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1. Introduction

Separating structured data from errors and noise has always
been a critical and important problem in signal processing, com-
puter vision and data mining [1]. Robust principal component pur-
suit is a particularly successful technique in recovering low dimen-
sional structures of high dimensional data under arbitrary sparse
errors [2]. Successful applications of sparse models in computer vi-
sion and machine learning [3-7] have, however, increasingly hinted
at a more general model, where the underlying structure of high
dimensional data consists of a union of subspaces (UoS) rather than
a single low dimensional subspace. Therefore, a natural and use-
ful extension question is about the feasibility of such an approach
in high dimensional data modeling where the union of subspaces
is further impacted by sparse errors. This problem is intrinsically
difficult, since the underlying subspace structure is also corrupted
by unknown errors, which may lead to unreliable measurement of
the distance among data samples, and make data deviate from the
original subspaces.

Recent studies on subspace clustering [8-10] show a particu-
larly interesting and a promising potential of sparse models. In [8],
a low-rank representation (LRR) recovers subspace structures from
sample-specific corruptions by pursuing the lowest-rank represen-
tation of all data jointly. The contaminated samples are sparse
among all sampled data. The sum of column-wise norm is ap-
plied to identify the sparse columns in data matrices as outliers.
In [9], data sampled from UoS is clustered using sparse repre-
sentation. Input data can be recovered from noise and sparse er-
rors under the assumption that the underlying subspaces are still
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well-represented by other data points. In [10], a stronger result is
achieved such that data may be recovered even when the underly-
ing subspaces overlap. Outliers that are sparsely distributed among
data samples may be identified as well. Another sparsity-based ap-
proach was more recently proposed in [11,12], with an ability to
also recover overlapping subspaces under mild conditions.

In this paper, we consider a more stringent condition that all
data samples may be corrupted by sparse errors. Therefore the UoS
structure is generally damaged and no data sample is close to its
original subspace under a measure of Euclidean metric. More pre-
cisely, the main problem can be stated as follows:

Problem 1. Given a set of data samples X = [Xy, Xy, ..., Xp], find a
partition {X;,Xy,..., X} of the columns of X, such that each part
X; for I=1, 2,..., ] can be decomposed into a low dimensional
subspace (represented as low rank matrix L;) and a sparse error
(represented as a sparse matrix E;), such that

X =L +E.,I=1,....]

Then, each L; represents one low dimensional subspace of the
original data space, and L=[L;|L,|...|L;] is the union of sub-
spaces. Furthermore, the partition recovers the clustering structure
of original data samples disrupted by the errors E = [E; |E;| ... |Ej].

Concretely, the goal of this problem is twofold: First, we wish
to find out the correct partition of data so that the data subsets
reside in low dimensional subspaces. Second, we wish to recover
each underlying subspace from the corrupted data. It is worth not-
ing that the corrupted data may highly affect the partition, and
hence decoupling the two tasks is problematic. In this paper, we
propose a unified optimization framework to decompose the given
corrupted data matrix into two parts, one associated with the
clean data and the other with the sparse errors/outliers, respec-
tively. In this framework, the correct partitioning of the data, as
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well as the individual subspaces, are to be simultaneously recov-
ered. Moreover, we present scenarios, where the correct partitions
are exactly recovered as the global minimum of the proposed opti-
mization problem, and provide a search algorithm to approximate
the global optimizer, and henceforth referred to as robust subspace
recovery via bi-sparsity pursuit (RoSuRe). We have previously pre-
sented preliminary ideas related to RoSuRe in [13,14] and present a
more elaborate discussion herein, from both theoretical and exper-
imental viewpoints. It is also worth noting that in [15] a convex
modification to sparse subspace clustering (MSSC) is briefly dis-
cussed, in order to address the presence of outliers, but at a cost
of a loss in accuracy as shown in the experimental section. We
point out, as further clarified throughout the paper, that our pro-
posed method presents several advantages over MSSC, on account
of at least the following: first, the formulated functional directly
theoretically reflects the practical mixture of a UoS structure to-
gether with sparse outliers, whereas Elhamifar and Vidal [15] re-
sorts to a mathematical technicality to safeguard the convexity of
the functional (the reader should note that the data X appears as
both the observation as well as the underlying UoS structure in
the formulation). An error in reflecting the exact model appears at
the outset. We additionally provide theoretical guarantees for our
proposed approach, in tandem with substantiating numerical ex-
amples to demonstrate its superior performance relative to [15].
Similar concerns are observed in some other recent works [16,17],
which consider different formulations than ours, hence being irrel-
evant for comparison.

