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Abstract—Mobile networks are embracing Dynamic Spectrum Access (DSA) to unleash data capacities of spectrum holes caused by
tidal traffic. Being the largest mobile system, LTE has been standardized to operate in the DSA mode where the knowledge on the
spectrum tenancy of LTE systems are required. Although there exists rich literature on spectrum sensing, measurement and modeling,
they cannot satisfy the needs of accurately acquiring the spectrum tenancy of LTE systems. This is because most traditional
measurements only provide inaccurate tenancy in coarse granularities, and therefore models built upon them are defective. To enable
the precise discovery of spectrum assignments of an LTE cell from an outsider perspective, we build U-CIMAN to UnCover spectrum
occupancy and user Information in Mobile Access Networks. The LTE protocol fields parsed by U-CIMAN not only accurately reveal the
spectrum occupancy at the same granularity with LTE scheduling, but also provide important details associated with spectrum usage,
i.e., rough user locations and traffic types. Besides insightful observations based on measurements enabled by U-CIMAN, we propose
to characterize LTE spectrum occupancy using Vector Autoregression that captures the statistical distributions of spectrum tenancy
intervals in multiple channels and the correlations among them.

Index Terms—LTE, dynamic spectrum access, measurements, software defined radio, test bed, modeling
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1 INTRODUCTION

DUE to the low utilization of spectrum resources caused
by exclusive spectrum assignment [1], Dynamic Spec-

trum Access (DSA) has been proposed as the new paradigm
for 5G/6G systems and beyond [2]. It is foreseeable that a
potpourri of various radio access technologies (RATs) which
are either originally developed for exclusive or shared spec-
trum usage, are expected to collocate on the same spectrum
bands with equal usage rights. This trend in standardization
activities has been pioneered by efforts, such as MulteFire,
Licensed Assisted Access (LAA), and LTE-U [3], [4], [5],
to enable the most advance mobile system in production
deployment, namely the 4G LTE system, to work in shared
spectrum bands, for instance the ISM 2.4 GHz and 5 GHz
bands. These standards have already been supported by
leading commercial cell phone modems, such as Snap-
dragon X55. In this setting, LTE systems need to sense the
spectrum usage of other systems which in turn desire the
spectrum tenancy knowledge of LTE cells, so the collocated
wireless systems with various RATs are able to function
properly without interfering with one another.

To avoid interference and improve spectrum utilization,
the ideal spectrum sensing accuracy should reach the time
and frequency granularity of the radio resource unit of the
RATs’ scheduling schemes. This requirement on spectrum
sensing accuracy is a direct outcome of the scheduling
schemes. For example, if two Frequency Division Duplex
(FDD) LTE cells are sharing the spectrum resources, then
they should sense the spectrum usage of the other party in
the basic unit of LTE scheduling, also known as Resource
Blocks (RBs) that are spectrum slices of 1 millisecond (ms)
by 180 kHz. In this way, the two cognizant LTE cells are able
to learn the spectrum holes left by each other, and make use
of them without hampering other’s transmissions. Because
LTE systems reassign the occupancy of RBs every 1 ms, the
tenancy and the vacancy of spectrum slices also changes at

the same pace, entailing the spectrum sensing at the same
time frequency granularity if all the spectrum holes are to
be identified correctly.

Although the importance of sensing spectrum occu-
pancy has long been identified in the existing DSA literature
[6], [7], [8], [9], prior spectrum sensing works cannot achieve
the desired accuracy. According to Table VI in [10], the
results of existing measurement campaigns cannot achieve
the time and frequency granularities of LTE scheduling since
the sweep time is mostly tens of seconds. The low measure-
ment resolutions are determined by their spectrum tenancy
detection methods. One of the most widely methods is the
energy detection which is achieved by deploying a spectrum
analyzer to measure the power levels within the spectrum
bins of certain sizes. This method is only appropriate if the
spectrum tenancy remains the same within the sweep time,
which is not true for LTE bands. For a 10 MHz LTE system,
the sweep time is the total bandwidth divided by the square
of the bin size, usually chosen between 10 kHz and 30
kHz according to application manuals of spectrum analyzer
manufacturers and detailed measurement reports on LTE
systems [11], resulting in 11.1 to 100 ms, much longer than
the 1 ms scheduling interval after which the spectrum usage
changes. Despite the existence of other spectrum tenancy
measurement methods such as matched filter detection and
cyclostationary feature detection [12], they are based on
similar principles with the energy detection method, i.e.,
scanning through the entire spectrum bands or searching
signal patterns in one spectrum slice after another, so their
measurement results cannot reach the fine time resolution
required for the studies on LTE spectrum tenancy.

Since the existing measurement methods and datasets
cannot show the true characteristics of LTE spectrum usage,
the models developed based on those measurement cannot
be reflective of the actual spectrum tenancy patterns. For
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example, the time domain data samples are collected every
1 µs, or 1 MHz, in [13], which is much lower than the min-
imum sampling rate of 15.36 MHz required for processing
signals in an LTE cell with 10 MHz bandwidth. Thus, the
data collected in this campaign is useful for examining the
existence of low bandwidth signals, but is not able to reveal
the spectrum usage of LTE systems. Another well known
dataset collected by the energy detection method with 1.8
seconds sweep time is adopted in [14]. Since LTE spectrum
tenancy may have changed as many as 1800 times in this
time interval, this dataset cannot serve the purpose of build-
ing spectrum tenancy models of LTE systems. As we will
show in the measurement results, most of the occupancy
times of LTE channels do not last longer than 1 second, so
the 1.8 seconds sweep time will hugely mislead the results,
if such dataset is adopted for LTE spectrum tenancy studies.
Since there are no accurate spectrum usage measurement
method, data, and models to facilitate the participation of
LTE systems in the DSA regime, we identify and answer two
research questions in this paper, 1) how to accurately measure
spectrum tenancy of an LTE cell in fine granularity, and 2) what
model characterizes the spectrum tenancy of an LTE cell.

To answer the first research question, we propose to
measure the spectrum tenancy of an LTE cell by parsing
downlink control messages and decoding raw bytes of
user data. Inspired by the LTE sniffing technologies and
equipped with the emerging Software Defined Radio (SDR)
hardware and software libraries [15], [16], [17], [18], [19],
we develop U-CIMAN to UnCover spectrum and user
Information in Mobile Access Networks, which decodes
the downlink control messages and raw bytes of user data
transmitted from an LTE base station, or an eNB (Evolved
Node B). In this way, the cell-wide spectrum occupancy can
be parsed from the messages carrying spectrum resource
assignments aired by the eNB. Thus, U-CIMAN achieves
accurate spectrum tenancy at the same granularities with
LTE scheduling, i.e., the frequency resolution of 180 kHz and
the time granularity of 1 ms. The protocol fields decoded by
U-CIMAN also facilitates the inference of important facts
related to spectrum tenancy, i.e., the rough user locations
and the traffic types. Compared with pioneering LTE de-
ciphering works which target downlink control messages
only [15], [16], U-CIMAN further decodes the raw user data
bytes, and exploits the Time Advance (TA) and packet size
headers for spectrum tenancy studies. TA values and packet
sizes are highly indicative of the locations and traffic types
of LTE devices, respectively, which have appeared as key
assumptions in many DSA proposals [20], [21]. How the
TA and packet sizes in bytes relate to user locations and
traffic types are explained and validated in Section 2. It is
worth noting that the payload of user data is protected by
LTE encryption, so obtaining raw bytes in enciphered form
causes no security or privacy issues.

