
). (22)

Proof of Corollary 1 can be found in Appendix G.
Compared to the SAS scenarios with unlimited switching
capacity discussed in Sec. 5, the scaling laws in this regular

graph approximation (coverage time Eq. (19), detection time
Eq. (20) and Eq. (22)) differ only by a degree-determining
constant, which is less than or equal to 2. Consequently, we
expect the scaling laws of both performance metrics (over
m and n) to remain the same as the unlimited case.

6.2 Gap between (GM , GR) and (GrM , GrR)

For Eq. (19) and Eq. (20) (and Eq. 22) to hold, a regular graph
needs to be ‘nice’ [37, pp. 733]. It is also shown in [37] that
a large (n large) r-regular graph Gr randomly selected from
the collection of all r-regular graphs Gr, is almost-Ramanujan
with high probability, that is, the largest eigenvalue λ0(Gr)
and the second largest eigenvalue λ1(Gr) of graph Gr’s
adjacency matrix satisfy

λ1(Gr) ≤ 2
√
λ0(Gr)− 1 + ε, (23)

where the λ0(Gr) = r, as Gr is r-regular.
However, Eq. (23) does not necessarily hold for the

real exploiting and monitoring subgraphs (GR, GM ). For
instance, the monitoring subgraph GM presented in Fig. 10
corresponds to αM = 5. This graph GM has λ0(GM ) =
18.415 and λ1(GM ) = 16.475, certainly violating the eigen-
value gap criterion in Eq. (23). Nonetheless, a randomly gen-
erated graph with the same average degree, GrM (rM = 17),
has λ0(GrM ) = 17 and λ1(GrM ) = 7.633, satisfying the
criterion. The gap in the graph expansion property does
not allow direct application of the scaling law (described by
Eq. (19) and Eq. (20)) to the composite graph (GM , GR), in-
duced by switching capacity limit αM and αR, even though
(GM , GR) have the the same average degree as its regular-
graph approximate (GrM , GrR) by construction. Therefore,
we employ simulation to see if the approximation is valid.

6.3 Numerical Simulation

Simulation Setting. We validate the regular approxima-
tion in the same assignment space V , detailed in Table 3.
Simulation results (dots) and bounds (dashed and dotted
lines) of the coverage time and detection time, under an
I-strategy with different switching capacities, are shown
in Fig. 11a and 11b, respectively. The powerful monitors
case (αM = 10, corresponding to rM = 19, and αR = 5,
corresponding to rR = 86) is marked in blue, whose mean
is shown by the blue ‘#’ marker, while the powerful culprit
case (αM = 5, αR = 10) is marked in red, whose mean is
shown by the red ‘×’ marker. In Fig. 11a, the lower bound of
the coverage time (black dotted line) is obtained by setting
rM to∞ in Eq. (19).

Observations. From the coverage time in Fig. 11a, we
observe as we anticipated: (i) The coverage time of a weaker
monitor set (red ‘×’ markers, rM = 19) is slightly longer
than that of a more powerful monitor set (blue ‘#’ markers,
αM = 10). (ii) The scaling law of the expected coverage
time E(TmI ) over m is well captured, despite the switching
capacity limit. From the detection time in Fig. 11b: (iii)
as predicted by Corollary 1, the expected detection time
E(τR(fmI ))|αM=5 is not lengthened much compared to the
strengthened case αM = 10, as opposed to an intuitive
anticipation, indicating both the time and range aspects
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(a) Coverage time E(TmI ) = Θ( nm lnn).
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(b) Detection time E(τa(fmI )) = Θ( nm ).

Fig. 11. The expected coverage time and detection time for SAS processes with switching capacity limits (by the regular graph approximation).

of the switching capacity do not impact the expected de-
tection time much. (iv) Both the upper and lower bound
of the expected detection time are tight, if not precise
(E(τR(fMI )) ' E(τR(rR, rM )) for m ∈ [1, 10]).

From both figures: (i) Even though the switching ca-
pacity of monitors (αM ) and that of the culprit (αR) differ
considerably in value for the two simulation cases, the mean
coverage and detection time (round and ‘×’ markers in both
Figure 11a and Figure 11b) are pretty close. The reason
behind this is similar to what is revealed in Lemma 1, i.e.,
the more ‘mobile’ (either monitors or culprits), the more
‘visible’ to spectrum monitors. (ii) Through (GM , GR) are
not regular graphs, bounds derived for their regular graph
approximation (GrM , GrR) (dash and dotted black lines)
apply smoothly to both the coverage time, and detection
time, in the sense that the scaling laws are well-captured.

Discussion. Comparing the unlimited (Fig. 8 (a) and
9 (a)) with limited (Fig. 11a and 11b) switching capacity
cases, the capability limit αM becomes less influential as
the number of monitors m increases, and does not change
the scaling behavior over m. The reason behind this is
that αM is sufficiently large so that the quantity rM−1

rM−2 in
Eq. (19) comes close to 1. With extensive simulation, we
found that E(TmI ) and E(τR(fmI )) on the real composite
graph (GM , GR) actually follow the Θ(n lnn

m ) and Θ( nm )
scaling law described in Eq. (19) and Eq. (20)). We speculate
the reason is that both subgraphs (GM and GR) are well-
connected in degree sense, and the variation in node degree
is small so that GM and GR are ‘regular’ enough. On the
other hand, this observation makes us wonder whether the
requirement of being ‘nice’ is necessary in achieving the
Θ(n lnn

m ) and Θ( nm ) scaling law.

7 CONCLUSION

In this paper, we study spectrum activity surveillance (SAS)
in DSA-enabled systems, particularly deployment strategies
of spectrum monitors, for the purpose of sweep-coverage
and spectrum culprits detection. We introduce a 3-D model
that incorporates spectra, temporal and geographical do-

mains, and captures the locality of different spectrum activ-
ities. Under this model, any SAS process can be formulated
into a composite walk on a graph generated by efficient
space-tessellation, and evaluated with the proposed cover-
age and detection metrics. As an application of the proposed
model, we present a deterministic strategy to achieve quick
sweep-coverage with low switching cost, and randomized
strategies to achieve quick detection of adversarial culprits.
Efficacy of these strategies are theoretically analyzed and
validated through simulations. We identify that there are
still research efforts to take, before the proposed strategies
can be implemented in SAS systems, such as configuring
the parameters of the monitor model for real-world SAS
monitors, and constructing the SAS graph for systems with
complex spectrum ranges, or irregular geographical regions.
We hope these results could contribute to the design, analy-
sis, and management of such spectrum-agile systems.
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