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Abstract—Algebraic topology has been successfully applied to
detect and localize sensor network coverage holes with minimal
assumptions on sensor locations. These methods all use a com-
putation of topological invariants called homology spaces. We
develop a distributed algorithm for collapsing a sensor network,
hence simplifying its analysis. We prove that the collapse is
equivalent to a previously developed strong collapse in that
it preserves coverage hole locations. In this way, the collapse
simplifies the network without losing crucial information about
the coverage region. We show that the algorithm requires one-hop
information in a communication network, making it faster than
the clique-finding algorithms that slow topological computations
for hole localization. This makes it an effective pre-processing
step to finding network coverage holes.

Index Terms—Applied Topology, Simplicial Complex, Simpli-
cial Collapse, Flag Complex, Homology

I. INTRODUCTION

The tools of simplicial complexes and homology have seen
increased applications in recent years in the modeling and
analysis of sensor networks [9], [8]. The advantage of using
algebraic topology for network coverage hole discovery is
that it doesn’t take into account specific sensor locations. In
practice, acquiring precise sensor locations is power-intensive.
Power conservation is paramount, as the sensors in question
are often battery-powered and remotely located. Unfortunately,
the topological tools used for hole-localization can be expen-
sive, so minimizing the number of simplices in the complex
is desirable [2], [15]. We propose a distributed algorithm
that reduces the sensor field to the minimal set needed to
accurately count and find the coverage holes in a network,
which can also be applied to general flag complexes of graphs.
Distributed algorithms are particularly desirable in sensor
network applications, as they allow the nodes to aggregate
local data into global information without having to spend time
and energy broadcasting that information to a central hub for
computation.

The paper is organized as follows: in Section II, we intro-
duce the algebraic topology needed for network analysis. In
Section III, we review the strong collapse [15], introduce the
distributed version, and prove their equivalence. In Section IV,
we precisely define the application of the collapse to sensor
networks, and include simulation results and complexity anal-
ysis. Finally, we provide concluding remarks in Section V.

II. FLAG COMPLEXES AND HOMOLOGY

There is a well-developed toolbox from algebraic topol-
ogy that is useful for analyzing a network using simplicial
complexes and homology. Homology reveals high-dimensional
structure in a network, and provides a precise definition of
coverage holes.

A. Simplicial Complexes and Homology

A simplicial complex is a mathematical structure that can
be seen as a generalization of a graph: it contains vertices and
edges, and in addition may contain higher-dimensional struc-
tures like triangles, tetraheda, etc. More formally, a simplicial
complex is any collection of sets which is closed under the
subset operation. A set with k + 1 elements in this collection
is referred to as a k-simplex. Geometrically, a k-simplex is the
convex hull of k + 1 points in an ambient space, and is said
to have dimension k. Any subset of a k-simplex is called a
face of that simplex. It is easy to see that 0- and 1-simplices
of any complex form a graph.

Simplicial homology, often simply referred to as homology,
is an algebraic tool for studying simplicial complexes: given
a simplicial complex X , its homology spaces are a sequence
of real vector spaces {H0(X), H1(X), H2(X), . . . }, whose
ranks respectively count the connected components, loops, 3-D
voids, and their generalizations, the higher dimensional cycles
in the complex. We define the ith betti number, βi(X) as
the rank of Hi(X), and when no confusion may arise, we
denote it βi. The computation of the homology of a complex
is involved and requires a great deal of linear algebra, and a
good introduction can be found in any introductory algebraic
topology text, such as [10].

B. Constructing the Flag Complex of a Graph

The vertex set V of any graph G = (V,E) yields a natural
simplicial complex structure relying on data from the edges E
called the flag complex of the graph, denoted F(G). F(G) has
0-simplices V and 1-simplices E. Then, the 2-simplices are
the 3-cliques in G, and the k-simplices are the (k+1)-cliques
in G.

III. STRONG COLLAPSES

The strong collapse for general simplicial complexes was
developed [15] using the notions of eccentricity from Q-



analysis [1], [11] and a duality construction called the con-
jugate complex [7].