With the accurate LTE spectrum tenancy obtained by U-
CIMAN, we characterize the LTE spectrum occupancy with
both on/off model and Vector Autoregression (VAR). VAR
outperforms on/off model according to our analysis where
their performance is evaluated from three aspects, goodness
of fit to the distributions of measured on-time, off-time, and
interval lengths, correlations among adjacent channels, and
correlations between adjacent idle and busy periods.

As mobile access networks are embracing the DSA
paradigm, this paper timely enables the understanding of
LTE spectrum tenancy from an outsider point of view.
Equipped with U-CIMAN, we measure the spectrum occu-
pancy of a commercial LTE cell for four months, and make
insightful observations. For example, spectrum tenancy is
upper bounded to around 104 ms, which is consistent
with practical systems, but in contrast to analytic results
of heavy-tailed distributions [22], [23]; the Modulation and
Coding Scheme (MCS) of the spectrum slices are highly
indicative of the occupancy status in the next time slot.
We compare the performance of VAR and on/off model in
characterizing LTE spectrum occupancy, and the proposed
VAR model outperforms the widely used on/off model. The
main contributions are summarized as below.

1) We design and implement U-CIMAN to decode LTE
downlink control messages and user data bytes.
The performance of U-CIMAN is validated in two
setups. One is our lab environment where a working
LTE system is realized with Amarisoft with accessi-
ble logs [24], while in the other scenario U-CIMAN
is applied to decode data fields in a commercial LTE
cell with realistic user mobility.

2) Utilizing protocol fields decoded by U-CIMAN, we
conduct accurate and detailed spectrum occupancy
studies on a commercial LTE cell. We show that
the observed LTE spectrum usage characteristics are
substantially impacted by the measurement granu-
larity, and the accurate results enabled by U-CIMAN
are key to analyzing LTE spectrum tenancy.

3) We find that VAR outperforms the widely used
on/off model in characterizing LTE spectrum oc-
cupancy, due to its superior capabilities to capture
the distributions of busy and idle time lengths, and
occupancy correlations among adjacent channels.

The rest of this paper is organized as follows. The design
and implementation details of U-CIMAN are described in
Section 2. In Section 3, thorough performance validations
of U-CIMAN are presented, as well as its potential ap-
plications. Then, we explain the measurement results that
are characterized by the on/off and VAR models, and the
observations in Section 4. Related work is discussed in
Section 5. Lastly, the paper is concluded in Section 6.

2 U-CIMAN DESIGN AND IMPLEMENTATION

This section describes the LTE preliminaries, as well as the
design and the implementation of U-CIMAN, the accurate
measurement tool for LTE spectrum tenancy.

2.1 LTE Preliminaries

Since U-CIMAN measures LTE spectrum tenancy by de-
coding downlink information, we introduce relevant LTE
domain knowledge before the system design. We explain
why some messages aired by eNBs are susceptible to eaves-
dropping without causing privacy or security concerns,
and the three chosen LTE data fields for spectrum tenancy
measurement and the reasons behind the choice.
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Fig. 1. The structures of LTE spectrum resources and the steps of the data transmissions.

2.1.1 Two types of unencrypted fields

Though LTE provides an integral encryption mechanism
for both the control and the data planes, two types of LTE
data cannot be encrypted. Type I unencrypted data is left in
clear text because they are transmitted before the encryption
setup. There are several steps for an LTE User Equipment
(UE) to undergo before setting up ciphered data exchanges
with the network, so the downlink information transmitted
before the completion of encryption setup has to be in clear
text. Type II unencrypted data is found in the messages or
headers generated in the protocol layers under the Packet
Data Convergence Protocol (PDCP) layer that is responsible
for encryption [25], so the information in those data fields
generated below the PDCP layer cannot be protected.

Due to the existence of the two types of unprotected data
fields, the messages in those fields can be understood by any
devices following LTE specifications once the corresponding
raw data are decoded. Since both types of unprotected
messages either carry information for initial access of an
LTE cell or pertain only to operations below PDCP layer,
their leakage can hardly be related to specific users whose
identifiers in the two types of unencrypted information are
represented as rapidly changing Radio Network Temporary
Identifiers (RNTIs). Though the unencrypted messages can-
not be linked to specific users, the information contained
therein can still be of vital importance. For example, other
DSA systems only need to know the spectrum usage of
collocated LTE devices, but not the identities of LTE users.

The three types of data fields decoded by U-CIMAN
to reveal LTE spectrum tenancy are the Downlink Control
Information (DCI), TA, and packet sizes, all of which are
Type II unencrypted data. How they are related to spectrum
tenancy and how to decode them will be explained in the
rest of this section.

2.1.2 Structure of LTE spectrum tenancy

Since the goal of U-CIMAN is to measure spectrum tenancy,
the structure of LTE spectrum usage is briefly explained.
In the time domain, an LTE subframe is 1 ms, which is the
time interval for an eNB to schedule the spectrum resources.

Thus, a subframe is also known as a Transmission Time
Interval (TTI). In each subframe, the spectrum resources
in two dimensional frequency-time grids are divided into
RBs that are the smallest unit of eNB resource assignment
[26]. As shown in the left part of Fig. 1, an RB is 180 kHz
by 0.5 ms, and it comprises 12 subcarriers each of which
typically carries 7 symbols. The smallest spectrum resource
is called Resource Element (RE) that carries one symbol on
one subcarrier [27].

The right part of Fig. 1 illustrates the resource structures
of two typical LTE downlink subframes. For all downlink
subframes, the first one to three REs are for various control
channels in the downlink, and the rest carry user data.
Downlink synchronization signals and physical broadcast
channel are transmitted by REs in fixed positions in the
center of a subframe at regular intervals. Different from
downlink subframes, the data and the control regions in the
uplink are split by the frequency, as shown in the left of Fig.
1. The RBs in the middle of the uplink frequency range carry
data, while the RBs on the two ends bear control messages.
Since the control messages and broadcasts happen at fixed
positions in the time-frequency grid, the key to measure LTE
spectrum tenancy is locating the RBs dynamically scheduled
every TTI for user data transmission.

2.1.3 Transmission steps of LTE user data

Central to the dynamic scheduling of LTE data RBs is the
DCI carried in the downlink control region, or Physical
Downlink Control CHannel (PDCCH), in the first one to
three REs in a subframe. The roles played by unencrypted
DCIs in LTE spectrum resource allocations are illustrated
in Fig. 1 where the time grows vertically downwards and
the frequency increases to the right horizontally. The uplink
data transmission steps for an actively connected UE are
numbered by light blue circles. First, a UE that intends
to transmit uplink data sends its request for spectrum re-
sources. The request is carried by uplink control channels
that do not require dynamic allocations per TTI. After re-
ceiving the request, the eNB schedules the uplink spectrum
resources and puts the decision in a DCI to inform the UE.
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Fig. 2. Locations of the unencrypted packet sizes and the TA commands.

DCIs indicate the spectrum resources and MCS for trans-
missions. Finally, the UE finds its DCI, and then transmits
in accordance with the information in the DCI.

For downlink transmissions, only one step is needed. As
shown by the circled green number in Fig. 1, the eNB puts
the DCI in control channel region and the corresponding
data in the data RBs. Similar to DCIs for uplink transmis-
sion, DCIs for downlink data inform UEs where data is
and the MCSs for demodulation. To receive downlink data,
a UE blindly searches for its DCIs in the small downlink
control region. If DCIs pointing to downlink data are found,
UEs locate and decode the RBs according to the resource
assignment and MCS values in the DCIs.