1.1. Organization of the paper

The remainder of this paper is organized as follows. In
Section 2 we present our main contribution, the RoSuRe algorithm,
as a numerical solution of an optimization problem. Section 3 is
devoted to a more detailed discussion of our contribution. In
Section 3.1, we provide the fundamental concepts necessary for
the development of our proper modeling. Building on this model
in Section 3.2, we develop the rationale along with the condition
for subspace recovery. In Section 4, we finally present experimental
results on synthetic data and real-world applications.

1.2. Notation

In the following, we present a brief summary of the notations
used throughout this paper: The dimension of a m x n matrix X is
denoted as dim(X) = (m, n). ||X||o denotes the number of nonzero
elements in X, while ||X]|; is the vector [; norm (sum of absolute
values of all entries). For a matrix X and an index set J, we let X;
be the submatrix containing only the columns of X corresponding
to the indices in J. col(X) denotes the column space of matrix X.
We write Po, X to refer to the orthogonal projection of matrix X
on the support of A, and PQE‘X =X~ Pg, X. The sparsity of a mxn

matrix X is denoted by p(X) = %
2. Main contribution

We consider a problem, where a set of n data points I; € RY, i =
1,2,...,n are selected from a union of subspaces S = USK. Suppose
that each sample is corrupted by an additive sparse noise vector
e;, and we observe the set {x; =1;+e;}!' ;. Our aim is to recover
the subspaces S¥ and possibly the noiseless samples I; from the
observed vectors. As we further elaborate in Section 3.1, our ap-
proach leads us to the following optimization problem:

‘rNryglLIIWIM + AlE|, (1)

stX=L+EL=LW,W; =0,

where X is the data matrix, including the data point x; at the ith
column i=1, 2,..., n. The variables L and E in (1) correspond
to the underlying components of the noiseless data and sparse
corruptions/outliers, respectively. Similarly to the sparse subspace
clustering (SSC) method in [15], the matrix W in the solution of
(1) is used for detecting the clusters by first obtaining the sym-
metric affinity matrix W =W + WT and then applying a standard
(weighted) graph clustering technique such as spectral clustering
to W.

Other than posing this problem as a recovery and clustering
problem, we may also view it from a dictionary learning angle.
Note that the constraint X =L+ E may be rewritten as X = LW +
E, to therefore reinterpret the problem as that of finding L and E
as a dictionary learning problem. In addition to the sparse model,
atoms in dictionary L are brought from data samples with sparse
variation. It may hence be seen as a generalization of [18] in the
sense that we not only pick representative samples from the given
data set using [; norm, but also adapt the representative samples
so that they can “fix” themselves, and hence be robust to sparse
errors.

2.1. Algorithm: Robust subspace recovery via bi-sparsity pursuit

Obtaining an algorithmic solution to Eq. (1) is complicated
by the bilinear term in the constraints yielding a non-convex
optimization. We leverage the successes of alternating direction
method (ADM) [19] and linearized ADM (LADM) [20] in large scale
sparse representation problem, and focus on designing an appro-
priate algorithm to approximate the minimum of Eq. (1).

Recall our proposed method - referred to as RoSuRe-, is based
on a linearized ADMM [20], which can also be regarded as a
Chambolle-Pock algorithm [21,22] without the acceleration step
and with a variable step size. Concretely, we pursue the sparsity
of E and W alternatively until convergence. Besides the effective-
ness of ADMM on [; minimization problems, a more profound ra-
tionale for this approach is that the augmented Lagrange multiplier
(ALM) method can address the non-convexity of Eq. (1) [23,24]. Al-
though there is no guarantee on the convergence of general non-
convex problems, Theorem 4 in [24] states that under the ALM
setting, the duality gap may be zero when certain conditions are
satisfied. We show the zero duality gap property of Problem (1) in
Appendix B. We can then approximate the optimizer by solving the
dual problem, with an appropriate augmented Lagrange multiplier
(Algorithm 1).