We define a labelled simplicial complex (X,L, V ) as a
simplicial complex X with a vertex set V , equipped with
labels L on some of the simplices in X . The only caveat
on L is that every locally maximal simplex (one which is
not the face of another simplex) must be labelled. For any
label l ∈ L, we denote the simplex bearing it ∆l. Given a
labelled simplicial complex (X,L, V ) we can construct the
conjugate complex, denoted (XT , V, L): XT is a simplicial
complex with vertices corresponding to the elements of L,
and a labelled simplex corresponding to each v ∈ V , denoted
∆T

v . The vertices li ∈ L of ∆T
v correspond to the faces ∆li

that v belongs to in (X,L, V ). It should be noted that not
every labelled simplex in (XT , V, L) is locally maximal.

Given a simplex ∆ ∈ X , we define its eccentricity [13] as

ecc(∆) :=
q̂(∆)− q̌(∆)
q̂(∆) + 1

,

where q̂(∆) is the dimension of ∆, and q̌(∆) is given by

q̌(∆) := max
l∈L
{dim(∆ ∩ Γl)}.

That is, q̌ is the dimension of a maximal face of ∆ shared
with any other labelled simplex ∆l ∈ X . In the event that ∆
intersects no labelled simplices ∆l, we define q̌(∆) = −1, so
that ecc(∆) ∈ [0, 1]). It immediately follows that a simplex ∆
has eccentricity 0 if and only if q̂ = q̌. In other words, ∆ ⊂ ∆l.
Since ∆ is not locally maximal in this case, removing its label
from L changes nothing about the underlying complex X ,
including the homology of X . The reduced labelled complex
obtained from removing all eccentricity 0 labels is denoted
(X̃, L̃, Ṽ ).

The strong collapse of a labelled simplicial complex
(X,L, V ) is as follows: (XT , V, L) is constructed and has
all of its 0-eccentricity simplex labels removed, giving(
X̃T , L̃, Ṽ

)
. Then, the conjugate of the resulting complex

is constructed again. Finally all the eccentricity 0 simplices

are removed there, resulting in
((̃
X̃T
)T
, ˜̃L, ˜̃V ) ⊂ (X,L, V ).

That is,

(X,L, V ) // (XT , V, L) // (X̃T , Ṽ , L̃)

xxqqqqqqqqqqq

((̃
X̃T
)T
, ˜̃L, ˜̃V )

S
((
X̃T
)T
, L̃, Ṽ

)
oo

This process is iterated until the complex stabilizes. Two
theorems introduced in [15] show the value of this collapse:

Theorem 1. The strong collapse leaves the homology of X
invariant.

Theorem 2. The strong collapse preserves at least one of the
shortest paths around each hole and void in X .

These facts highlight that the strong collapse not only
preserves the homology of the complex X , but that it also
maintains the tightest bounding path around any “holes” in X .

(a) Average Degree = 5

(b) Average Degree = 15

(c) Average Degree = 25

Fig. 1. Examples of the collapse of the Rips complex of sensor networks at
various average degrees

This second property allows us to collapse a sensor network
without fear of losing track of coverage hole locations.

A. The Distributed Algorithm

The general strong collapse requires full a priori knowledge
of the entire simplicial complex. In the sensor network case,
this means that a preprocessing step is needed to find all
the cliques in the network, which causes an expensive [12]
bottleneck in computing homology. We exploit the fact that
every clique in the graph G yields a simplex in the flag
complex F(G) to create an algorithm to execute a collapse
that is not only equivalent to the strong collapse, but is also
implemented distributively and only requires one-hop informa-
tion at each node. More importantly, the collapse takes place
before any clique-finding algorithm need be run. The value in
this property is that the remaining network will be sparser than
what we started with, thus tremendously simplifying clique-
finding.

Before continuing with the construction of the distributed
algorithm, we need one more important definition: the rele-
vance of a node v in a simplicial complex X:

rel(v) := ecc
(
∆T

v

)
=
q̂
(
∆T

v

)
− q̌
(
∆T

v

)
q̂
(
∆T

v

)
+ 1

.