2.1.4 The packet size and the TA commands
In addition to the DCIs that specify which LTE RBs are oc-
cupied, there are another two data fields that show essential
details associated with the used spectrum resources, how
much data is carried by the spectrum slices and TA of the
UEs. As shown in Fig. 2, the length of Media Access Control
(MAC) Service Data Unit (SDU) in bytes is contained in
the MAC header, and the TA commands are in the control
element field. Though they are part of the user data, they are
generated below the PDCP layer for LTE encryption, so they
are in clear texts. As we will show later in the paper, packet
sizes are indicative of user applications, the knowledge of
which can serve as the enabling function for many DSA
proposals that are traffic pattern or application dependent
[21], [28], [29]. On the other hand, TA values are related
to user locations that are able to satisfy the needs of many
location based DSA algorithms [20], [30].

2.2 The design of U-CIMAN
From the previous subsection, we have identified the three
data fields that accurately specify the LTE spectrum usage
with associated details, DCIs, TA values, and packet sizes.
Achieving these data fields as a user inside the LTE cell
is straightforward, since each UE has all the input data re-
quired for decoding its own control and user data. However,
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decoding the DCIs, TA values, and packet sizes of all the
UEs as an outsider faces the challenge of missing important
inputs in the decoding procedures. In this subsection, we
first introduce the overall steps of U-CIMAN decoding, and
highlight the key inputs that are unknown to outsiders.
Then, the designs to uncover those inputs are explained.

2.2.1 Overall work flow
Fig. 3 depicts the high level work flow of U-CIMAN, from
analog radio signals to decoded raw bytes of user data.
First, the SDR front end Universal Software Radio Periph-
eral (USRP) X310 converts analog radio signals to complex
samples, and sends them to the host computer. U-CIMAN
in the host computer utilizes LTE downlink synchronization
signals to update sampling time and frequency range of
the SDR. After getting time and frequency synchronized
with the eNB, U-CIMAN decodes main broadcast messages
to discover system time, bandwidth, and the structure of
downlink control channel which is then employed to locate
REs carrying downlink control data. Because the Transmis-
sion Modes (TMs), i.e., the multiple antenna schemes of
control channels are known from decoding main broadcast
messages, and the modulation scheme of control channels is
fixed as Quadrature Phase Shift Keying (QPSK), U-CIMAN
is able to decode the complex samples of DCIs into raw
bytes after obtaining the positions of the control channel
REs. So far, these steps pose no challenges to outsiders to the
cell, because synchronization and main broadcast messages
are designed to be decodable for any devices executing the
corresponding LTE routines.

Challenges show up in later steps which require two
user specific configurations, RNTI and TM, to validate DCI
messages and decode raw bytes of downlink user data. For
a normal UE, the eNB assigns an RNTI to the UE during the
random access, and the RNTI is used for the validation of
DCI decoding and the generation of scrambling sequences
for user data protection against burst errors. Different from
downlink control messages transmitted in narrow range of
spots in the RB grid, RNTI assignments are irregular and
not always adopted by UEs, making the direct decoding
inefficient. Another challenge is obtaining TMs, because
they are configured by the network side and transmitted to
UEs through encrypted messages. With unknown multiple
antenna configurations, i.e., the TMs, user data bytes cannot
be decoded even if the corresponding DCI is attained. The
last three steps in the second row of Fig. 3 and Fig. 4
demonstrate how U-CIMAN obtains RNTIs and TMs to
decode control messages and user data bytes, which is
explained in later paragraphs in this subsection.

2.2.2 Reliable decoding of RNTI and DCI
Though there are some prior works on RNTI and DCI de-
coding [15], [16], U-CIMAN has two major distinctions from
them. First, U-CIMAN ensures the validity of the decoded
RNTIs. Moreover, U-CIMAN further decodes the raw bytes
of user data in addition to RNTI, which is proposed for the
first time. In [15], the DCI-based RNTI-derivation method
is proposed, where the trailing bits after DCI payload are
exploited. Because the last two bytes of DCIs are the XOR of
the RNTI and the CRC checksum of DCI payload, as shown
in Fig. 3, RNTI can be obtained by computing the checksum
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and then XORing it with the last two bytes, assuming that
the entire DCI is correctly decoded. This method has been
verified to suffer from low reliability, because the internal
LTE error detection mechanism for DCI is forfeited [31].
Another decoding method is proposed in [16], where the
RNTIs are decoded in the random access stage when they
are initially assigned and transmitted to users in Random
Access Response (RAR) messages. However, the RNTIs
contained in RARs are temporary, and may not necessarily
be adopted by UEs [32].

To improve the existing RNTI decoding schemes, U-
CIMAN first collects a pool of RNTIs using both the meth-
ods, decoding DCIs from RARs and reverse engineering
the checksum fields of DCIs. Since these results contain
invalid RNTIs due to the reasons discussed in the previous
paragraph, we further filter the collected pool of RNTIs by
applying the them to the decoding of corresponding down-
link user data. For an RNTI decoded from RAR messages or
DCIs, if there is no decodable user data that corresponds to
the RNTI in the next 10 ms, the RNTI is considered invalid.
This is because RNTI is used as an input for descrambling
user data as shown in Fig. 4, which cannot output cor-
rect codewords if the RNTIs are erroneous. This screening
process validates RNTIs derived from RAR messages or
downlink DCIs, eliminating the invalid ones. As shown in
Fig. 3, the RNTI Look-Up Table (LUT) stores initial results
of decoded RNTIs and the ones that have been validated.
When U-CIMAN decodes DCIs and user data bytes, it first
tries the stored RNTIs before deducing them. If the RNTIs
stored in the LUT do not yield successful decoding of DCIs
or user data for 10 consecutive TTIs, the RNTIs are removed
from the LUT; otherwise, the 10 ms timer is refreshed.

2.2.3 Decoding raw bytes of user data
The design to decode raw bytes of user data is illustrated
in Fig. 4. According to the figure, the decoding of LTE
downlink data channel can be achieved by standard pro-
cedures shown in black, but U-CIMAN needs to obtain the
inputs to data decoding in ways different from normal UEs.
First, U-CIMAN locates REs for a codeword in MAC layer
according to decoded DCIs. Then, the corresponding TM is
required to undo precoding and layer mapping. U-CIMAN
utilizes MCS parsed from DCI to conduct demodulation
whose output is then descrambled with a sequence based
on cell ID, subframe number, and RNTI. Among the inputs
to the processing chain, how the decoding of RNTIs and
DCIs are improved by U-CIMAN over existing methods has

been explained, so the ones awaiting expositions are cell ID,
subframe number, and TM.

As shown in Fig. 4, cell ID and subframe number are
achieved by decoding unencrypted downlink synchroniza-
tion signals, so the key is how to achieve TM. Unlike RNTIs
or DCIs, TMs are configured in an enciphered downlink
control message by eNB, decoding it over the air interface
is impossible without breaking LTE encryption. To uncover
the TMs, we utilize two LTE mechanisms to deduce TMs
more efficiently than the brute-force method of trying all
possible TM values every time. One is the mapping between
TMs and the formats of DCI as summarized in Table 9.2 in
[26]. Since many DCI formats map to a very limited set of
possible TMs, we first use DCI type to reduce the size of
TM search space. The other LTE mechanism which helps
TM inference is that TMs are reconfigured at a much lower
rate than that of RNTIs, so we store the TMs corresponding
to RNTIs in the LUT as well for later lookup. In this way,
U-CIMAN obtains the TMs efficiently.