Specifically, substituting L by X — E, and using L = LW, we can
reduce Eq. (1) to a two-variable problem, and hence write the aug-

Algorithm 1 Subspace recovery via bi-sparsity pursuit (RoSuRe).
Initialize: Data matrix X € R™", A, p, n1, 12
while not converged do
Update W by linearized soft-thresholding
L1 =X-E,

L L WYy /i)
k1 k+1 Yk YK/ K
(Wk + e re— B

Wi =T

1
o
Wi =0 . . .
Update E by linearized soft-thresholding
Wi =1-W,,
(L 1 Wi ’Yk/r“'k)er]
n
Update the lagrange multiplier Y and the augmented lagrange
multiplier p
Yip1 = Yi + sy (L 1 Wiy — Ligq)
M1 = PHg
end while

Epo1=T1 | Ex+
2Up)
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mented Lagrange functional of Eq. (1) as follows,
L(E.W.Y, ) = AlE[l; + [[W[l1 + (IW - L, Y)

+ LI -BW- X- B2, )
where Y is the Lagrange multiplier. Letting W = I — W, we alterna-
tively update W and E,

Wi = argmin [WIly + (LW = L. Yi)

+%”Lk+lw_l~k+l|§’ (3)

Epp1 = arnginA||E||1 + ((E = X)W 1. Vi)
+ LB = X)W 7 ()

The solutions to Egs. (3) and (4) can be well approximated in each
iteration by linearizing the augmented Lagrange term [20],

LT (L Wi — Yi/itg)
Wi =T (Wk 4 B (b Wi K/ Mk ’ (5)
g Th
(L Wit 1 — Yo/ i) WT
By =T | Eot k1 Wierr — Y/ i)Wy 7 (6)
Hiny 2

where 7y > |[L||3, 7, = |[W||3, and 74()) is a soft-thresholding
operator.
In addition, the Lagrange multipliers are updated as follows,

Yir1 = Yi + (L 1 Wir — Liyr). (7)

Mkl = P Mk (8)

3. Theoretical discussion
3.1. Details on derivation of RoSuRe

At first, we assume that the number of clusters k is known. We
relax this requirement in Section 3.1.1. Our approach is based on
the observation that assuming sufficient sample density, each sam-
ple 1; can be represented by the others from the same subspace
S(L).

li = Z WUlJ
i#j,1;eS(1L;)
Furthermore, we represent the above relation in a matrix form
using L = [L{|Ly|...|L;], where L; for =1, 2,..., k is the collec-
tion of the samples from the Ith subspace. Then, we have

L=IW,W; =0, 9)

where W is a n x n matrix with zero diagonals. Since each sample
is represented by other samples only from the same subspace, we
observe that many elements of W are zero. More precisely, in any
suitable matrix W for our purpose, we have W;; = 0 whenever the
indexes i, j correspond to samples from different subspaces. This
motivates us to introduce the following definition for the suitable
matrices W:

Definition 1. (k-block-diagonal matrix). We say that an n xn ma-
trix M is k-block-diagonal if and only if there exists a permutation
matrix P, such that M = PMP~! is a block-diagonal matrix with k
diagonal blocks. The space of all such matrices is denoted as BM,.

Let n; be the number of samples from Si, and (b; b;) the di-
mension of block W; of W. Then, n;>b; and as a result, the
relation p(W) = ||W||o/n? < max{b;}/n < max{n;}/n holds, which

shows that a k—block-diagonal matrix is sparse. We next define
the space of matrices of which the columns reside in UoS based
on the space BM, of W.

Definition 2. (k-self-representative matrix). We say that a d x n ma-
trix Y with no zero column is k-self-representative if and only if

Y= YW, We BMk,Wii =0.
The space of all such d x n matrices is denoted by SRy

Recasting the retrieval of a union of subspaces as decomposing
a data matrix X into a sparse outlier component together with a
self-representative entity L e SR, with the blocks in the underlying
k—bolck-diagonal matrix W of L, may be formulated as,

min [|E[lo s.t. X =L+E, L < SR,. (10)

In addition to not accounting for low dimensionality of the un-
derlying susbpaces, this formulation unfortunately presents some
other fundamental difficulties in solving Eq. (10), including the
combinatorial nature of ||-||g and the complicated geometry of SRy.
For the former one, there are established results of using the [
norm to approximate the sparsity of E [25,26]. The main difficulty,
however, is that not only SRy is a non-convex set,' but even worse,
it is not path-connected. Intuitively, it is helpful to consider L;,
L, € SRy, and let col(L;) ncol(Ly) = 0. Then, all possible paths con-
necting L; and L, must pass the origin. Given that L is a matrix
with no zero columns, and 0 ¢ SR;,, we see that it is impossible to
connect Lq, L, through SR,.