It is useful to find a direct geometric interpretation of
q̂
(
∆T

v

)
and q̌

(
∆T

v

)
: q̂
(
∆T

v

)
is the number of locally maximal

simplices incident to v, while q̌
(
∆T

v

)
is the maximal number



of locally maximal simplices shared by v with some other
vertex w. Therefore, rel(v) = 0 only when every maximal
simplex incident to v is also incident to some other vertex w.
This property is equivalent to the notion of v being dominated
by w, as described in [2]. While the original algorithm works
through conjugate complexes to eliminate all those vertices
with relevance 0, the distributed algorithm will exploit this
updated definition to avoid such intricate, expensive calcula-
tions. It follows that any vertex w sharing any faces with v
must be adjacent to v in the underlying graph. We assume that
each sensor v contains complete knowledge of its neighbor set
Nv .

Theorem 3. For v and w adjacent vertices, Nv ⊂ Nw if and
only if every maximal simplex incident to v is also incident to
w, that is, rel(v) = 0.

Proof: (⇐) If every maximal simplex incident to v is
also incident to w, then the edge spanning v and w must be
in the complex, meaning that w ∈ Nv . Thus, the 1-simplex
spanning w and v, denoted 〈w, v〉, is in the complex. For a
vertex x ∈ Nv , let ∆ be a maximal simplex with 〈x, v〉 ⊂ ∆.
∆ is incident to v, and so it’s incident to w by assumption.
Hence, by the subset closure property of simplicial complexes,
〈x,w〉 is a 1-simplex in the complex, and so x ∈ Nw.

(⇒) Furthermore, given a maximal n-simplex ∆ incident to
v, without loss of generality, ∆ = 〈x1, x2, · · · , xn, v〉. Hence,
xi ∈ Nv for every i ∈ {1, · · · , n}. Thus, xi ∈ Nw for every
i ∈ {1, · · · , n} by assumption. Therefore, ∆∪{w} is a simplex
in the complex. Thus, by the maximality of ∆, Delta∪{w} ⊂
∆. Hence, there is some j ∈ {1, · · · , n} for which w = xj .
∆ is therefore incident to w, thus concluding the proof.

We exploit this fact to construct the following algorithm,
which is iterated until the communication graph stabilizes.
Given that the sensors in the network are labelled v1, . . . , vM ,
each sensor v executes the following steps each iteration:

Broadcast Nv = {vij}mj=1 to immediate neighbors.
for j = 1→ m do

Receive Nvij

Compare Nvij
with Nv

if Nvij
⊂ Nv then

Broadcast OFF signal to vij

if OFF signal received from vij then
Handshake to determine which sensor turns off

end if
end if

end for
if OFF received OR Handshake determined v turns OFF
then

v stops broadcasting
else

Update neighbor set Nv , omitting OFF neighbors
end if

IV. APPLICATIONS

Here, we provide simulation results and a precise math-
ematical definition of the sensor network application of the
collapse, along with complexity analysis of the algorithm.

A. Sensor Network Coverage and Rips Complexes

Given a distribution of sensors S in some compact region of
R2, we can define the sensing radius rs as the distance about
each sensor in which the sensor can detect targets. That is, for
a sensor vi ∈ S, there is a coverage disc Di centered at vi

with radius rs within which vi can detect targets. Then, the
coverage region spanned by S is well defined as ∪vi∈SDi.
Given this information, we can construct the Čech complex
of the coverage region, Č(S, rs): this simplicial complex is
constructed iteratively from the 0-simplices, defined to be the
sensors S. Following that, we include an n-simplex in the
complex spanning any set of (n + 1) sensors {vij}nj=0 for
which the coverage discs {Dij

}nj=0 share a common intersec-
tion point. A classical result called the nerve theorem [3] states
that Č(S, rs) has the same homology as ∪vi∈SBi, the sensor
coverage region. Moreover, the generators of H1

(
Č(S, rs)

)
bound the coverage holes in the coverage region, thus giving
us a convenient, computable definition of a “hole” in a sensor
network. The problem is that computing the Čech complex is
expensive and requires specific hole location, and so a more
computable approximation is required, motivating the Rips
complex construction.