Having achieved the RNTIs, DCIs, and TMs, U-CIMAN
decodes user data bytes from the complex samples in the
same way as a normal UE. Though most decoded user data
bytes are encrypted, headers added below the PDCP layer
are in clear texts and can be parsed by U-CIMAN. Thus, this
design realizes our goal of accurately detecting the spectrum
usage of all users in an LTE cell.

2.2.4 Timeliness of U-CIMAN decoding
Since U-CIMAN decodes all the DCIs and user data bytes
in an LTE cell in real time, the timeliness of the decoding
is worth discussions. Based on the estimation in section
9.3.5.5 of the LTE canon [26], the data rate requirements
for decoding all the DCIs is proportional to the system
bandwidth. For a an LTE system with K MHz bandwidth,
the processing time for blindly searching and decoding all
possible DCIs is equivalent to receiving a data stream at
the rate of about 0.4K Mbps, which is a small overhead
compared to the maximum LTE data rate of hundreds of
megahertz. In terms of data decoding, the U-CIMAN design
adds no extra requirements to the existing UE processing
chain, because a normal UE may also use up to the total
amount of RBs. Thus, the U-CIMAN design does not require
a data processing chain capable of receiving a much higher
rate than a normal UE, in order to accurately measure LTE
spectrum tenancy. As long as the design is implemented on
hardware that provides the similar processing capability of
the receiver chain of an ordinary UE, U-CIMAN is able to
measure in real time.

2.3 The implementation of U-CIMAN

We implement the overall data flow as described in the
previous subsection, as well as the solutions for efficiently
finding the two key inputs, RNTI and TM. The implemen-
tation of U-CIMAN is facilitated by the open source LTE
library srsLTE [19], and the functions for DCI decoding
from OWL [16], because standard processing routines can
be safely reused, as shown in Fig. 4 by the black arrows and
boxes. Besides implementing the main U-CIMAN design,
we parse data fields relevant to LTE spectrum occupancy,
and record them in files. Three types of data fields are
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recorded, resource assignments, TA values, and packet sizes.
Resource assignment fields provide the fine granularity of
spectrum measurement. TA fields indicate rough locations
of users, and the size of the physical layer packets, or
codewords, reflects user traffic types.

TABLE 1
Descriptions for recorded data fields.

SFN System frame number, in {0, · · · , 1023}
Subframe Index of LTE subframe, in {0, · · · , 9}
RNTI User identifier, in {0, · · · , 65535}
Direction Resource assignment direction, in {0, 1}
MCS Modulation, coding scheme, in {0, · · · , 31}
Total Total number of RBs, in {1, · · · , 100}
RA type Resource assignment types, in {0, 1, 2}
RA1 The first field indicating RB assignment
RA2 The second field indicating RB assignment
RA3 The third field indicating RB assignment
CFI Size of PDCCH, in {1, 2, 3}
RAR TA TA values in RAR, in {0, · · · , 1282}
TA TA updates, in {0, · · · , 63}
Length Packet size in bytes, {0, · · · , 65535}

2.3.1 Data fields in U-CIMAN records
U-CIMAN generates one data record per DCI, and all data
fields in a record are listed in Table 1. The first 11 fields for
spectrum tenancy are decoded from DCIs or other physical
layer control channels. Most of them have been explained,
except the four whose names include ‘RA’. These fields
describe the assigned RBs in the same way as DCIs do.
Because there are three types of spectrum resource allocation
in LTE, and each type adopts different data structures to
indicate the assigned RBs, we use four ‘RA’ fields to record
RB assignments. The field for resource allocation type, ‘RA
type’, shows the type of LTE resource allocation, taking
values from 0, 1, or 2. For RA type 0, ‘RA 1’ field is a
bitmap indicating the allocated RBs, and ‘RA 2’ and ‘RA
3’ fields are left unused. For RA type 1, ‘RA 1’ field is a
different type of bitmap that requires additional information
called ‘subset’ and ‘shift’ that are stored in fields ‘RA 2’
and ‘RA 3’ to describe RB assignments. For RA Type 2, U-
CIMAN stores the starting RB position in field ‘RA 1’ and
the number of assigned RBs in ‘RA 2’. Since these three types
of spectrum resource assignments are standardized by LTE
specifications, interested readers can find them in [33], to get
the details on how to determine the exact index of occupied
RBs in each allocation type.

Within the TA category, there are two types of data
fields, the ‘RAR TA’ and the ‘TA’. ‘RAR TA’ is the initial
TA value obtained from RAR messages. ‘TA’ field is the
TA update value decoded from the unencrypted headers in
downlink user data. The payload size is the number of bytes
in decoded downlink user packets at the physical layer. The
top 11 fields in Table 1 are present for every record, while
the others may not be. ‘RAR TA’ is only for RAR messages.
TA updates are conducted by eNB at regular time intervals,
so they are in the headers of downlink packets near the
TA update time. The ‘length’ field is nonempty when the
DCI points to a downlink data packet whose raw bytes are
decoded successfully.
2.3.2 Hardware and software environment
U-CIMAN is implemented in the user space of a Linux
computer, as depicted in Fig. 5(a). The four main function
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Fig. 5. Implementation and experiment setups.

blocks of U-CIMAN are decoding the raw bytes of DCI,
parsing DCI messages, decoding raw bytes of user data,
and parsing the unencrypted headers of user data. U-
CIMAN calls the srsLTE library for existing LTE functions,
including DCI decoding routines provided by OWL. The
measurement results of U-CIMAN are written into files that
are fed to post-processing scripts for performance valida-
tion and result analysis. Through the SDR driver API, U-
CIMAN calls USRP Hardware Driver (UHD) [18] version
3.9.7 to communicate with the SDR front end. The SDR
system includes a USRP X310 mother board [17] and two
SBX-120 wide-band daughter-boards [34]. The SDR boards
contain function blocks to convert analog signals to complex
samples. The host computer has a quad-core CPU and 16
GB memory, running Ubuntu 16.04. The host computer is
connected to the USRP with a Gigabit Ethernet cable.

3 VALIDATIONS AND APPLICATIONS

To validate the performance of U-CIMAN, comprehensive
experiments are conducted to evaluate the decoding ac-
curacy and the potential applications. Based on decoded
data, the application of U-CIMAN to spectrum tenancy
measurement achieves accurate spectrum measurement at
the frequency-time granularity of 180 kHz by 1 ms. Besides
spectrum tenancy, packet sizes and TA values associated
with occupied RBs are also revealed through decoding
headers of user data. We also show that the distributions
of packet sizes are highly indicative of traffic types and TA
values reflect user mobility.