To cope with the above problems, we opt to integrate the con-
straint in Eq. (10) into the objective function, and see the problem
from a different angle by the following steps: First, we observe that
the sparsity of the matrix W in Eq. (9) is further tied to the di-
mension of the subspaces. To see this, notice that each data point
I, can be represented by at most d;, = dim(S(l;)) other linearly in-
dependent samples from its subspace. This shows that the sparsity
of the matrix W can be as small as max;, d;/n. This motivates us to
introduce the following definition:

Definition 3. (W,-function on a matrix space). For any d x n matrix
Y, if there exists W € BM, such that Y = YW, then

Wo(Y) = H‘lAi,n Wilo, s.t.Y=YW W;=0,
W € BM;,.
Otherwise, Wy (Y) = oc.

We next introduce the following problem:
min W (L) + A|lEllo s.t. X=L+E. (11)
The optimization in Eq. (11) is our framework for subspace clus-
tering to reflect a) clustering through the constraint W e BM,,
b) low dimensional subspace through minimizing ||[W], and c)

parsimonious corruption by minimizing Eq. The relation between
Egs. (10) and (11) is also established by the following lemma:

Lemma 1. For a Acertain A, if (L E) is a pair of global optimizers of
Eq. (11), then (L, E) is also a global optimizer of Eq. (10).

The proof of Lemma 1 is presented in Appendix A.1l.

1 Consider M;, M, € SRy, let M; = (g) 3) and M, = ((2) (1)). It is easy to see

thatM:(M1+M2)/2:(]{2 1 ) & SRa.

1/2
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3.1.1. ¢; Relaxation

Finally, we will leverage the parsimonious property of [; norm
to approximate ||-||o. We extend the definition of Wy(-) to a [
norm-based function:

Definition 4. (W, -function on a matrix space). For any d x n matrix
Y, if there exists W e BM,,, such that Y = YW, then

Wi (Y) = n‘lﬂi’n IW|{, st.Y=YW,W;=0,
W < BM,.

Otherwise, W;(Y) = co. We also denote the optimal point in the
above definition by W; (Y).

We then rewrite the problem in Eq. (11) as,
rrLliEnwl (L) + A||E||; st.X=L+E

It is worth noting that formulation Eq. (12) bears a similar form
to the problem of robust PCA in [2]. Intuitively, both problems at-
tempt to decompose the data matrix into two parts, both with a
parsimonious supports, but in different domains. For robust PCA,
the parsimonious support of the low rank matrix lies in the do-
main of singular values. In our case, the sparse support of L lies in
the matrix W in the W, function, meaning that columns of L can
be sparsely self-represented.

Under the conditions shortly stated in Theorem 1, we can sub-
sequently modify Wy (L) into a convex function and define it in a
connected domain by dropping the constraint W e BM,. This also
relaxes the requirement that k is known. Specifically, we have

Wi (L) :m“i’n Wiy, s.t.L=IW,W;=0. (12)

Substituting W (L) by W; (L) in Eq. (12) allows us to relax the con-
straints of Eq. (12) and directly work on the problem in 1.

3.2. Guarantees on recovery of union of subspaces

In this section, we discuss the important question of when the
underlying structure can be exactly recovered by solving Eq. (12).
This problem is essentially twofold: first, it is about the exact re-
covery of (L, E): and second, it is about when W correctly reflects
the true UoS structure. For numerical reasons, we are particularly
interested in identifying cases, where the condition W e BM}, can
be relaxed, without disturbing the optimal solution.

3.2.1. Geometric interpretation of subspace detection property

Starting with the question of a correct choice of W, we assume
that L and E can be correctly selected and the problem of finding
sparse coefficients W is equivalent to subspace clustering without
sparse errors. We shortly discuss the problem of solving for L and
E. Specifically, W is determined by the problem defined in W; (L)
(Definition 4). However, it is fundamentally difficult to constrain W
in BMj, in the optimization. On the other hand, if we can lift this
constraint without affecting the solution of W (L), then the prob-
lem will degenerate to a classical [; minimization problem with
linear constraints.

We next focus on the constraint W e BM,, in W; (L). Intuitively,
since the sparsity of W is bounded below by max {b;}/n, where b; is
the size of each block, we can see that the set of sparse matrices
and BM, overlap. A natural question then would be under what
condition we can simply use /; minimization to obtain an accurate
W, i.e. reflecting the underlying subspace structure.