Given the same network S, we now define the commu-
nication radius rc as the distance so that any two sensors
si, sj ∈ S with d(si, sj) < rc can communicate. A natural
construction called the communication graph G(S) follows:
we construct the graph (S,E) with vertices S and an edge
eij between every pair of vertices si, sj with d(si, sj) < rc.
We then define the Rips complex of S, R(S, rc), as the
flag complex of the communication graph of S, that is,
R(S, rc) := F

(
G(S)

)
. This complex is distributively com-

putable. In addition, even though it doesn’t perfectly model
the coverage region of S in general, it can be shown that for
rs = rc

2 , Č(S, rs) ⊂ R(S, rc) ⊂ Č(S, rc) [5]. Furthermore,
for rs ≥ rc

2 , the coverage holes undetected by the first
homology space H1

(
R(S, rc)

)
are geometrically small.

Even though the homology of the Rips complex R(S) is
distributively computable, doing so is still expensive, as are
distributed hole localization methods [6]. The major advantage
of the distributed strong collapse is that it can be executed
before computing any cliques in the communication graph.
It simply takes one-hop information within the network and
turns off the irrelevant nodes before finding any cliques.

B. Complexity Analysis

Because homology computations are essentially nullity cal-
culations of a matrix, the complexity of computing the homol-
ogy of a simplicial complex with n simplices is on the same
order as computing the rank of a matrix, O(n2.37) [4]. The
benefit of the collapse to hole-localization is therefore reflected
by the degree to which the number of simplices in the complex
is reduced. Furthermore, we are only interested in finding
the coverage holes in the coverage region C, so we only
need information regarding H1(C). From the construction
of homology [10], the only simplices that contribute to the
construction of H1(C) are the 0-, 1-, and 2-simplices.



Fig. 2. Number of 0-, 1-, and 2-simplices before and after the collapse in
each regime

We studied the effect of the collapse on simplex counts
by generating geometric random graphs with average degrees
ranging from 5 to 35, and the number of nodes ranging from
100 to 500. Geometric random graphs are effective models
of sensor networks, constructed by randomly scattering nodes
in a unit square, and building the communication graph by
connecting pairs of nodes which are within a certain radius.
The average degree of the nodes in the network is closely
related to the radius chosen above [14]. We generated 500
examples of each network in Figure 1. We discovered 3
regimes among these networks. The cause of this partitioning
into regimes is a complex question, and will be the subject of
future work. There is a subcritical regime, in which the nodes
don’t form a large connected component, and so the coverage
area has few holes, but isn’t covering a great deal of the area,
either. Next, there is the critical regime, in which the area
is mostly covered except for a few holes, which homology
detects. Finally, there is the supercritical regime, in which the
entire region is covered due to the sheer density of the node
distribution in the region. The average reduction in 0-, 1-, and
2-simplices in each regime is displayed in Figure 2.

This algorithm runs with a message-passing complexity of
O(|Nv|2) for the sensor v, where |Nv| is its number of neigh-
bors. This is because each node must pass a signal of size |Nv|
to each of its neighbors in Nv . Because each node must update
its neighbor list to delete all nodes which turned off in the
current iteration, the overall message-passing complexity of
the algorithm is O(

∑
v

|Nv|2 +
∑

w Collapsed

|Nw|) for the first it-

eration. Because nodes can only be turned off in the algorithm,
the per-iteration message-passing complexity is bounded by
the complexity of this first iteration. Furthermore, since each
node is quick-sorting its neighbor list and comparing it to
another such list, the per-node computational complexity of
the algorithm is O(|Nv|2 log |Nv|) per iteration. It should be

noted that after the first iteration, the only nodes executing
this step are those whose neighbor sets have changed. Finally,
the number of iterations needed for the algorithm to stabilize
is bounded by the diameter of the communication graph.

V. SUMMARY AND CONCLUSION

We presented here a distributed algorithm for reducing the
number of sensors needed to accurately detect the topology of
the coverage region of a sensor network. We showed that it is
equivalent to the previously developed strong collapse, and that
it therefore inherits the properties of preserving the topology
and the precise locations of holes in a network. These proper-
ties guarantee that the resulting collapsed complex can be used
to locate holes in the original network by way of locating them
in the collapsed network. The algorithm was derived solely
from the properties of a flag complex, and therefore, it can be
used to collapse the flag complex of any graph. We justified
the collapse with simulations demonstrating the degree to
which the network is collapsed in various density regimes,
and showed that with one-hop information, the network can
be minimized prior the computational bottleneck of finding
cliques in the network.
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