Two setups, shown in Fig. 5(b) and (c), are used in the
experiments. The first one involves a Commercial Off-The-
Shelf (COTS) UE, and a commercial grade LTE network
realized by Amarisoft OTS 100 that functions as the eNB and
the core network [24]. This setup allows access to log files of
the LTE network, so the U-CIMAN decoding accuracy can
be validated. Though Amarisoft system is close to real LTE
networks, it comes with one COTS UE and has limited radio
coverage, which cannot reflect statistical characteristics of
spectrum tenancy in an actual LTE cell with many real users.
To overcome these limitations, U-CIMAN is also validated
by decoding the downlink of a nearby commercial eNB,
which is experiment setup II. The following performance
validations are conducted in setup I or II based on which
one better supports the experiment goals.
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3.1 Decoding and measurement accuracy

Setup I is used to validate decoding accuracy. We run three
different applications on the commercial UE multiple times,
and compare the downlink control messages and user data
bytes decoded by U-CIMAN with those recorded in system
log files of Amarisoft OTS. The three applications each
generate VoIP, HTTP, and video streaming traffic. Every time
the three applications run individually around 25 seconds,
and we ensure that no applications other than the one under
test generate wireless traffic. Ten rounds of experiments are
conducted in total. The accuracy for control messages is
the ratio between the number of correctly decoded DCIs
and the total number of DCIs. The accuracy for user data
bytes is the ratio between the number of correctly decoded
codewords and the total number of codewords. The results
are shown in Fig. 6 where the dots show the arithmetic
mean and the caps are the extremes. The black plot shows
the accuracy for control messages, while the yellow plot
depicts the performance for user data decoding. U-CIMAN
achieves over 95% accuracy for control messages, and over
90% accuracy for user data. The results show that U-CIMAN
is capable of decoding downlink control messages and user
data bytes with high accuracy for different traffic.

To demonstrate the benefits of fine measurement gran-
ularity, we compare the distributions of time length when
an RB is not occupied, the off-time, since it is the only
LTE channel usage statistics at RB frequency granularity
reported in other studies to our best knowledge. In [9],
LTE spectrum occupancy is measured with good accuracy
since the frequency resolution is the same with that of an
LTE RB and time resolution is 100 ms. In comparison, U-
CIMAN measures spectrum tenancy at time resolution of
an LTE subframe, or 1 ms. Shown in Fig. 7 are off-time
distributions of RB 5 according to the measurement in [9],
and that obtained by U-CIMAN in setup II. The system
bandwidth in the two measurements are both 10 MHz. off-
times over one second are omitted due to their small per-
centage. Though 100 ms time resolution is good compared
to most measurements in [10], the majority of the off-time

falls in only ten bins of 100ms. In comparison, the off-time
distribution achieved by our measurements is much more
fine grained. Our off-time distribution shows that off-times
are mostly under 30 ms, which cannot be observed with 100
ms time resolution. Thus, we claim that U-CIMAN provides
an accessible way to achieve the highly accurate spectrum
tenancy measurement which has long been desired [35].

3.2 Traffic types indicated by codeword size
Based on the accurate decoding of both control and user
data, the spectrum tenancy measurements achieved by U-
CIMAN provide insight on mobile applications. Since code-
word sizes are obtained by decoding user data, traffic types
can be inferred from the distribution of the codeword sizes.
We use setup I, and run three applications generating VoIP,
HTTP, and video streaming traffic one at a time for around
25 seconds on a COTS UE. In the first scenario, there is no
background traffic, so the only mobile traffic in the cell is
generated by the COTS UE. We plot length of codewords in
bytes versus time for a single run of the three applications
in Fig. 9. For the VoIP traffic, there are a few large packets in
the beginning, and the packets are short afterwards. The
codeword sizes of HTTP traffic have a wide range. For
video streaming, the packet sizes are mostly very large. We
redo the same experiment in another scenario with heavy
background traffic realized by adding one set of USRP and
PC that emulates large amount of user traffic by running
Amarisoft UE 100 [36]. According to Fig. 10, the codeword
size versus time plots show similar trends to those in Fig.
9, so cell traffic load has little impacts on codeword size
characteristics of different applications.

In addition to distinctive trends of codeword sizes along
the time horizon, distributions of packet sizes of different
traffic demonstrate clear separations as shown in Fig. 8.
The plot on the left shows the distribution of codeword
sizes under light traffic, and the one on the right shows the
distribution in heavy traffic. Though the increased traffic
load slightly shifts packet sizes of HTTP and video traffic to
the low end, packet size distributions of various applications
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still show clear differences in both scenarios with diverse
traffic loads. Hence, the decoded packet sizes at physical
layer are highly indicative of user application types, re-
gardless of varying cell traffic volume. Detecting spectrum
occupancy and the traffic type at the same time can serve
as the enabling function for many DSA proposals that are
traffic pattern or application dependent [21], [28], [29].

3.3 TA updates indicate UE mobility

The correctness of TA data fields decoded by U-CIMAN
is validated in setup II where mobility is generated by
real users. Due to the lack of actual UE coordinates, our
experiments focus on the validation of TA updates which
correspond to user mobility. In mobile networks, downlink
synchronizations can be achieved by mobile devices indi-
vidually; on the uplink, however, a base station needs to
adjust the timing of user transmissions such that they arrive
at the same time, making it possible for the base station to
synchronize with all the uplink transmitters.

In LTE, TA is realized by commanding UEs far from eNB
to transmit with larger time advance than the nearby UEs,
so TA values reveal the distance of a UE to the eNB. The
maximum LTE cell radius is 100 km and the corresponding
largest TA is 1282, so the UE-eNB distance of around 78
meters maps to one in TA value. When a UE attempts
random access, the eNB determines the TA value and puts
it in the RAR. When the eNB finds that the TA needs to
be adjusted due to UE mobility, TA update commands are
placed in MAC headers. The TA update is a six-bit value,
and the updated TA is the sum of the original value, TA
update, and −31. Thus, a TA update of 31 means that the
UE remains its previous distance from the eNB. The farther
the TA update values are from 31, the quicker the UE moves
towards or away from the eNB.

To demonstrate TA update fields decoded by U-CIMAN,
we apply U-CIMAN to the decoding of TA update values of
a commercial LTE cell where the mobility is generated by
real users. Fig. 11 shows two distributions of TA updates.
The upper figure shows how TA update values in the
11th hour of a day distribute across all 64 values, 0 to 63.
The observation is that most TA updates are static or near
static. Since TA update value 31 takes the largest portion,
we plot how the percentage of TA update value 31 varies
across different hours. The result illustrated in the lower
part of Fig. 11 agrees with life experience, since the portion
of static users are small during commute hours 8, 12, 13,
17, and 23. Thus, U-CIMAN single-handedly succeeds in
obtaining the spectrum tenancy of all users in a cell together
with their rough location and mobility as shown by TA
values and TA updates, which requires less equipment than
triangulation [15] while serving the needs of location based
DSA algorithms [20], [30].

Based on the above performance validations and appli-
cations of U-CIMAN to spectrum tenancy measurement,
application inference based on packet sizes, and user mo-
bility detection enabled by TA values, the capabilities of U-
CIMAN to measure LTE spectrum tenancy with packet sizes
and user mobility have been proved.

4 MEASUREMENT RESULT ANALYSIS

To achieve accurate measurement of LTE spectrum occu-
pancy in fine granularity, we apply U-CIMAN to the spec-
trum tenancy measurement of a commercial LTE cell. We
first search the LTE bands in commercial operations in our
area. Then, a spectrum analyzer is employed to verify their
existence, and to find the nearby cell with the best signal to
noise ratio. The downlink system bandwidth of the cell is
10 MHz which accommodates 50 LTE RBs. We collect LTE
spectrum tenancy data of the nearby commercial LTE cell in
band 17 with U-CIMAN for four months, and conduct the
post-processing to present the measurement results. Due to
the space limitation, only the downlink measurement results
are presented. As far as we know, this is the first long time
LTE spectrum occupancy measurement at RB granularity
with packet sizes and TA values. Due to the fine granularity,
the tenancy data in a single day is over 1 GB when zipped.
Thus, we randomly choose the tenancy data from five days,
based on which we present the following results.