In a more formal way, if W is the solution of the following
problem,

min [Wl; s.£. XW =X, W; =0, (13)

and supp(W)Csupp(A) € BM;, then the solution of Eq. (13) is the
same as that with a constraint X € BMj, where

1
Aij: {0

In [27], Theorem 2.5 guarantees the correctness of the subspace
segmentation, which they call [; subspace detection property. In-
tuitively, if the “subspace incoherence” for each subspace is high,
and the distribution of points in each subspace is not skewed, then
w;; # 0 if and only if x; and x; are in the same subspace. In this sec-
tion, we provide additional insight on this problem.

Specifically, we focus on each x; in X, and rewrite Eq. (13) as
follows for each x;,

if x; and x; are in the same subspace,

otherwise. (14)

min [|wll; s.t. X_w =x;, (15)

where X_; is the matrix of all columns of X except x;.

We next give the I; subspace detection property as [27], and
then provide a sufficient condition for the I; subspace detection
property to hold.

Definition 5. (I; subspace detection property) Let dataset X lie in
a union of subspaces S =S' US? U...5. For each x; e X, the optimal
solution of Eq. (15) is w;. Then we say the pair (X, S) satisfies the
l; subspace detection property if and only if supp(w;)<{jlx;, X; esh.

Before presenting our main result, we would like to discuss the
potential factors on this issue. On one hand, given the dataset X
in a union of subspaces, it would be easier to segment X correctly
if the “distance” between any two subspaces is sufficiently large.
In the extreme case, if two subspaces overlap, then the identity
of the points in the overlap region would not be well-defined. On
the other hand, the density of samples in each subspace is impor-
tant, in the sense that we need a subspace to be well-represented
by the samples on it, so that we do not create “false outliers” by
insufficient sampling. For example, in a two-dimensional subspace
with a x — y Cartesian coordinate system, if we somehow only have
one sample p along y coordinate, and all the rest along x coordi-
nate, then without knowing the underlying structure, it would be
legitimate to assume that p is an outlier, and is not able to be rep-
resented by other samples, and the rest of the data fall on a one-
dimensional subspace. We therefore would expect a sufficient con-
dition to include both of the above conditions: subspaces keeping
a “safe distance” from each other, and each having enough samples
on each of them.

In particular, the distance between two subspaces can be mea-
sured by the first principal angle between them as ©O(S;, S;). To
provide some intuition here, if ©(S;,S;) =0, then S; and S; overlap;
and if ©(S;,S;) = /2, we have §;1S;. On the other hand, to mea-
sure the sufficiency of samples, we need to first define the data
density in an appropriate way. We hence next introduce concepts
related to the measure of data sufficiency.

Definition 6. (Conic hull [28]) The conic hull of a set C is
cone(C) = {a1X; + - +oyX|X; e Ca; >0,i=1,...,k}

It is worth noting that cone(C) is also the smallest convex cone
that contains C [28].

We then give the A-density condition to measure the data suf-
ficiency as follows,

Definition 7. (A-density condition) For all x} e X!, if there exists
an affine independent set {xl1,...,x;(q},<i¢,- C +XJ such that x! e

c! —cone(x}(l,...,xg(q), and the minimal circumscribed sphere in

1_
St of {x;<1 ..... qu} centered at 0; obeys ©(0;. xt ) <A, j=1.....q.
]

then we say that X! in S satisfies the A-density condition.
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Our main result now stated as the following theorem,

Theorem 1. A data set X of unit-length points that lie on a union of
subspaces S =S'US2 U ...9 satisfies the I; subspace detection prop-
erty if it satisfies the A-density condition, and for any pair of S' and
Si, ©(Si, §)> A, where O(Si, ) is the first principal angle between
St and §.

The proof is presented in Appendix A.2. The interpretation of
Theorem 1 is straightforward: the angle between subspaces is
bounded below by A, which is exactly our measure for the data
density, the maximum “size” of the smallest conic hull contain-
ing each sample. Specifically, if we have a higher density of sam-
ples, which means we have a clearer image of each subspace, then
the segmentation of the union of subspaces can be accurately car-
ried out with a more stringent condition, i.e. the angle between
subspaces can be smaller. On the other hand, if the samples are
sparse and far from each other, it would be more difficult to re-
cover the underlying structure, and therefore we need the union
of subspaces to be widely separated, i.e. a larger principal angle.