4.1 Tenancy characteristics of a single channel
In this subsection, we first introduce the on/off model, and
then fit our measurement data to this model. To highlight
the importance of time granularity, we study how coarse
measurement data affects the tenancy characteristics.

To study the spectrum tenancy of a single LTE chan-
nel, we choose the on/off model among the many single-
channel occupancy models surveyed in [37], due to its wide
usage. Our occupancy data comprises 0 and 1 to indicate
whether an LTE channel is idle or occupied. Assume the
time lengths of idle or busy periods of one channel to
be independent and identically distributed (i.i.d.). Define
the vectors (Yn, Zn), n ∈ N+ where Yn and Zn are i.i.d.
random variables representing time lengths of the nth idle
and busy periods, respectively. We fit five widely used
distributions, exponential, Weibull, Lognormal, Generalized
Pareto, and Gamma distributions to the observed samples,
and the parameters are estimated using Maximum Like-
lihood Estimation (MLE). The goodness-of-fit is obtained
by conducting K-S test, also used in [38] [39] for the same
purpose. K-S test is a tool for comparing the closeness of two
distributions. We employ K-S test to compare the empirical
distributions of the time statistics of measurement data with
the distributions obtained by the on/off model fitting. The
empirical distribution G(x) of a random variable X that has
n observed samples xi is

G(x) = P(X < x) =
1

n

n∑
i=1

1{xi<x}. (1)

Denote the upper bound of the difference between the
empirical distribution and the fitting model distribution as
D,

D = sup|G(x)− F0(x)|. (2)

If the empirical distributionG and fitting model distribution
F0 are identical, the distribution of the random variable D,
denoted as D∗, is independent of the fitting distribution. Let
G be the cumulative distribution function ofD∗. The p value
is defined as p = 1 − G(D), so the larger the p value, the
more likely D obeys the distribution of D∗, meaning that
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Fig. 12. On-time fitting rates achieved by on/off
models with different distributions.
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Fig. 13. Off-time fitting rates achieved by on/off
models with different distributions.
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Fig. 14. Interval length fitting rates achieved by
on/off models with different distributions.

G(x) and F0(x) are more likely to be the same. A threshold
value p = 0.05 is chosen, so the null hypothesis that the
samples follow the distribution F0 is accepted if p ≥ 0.05.

4.1.1 Fitting results based on U-CIMAN measurement
To identify the distributions for the time lengths of on-times
and off-times, we fit the five distributions to 100 groups
of randomly chosen off-times and on-times. Each group
contains 100 samples of off-times and on-times. We calculate
the fitting rate as the number of groups for which a certain
distribution fits the samples according to K-S test at the
significance level of p = 0.05 over 100, the total number of
groups. We investigate the fitting rates under three spectrum
usage levels where the average numbers of occupied LTE
channels per scheduling interval are around 5, 25, and 45
out of the total number of 50. The three spectrum usage
scenarios are referred to as low, medium, and high spectrum
usage levels, respectively.

As shown in Fig. 12, the fitting rates of on-time obtained
by the five distributions are mostly over 80% in all the three
spectrum tenancy levels, and generalized Pareto distribu-
tion (GPD) achieves the best performance with its fitting rate
over 90% under all spectrum tenancy conditions. The off-
times cannot be well fitted by any of the five distributions
during high spectrum usage as shown in Fig. 13, so we
further study the fitting of the interval length which is the
summation of adjacent off-time and on-time. Fitting results
for interval lengths are illustrated in Fig. 14, showing that
good fitting rates are achieved in high spectrum tenancy,
which complements the poor fitting rate of off-time when
the spectrum usage is high.

Based on the fitting rate study, the spectrum usage model
for a single LTE channel is summarized in Table 2, where
the parameters are the medians of the values obtained from
fitting to the 100 groups of data samples. The location
parameters of all the GPDs are zero, so they are not shown
in the table. The time unit of the values in the table is one
millisecond, the scheduling interval of the LTE system. The
best fitting scheme is to fit the off-time and the following on-
time with GPDs during low and medium spectrum usage,
and apply GPD to the on-time and the interval lengths
during high spectrum usage, as suggested by the fitting
rates study in Figs. 12 to 14.

TABLE 2
A summary of the fitting models in different traffic conditions.

Usage Schemes Shape Scale Mean Variance

Low On, GPD 0.4166 1.4385 2.8840 45.8264
Off, GPD 0.4969 13.3262 23.1905 913.8778

Med. On, GPD 0.5620 2.3151 4.8323 79.2201
Off, GPD 0.4809 4.3246 7.6043 189.7997

High On, GPD 0.0209 21.6998 22.0619 507.8245
Int., GPD −0.0238 23.7513 23.1243 507.6929

4.1.2 Fitting results based on coarse data

To highlight the impacts of measurement granularity on
the spectrum tenancy models built on measurement results,
we fit the on/off model with the same five distributions to
LTE spectrum tenancy data with coarse time resolution. The
coarse time resolution is chosen to be 1.8 seconds, the same
as the well-known data set in [14], [40].

To obtain the coarse spectrum usage with time resolution
of 1.8 seconds, we evenly pick one data point from every
1800 samples in U-CIMAN measurement results. The fitting
results are summarized in Table 3, where the data are all
in the unit of 1.8 seconds. For low and medium spectrum
usage, the time lengths of the coarse spectrum usage data
cannot be fitted by any of the five distributions accord-
ing to K-S test. However, the closest GPD parameters, the
mean, and the variance are still presented in the table. The
GPD fittings of on-times and interval lengths during high
spectrum usage are able to pass K-S test with significance
p = 0.05. As we can see, the average time lengths are
hugely different, as well as the shape of the distributions.
For example, the average on-time according to U-CIMAN
data in low spectrum usage condition is 2.884 ms, but it is
1.2683×1800 = 2282.94 ms according to the coarse version.
The shape parameters of the GPDs in Table 2 and 3 are
clearly disparate, as they are either several times of their
counterpart in the other table or take different signs.

Thus, the measurement granularity is of utmost impor-
tance in the study of spectrum tenancy, because it funda-
mentally affects the tenancy characteristics. U-CIMAN and
its measurement results are an essential base for an accurate
study of LTE spectrum usage.

TABLE 3
A summary of fitting models to measurement data with the time

resolution of 1.8 seconds.

Usage Schemes Shape Scale Mean Variance

Low On, N/A −0.2894 1.5575 1.2683 0.4037
Off, N/A 0.1311 2.8375 3.3073 21.9053

Med. On, N/A 0.2007 2.7366 3.4755 26.4225
Off, N/A 0.0594 2.4375 2.5982 9.1273

High On, GPD 0.1922 21.8622 26.8592 962.5513
Int., GPD 0.1295 24.3510 27.9014 962.6330

4.2 Tenancy characteristics of multiple channels

For the modeling of spectrum tenancy in multiple channels,
we propose to adopt the VAR model, which is the first time
as far as we know. We regard the occupancy of multiple
channels at each time slot as a sample of a multivariate
normal random variable which is the sum of a constant,
white noise, and multivariate normal random variables
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representing the tenancy in previous time slots. The channel
usage at time instant n is a random vector, denoted as yn,

yn = a +
k∑

i=1

φiyn−i + εn. (3)

The constant vector is a, and εn is the noise term. yn−i,
where 1 ≤ i ≤ k, is the channel usage in a previous time
slot no earlier than the time lag k, and its linear relations
with yn are described by the matrix φi. We fit VAR models
to the measurement data with different time lags, and the
parameters are estimated using MLE.

To decide on the time lag k, we compare the performance
of VAR models with different time lags. The performance is
compared by employing the Akaike Information Criterion
(AIC) which is defined as

AIC = 2n− 2 log(L), (4)

where L is the optimized scalar value of log-likelihood
objective function, and n is the number of parameters that
need to be estimated in the model. AIC measures the relative
qualities of statistical models fitted to a data set, and models
with small AIC values are preferred because they capture
statistical features of data better using fewer parameters.

We fit VAR models with different k values, 1, 2, 3, 4,
8, and 12, to measurement data, and the AIC values are
calculated for the models with different time lags for com-
parison. Because the differences among the six AIC values
of different models are negligible, the time lag is chosen to
be 1, which has the fewest parameters to estimate.

Now that we have obtained the segment length, the
on/off model fitting strategy, and the time lag of VAR, we
compare the performance of on/off and VAR models from
the aspects of D values of K-S tests, correlations among
adjacent channels, and correlations between adjacent off-
time and on-time. Specifically, we extract the spectrum occu-
pancy in 105 time slots of 10 LTE channels during different
spectrum usage levels, and then fit both the single-channel
and the multi-channel models to the data. For the VAR
model, fitting multiple channels requires only adjusting the
number of elements in the vectors yn, c, ε, and the matrices
φ in (3). For the on/off model, we fit 10 on/off models to
each of the 10 channels independently, and obtain 10 sets
of parameters. Using the two types of models, we produce
synthetic spectrum occupancy of the same size with the
measurement data for the three performance comparisons.

4.2.1 Compare the similarity of tenancy time distributions
To study the extent to which the two sets of synthetic data
resemble the measurement results, we calculate the D values
between the measurement and the two sets of synthetic data
using (1) and (2), where F0(x) is the empirical distribution
of the data generated by the two models.

The D values between the distributions of measurement
and synthetic spectrum occupancy are presented in Table 4.
In all the three spectrum usage levels, synthetic data gen-
erated by VAR model achieves on-time distributions with
smaller D values. In terms of the similarity comparison of
off-time distributions, VAR model has significantly lower
D values during low and high spectrum usage, meaning
that the on-times of synthetic occupancy generated by VAR

TABLE 4
D value comparisons of the two models in different traffic.

Time Model Low Medium High

On on/off 0.4891 0.3150 0.8654
VAR 0.0723 0.1621 0.0803

Off on/off 0.4088 0.2561 0.9226
VAR 0.1811 0.2714 0.0154

Interval on/off 0.1157 0.1012 0.0524
VAR 0.2991 0.1160 0.0421

models resemble those in measurements much closer than
the on/off model in those cases. Though the on/off model
outperforms VAR in terms of the similarity of interval
length distributions in low and medium spectrum usage,
the advantages in these cases are not pronounced.

Overall, VAR achieves better resemblance of the distri-
butions of channel usage times to those of the measurement
data than the on/off model.

4.2.2 Compare tenancy correlations in adjacent channels

As indicated in previous studies, spectrum occupancy of the
same radio access technology are correlated [41], we study
how the different channels in the same cell are correlated
and whether the correlations can be captured by our models.
The correlation coefficient is Pearson correlation coefficient.

We compare how closely the two sets of synthetic data
resemble the measurement results in terms of correlations
among adjacent channels. Fig. 15 presents the pairwise
correlation coefficients between the spectrum tenancy of
the first channel and all the ten channels. The black line
shows the channel tenancy correlations between the first
channel and the other channel whose index is shown in
the x-axis. The measured spectrum tenancy in the first
channel shows very high correlations with those of the three
nearest channels, and the correlations decrease gradually as
the frequency distance grows. This trend is captured very
well by the data generated by the VAR model, though the
correlations in blue are lower than those of measurements.
Since on/off model is a single-channel model, its synthetic
tenancy has zero correlations among adjacent channels, as
shown by the red line.

Thus, the tenancy correlations of adjacent channels are
better captured by VAR than the on/off model.

4.2.3 Compare correlations between on/off times

Since the negative correlations between adjacent off-time
and on-time are suggested in previous studies [9], we
investigate this correlation reflected by measurement and
synthetic data for LTE channels.

It has been suggested in previous studies that off-times
and the following on-times are negatively correlated [9].
However, LTE spectrum tenancy does not show this phe-
nomenon as illustrated in Fig. 16. The correlations between
idle periods and the following busy periods are studied for
measurements and synthetic data. The correlations among
adjacent idle and busy periods in the three groups of data
are close to zero, as they are bounded within [−0.2, 0.1] in all
three spectrum usage levels, meaning that off-times and the
following on-times are weakly correlated. The phenomenon
is due to the fact that LTE systems schedule spectrum
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resources every 1 ms, so the off-times are independent of
the next on-times many scheduling intervals away.

Among the three aspects considered in the performance
comparisons, VAR outperforms on/off model in LTE spec-
trum tenancy modeling due to superior capabilities to cap-
ture the statistical features of busy and idle time lengths,
and occupancy correlations among adjacent channels.

4.3 Other observations on spectrum tenancy

Besides characterizing the LTE spectrum tenancy with
on/off and VAR models, the spectrum usage data obtained
by U-CIMAN enables other observations. In this subsection,
we present the observations on the off-time characteristics,
and the factors affecting the spectrum tenancy.

4.3.1 Characteristics of off-times
The off-time of an RB, defined as the time period from
the subframe when the RB becomes idle to the subframe
right before it turns to be occupied, is a key parameter
in spectrum usage studies. Denote the off-time of all the
50 RBs as a group of random variables, XOff (c), where
c ∈ {1, · · · , 50}. XOff (c) is a random variable on the
sample space ΩT

c where each element ω is an off-time of
RB c. The pmf of XOff (c) is

P(XOff (c) = x) =
|{ω ∈ ΩT

c |XOff (c)(ω) = x}|
|ΩT

c |
, (5)

where x ∈ N+. The distribution function of XOff (c) is

FXOff (c)(x) =
∑
y≤x

P(XOff (c) = y), (6)

where x ≥ 0. Fig. 17 presents the rough off-time distribu-
tions of 50 RBs during low and high spectrum tenancy. The
red dot in the middle is the mean value, and the red caps
show the 20th and the 80th percentiles of off-times. The blue
caps are the extreme values.

Remark 1: We make two observations on off-time from
Fig. 17. One observation is that the off-time distributions
of different RBs under the same spectrum usage level are
similar. According to the figure, the key percentiles and
mean values of the off-times in different channels are close
to one anther under the same spectrum usage level, which is
especially true for the channels in the center when the usage
is low and all the channels when usage is high. The similar
off-time among different RBs stems from the scheduling that
treats the spectrum resources in different frequency equally.
The other observation is that the off-time exhibits a common
upper bound regardless of the spectrum usage levels, and
RBs. Fig. 17 shows the off-time is capped around 104 ms.

4.3.2 Factors affecting channel tenancy
As we have observed that the distributions of off-times are
similar across different channels, next we study whether
the usage of different RBs depend on user locations or
traffic types. We consider the sample space ΩRP of RBs
allocated for 2000 randomly chosen packets each of which
may require multiple RBs. Define the random variable XTA

to be the TA value of a UE receiving packets carried by the
RBs in the sample space. The pmf of XTA is

P(XTA = x) =
|{ω ∈ ΩRP |XTA(ω) = x}|

|ΩRP |
, (7)

where x ∈ {0, · · · , 1282}. The bars in the bottom right of
Fig. 19 show the distribution of XTA before normalized by
the size of sample space ΩTA. The heights of the bars are

|{ω ∈ ΩRP |XTA(ω) = x}| = |ΩRP |P(XTA = x). (8)

The other three plots depict the distributions of XTA condi-
tioned on another random variable, the index of the RBs,
XiRB . The probability of TA values conditioned on RB
indexes P(XTA = x|XiRB = y) is

P(x|y) =
|{ω ∈ ΩRP |XTA(ω) = x,XiRB(ω) = y}|

|{ω ∈ ΩRP |XiRB(ω) = y}|
, (9)

where y ∈ {1, · · · , 50}. The conditional probability mass,
P(XTA|XiRB = y0) is similar to P(XTA), and three exam-
ples are given in Fig. 19 where y0 ∈ {20, 30, 40}, show-
ing that TA values are independent of RB indexes, i.e.,
XTA ⊥⊥ XiRB .

After studying the relationship between RB usage and
UE-eNB distance, we investigate the impact of packet size
on the frequency of assigned spectrum resources. Define
the random variable XPS for packet sizes of RBs in the
sample space ΩRP . The packet size of an RB is the number
of codeword bytes carried by the RB. For packets carried by
multiple RBs, we regard all the RBs correspond to the same
size. The pmf of XPS is

P(XPS = x) =
|{ω ∈ ΩRP |XPS(ω) = x}|

|ΩRP |
, (10)

where x ∈ N+. Bars in the bottom right of Fig. 18 show the
distribution of XPS before normalized by the size of sample
space ΩRP , which is

|{ω ∈ ΩRP |XPS(ω) = x}| = |ΩRP |P(XPS = x). (11)

The other three plots show distributions ofXPS conditioned
on RB indexes of packets, XiRB . The probability of packet
sizes conditioned on RB indexes P(XPS = x|XiRB = y) is

P(x|y) =
|{ω ∈ ΩRP |XPS(ω) = x,XiRB(ω) = y}|

|{ω ∈ ΩRP |XiRB(ω) = y}|
, (12)
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next TTI occupancy

Fig. 20. MCS distributions conditioned on next
subframe occupancy.

where y ∈ {1, · · · , 50}. The conditional probability mass,
P(XPS |XiRB = y0) is similar to that of XPS , and three
examples are given in Fig. 18 where y0 ∈ {20, 30, 40},
showing that packet sizes are independent of RB indexes,
XPS ⊥⊥ XiRB .

Thus, the RB occupancy does not depend on its fre-
quency, UE-eNB distance, and packet size. However, MCS
values strongly affect RB occupancy. According to former
introduction, MCS is specified along with spectrum resource
assignments in DCIs. MCS is five-bit long, taking values
from 0 to 31. Define XM as the random variable for MCS
values of RBs. The sample space is the set of all occupied
RBs in a day, ΩM . Define another random variable XNO for
RB occupancy in the next TTI on the same sample space.
The pmf for XM ,

P(XM = x) =
|{ω ∈ ΩM |XM (ω) = x}|

|ΩM |
, (13)

where x ∈ {0, · · · , 31}, shown by yellow bars in Fig. 20
in percentage. The blue and the orange bars show the
probability of XM conditioned on XNO being 0 for unoccu-
pied, or 1 for occupied in percentage. The conditional pmf,
P(XM = x|XNO = y), is

P(x|y) =
|{ω ∈ ΩM |XM (ω) = x,XNO(ω) = y}|

|{ω ∈ ΩM |XNO(ω) = y}|
. (14)

Fig. 20 illustrates that MCS values of an occupied RB have
different distributions conditioning on whether the RBs are
occupied next TTI, and the differences are quite obvious at
some MCS values. For example, the MCS values of 1 and 29
are much more likely to appear when RBs will be idle next
TTI than in RBs continuing to be occupied. Hence, MCS
values of currently occupied RBs strongly correlates with
their tenancy in the next TTI, i.e. XM 6⊥⊥ XNO .

Remark 2: It is observed that spectrum resources on
different frequency are treated similarly, irrespective of UE-
eNB distance and packet sizes. Hence, they provide little
information on the frequency of occupied spectrum. How-
ever, MCS values are highly indicative of channel occupancy
in the next time slot.

5 RELATED WORK

In the existing literature, there are two categories of re-
searches closely related to the measurement enabled by U-
CIMAN, the spectrum usage measurement based on tradi-
tional methods, and LTE signal decoding by outsiders.

The fundamental importance of spectrum tenancy stud-
ies has long been recognized and there exist many spectrum
tenancy measurement campaigns. A recent survey study

[10] on those campaigns provides in depth summaries from
various aspects. According to the survey, these previous
spectrum measurements typically adopt the energy detec-
tion method, because they measure the spectrum occupancy
spanning a range of several gigahertz where the signals
are too diverse for other measurement methods, such as
the matched filter detection. This causes the results to be
of coarse time and frequency resolutions, and the detection
threshold has to be chosen empirically, introducing another
source of errors [42]. Spectrum tenancy data in coarse gran-
ularity is useful for studies on radio activities that remain
steady for long periods of time, such as television broadcast.
However, scheduling of spectrum resources in modern cel-
lular systems happen at millisecond time scale, far exceed-
ing the granularity provided by existing measurement data.
It is worth mentioning that sampling at one millisecond time
scale in the LTE spectrum bands using USRPs is not enough
to detect LTE spectrum usage, as in [13], since the minimum
sampling rate of 15.36 MHz is required to study the tenancy
of an LTE system with 10 MHz bandwidth with out aliasing.

Existing works that decode LTE protocol fields as an
outsider have targeted only the control plane in the physical
layer, since DCIs contain many useful data fields that are
able to satisfy the needs of diverse applications as pointed
out in [15]. While decoding DCIs, the main challenge is
how to obtain the RNTIs. Both of the two existing solutions
proposed in [15], [16] suffer from the shortcoming of be-
ing unable to validate the decoded RNTIs [31]. U-CIMAN
overcomes this issue by applying the RNTIs to decoding
user data bytes, so the RNTIs can be validated if the user
data bytes are correctly decoded. In this way, U-CIMAN not
only checks the correctness of RNTIs decoded from DCIs
or RARs, but also obtains the raw bytes of user data which
contains more information on spectrum tenancy, such as the
TA values and packet sizes.

6 CONCLUSION

To accurately measure LTE spectrum tenancy, we design
and implement a new sniffing tool U-CIMAN that decodes
both downlink control messages and raw data bytes without
breaking LTE encryption. We apply U-CIMAN to the four-
month measurement of spectrum tenancy of a commercial
LTE cell. Compared with existing measurements, our results
are more accurate in terms of time-frequency granularities,
and provide important details of spectrum users, such as
the inferred traffic types and rough locations. The accurate
measurement enables new observations, such as the 10 sec-
onds upper bound of idle time and the predictive power of
MCS on spectrum tenancy. Based on the fine measurement,
we characterize LTE spectrum tenancy measurements with
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both on/off and the proposed VAR models. The accurate
spectrum tenancy data provided by U-CIMAN enables anal-
ysis and new understanding of LTE spectrum tenancy that
used to be shadowed by coarse measurement data.
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