3.2.2. A sufficient condition for exact recovery

Now, we focus on the recovery of noiseless samples from noisy
observations. The exact recovery of L and E relies on the proper-
ties of both matrices. In particular, we expect these two matrices
to be fundamentally different from each other to ensure exact re-
covery. For example, if E shares the same UoS structure as L, then
a segmentation of L and E is impossible without further prior in-
formation. In other words, if any perturbation caused by a sparse
vector E affects the UoS structure of L, we cannot distinguish E
from L only using the information of their geometric space. This
motivates introducing the following definition:

Definition 8. The subspaces {S;} and the noiseless data matrix L
are said to be §—balanced with respect to a support Q if for any
vector E supported on €, there exists a completion denoted by E
such that E agrees with E on the support, each column of E be-
longs to the same subspace as its corresponding column in L and
IEll; < (1 +6)E];.

Definition 9. A noiseless data matrix L and a sparse error matrix
E are said to be (e, u)—identifiable if for any error matrix E’ with
the same support as E and ||E’|| <€, the relation

Wi(L+E) —Wi(L) = u|E||;
holds.

Recall that W;(.) reflects the similarity of a data set to a
UoS structure. Hence, the above definitions refer to a case, where
adding a sparse error always leads to a less structured data set. We
next introduce a stronger version of the conditions in Theorem 1:

Definition 10. A noiseless data matrix L on a UoS {S;} and a sparse
error matrix E are said to satisfy (¢, A)—subspace detection prop-
erty if for any error matrix E’ with the same support as E and
|lE’|| <€, the data set X =L +F satisfies the A—density property
and O(S,, S;)> A for any two distinct subspaces Sy, S,.

Then, we have the following result for perfect recovery:

Theorem 2. The pair (L, E) can be exactly recovered by solving Eq.
(12) with . >0, i.e.(L,E) = (L, E), if

. The subspaces are 6-balanced with respect to the support of E.

. The pair (L, E) is (e, u)—identifiable.

. The pair (L, E) satisfies (e, A)—subspace detection property.

. The following relations hold,

Wi (L)
A

A WN —

2||Ell: + <€

and
6(1+wi (L))
WL _,  H = Ty
COS(A) - = emax(1,0)
1+ cos(A)

The proof of Theorem 2 is presented in Appendix A.3. In par-
ticular, this theorem gives an “incoherence” condition between L
and E to guarantee an exact recovery. In practice, as we will see
in the experimental section, the sparse errors typically reside in a
space distant from the data space, since errors are generally lack
coherent structures as high dimensional data.

4. Experiments and validation
4.1. Experiments on synthetic data

Section 3.2 discusses the necessary condition to recover data
structure by solving Eq. (10). In this section, we hence empirically
investigate the viability extent of RoSuRe with various conditions.
The recovery results are compared with Robust PCA [2] using the
method presented in [19] and sparse subspace clustering as well as
its modification for sparse corruption using the algorithms in [15].

The data matrix L is fixed to be a 200 x 200 matrix, and all data
points are uniformly sampled from a union of 5 subspaces. The
norm of each sample is normalized to 1. 10% elements of each col-
umn in sparse matrix Ey are random selected to be nonzeros. The
value of each nonzero element in Ey then follows a Gaussian distri-
bution with mean 0.5 and variance 0.5. Fig. 1 shows one example
of the exact recovery and clustering. Note that (Lgosyre, Erosure) and
(Lo, Eg) are almost identical, and Wgs,ze Shows clear clustering
properties such that w;~0 when I;, I; are not in the same sub-
space. In Fig. 2 we compare with the result of Robust PCA, and
demonstrate the big improvement of our method.

Fig. 3 is the overall recovery results of RoSuRe, robust PCA, SSC
and the modification of SSC for the sparse error. White shaded
area means a lower error and hence amounts to exact recovery.
The dimension of each subspace is varied from 1 to 15, and the
sparsity of S from 0.5% to 15%. Each submatrix L,:X,YIT with
n x d matrices X; and Y,, are independently sampled from an i.i.d
normal distribution. The recovery error is measured as err(L) =
ILo — LlIr/|ILo|lr. We can see a significant larger range of RoSuRe
compared to robust PCA and SSC. The contrasting results achieved
by RoSuRe and robust PCA is due the difference of data models.
Concretely, when the sum of the dimension of each subspace is
small, the UoS model degenerates to a “low-rank + sparse” model,
which suits robust PCA very well. On the other hand, when the
dimension of each subspace increases, the overall rank of L tends
to be accordingly larger, and hence the low rank model may not
hold anymore. Since RoSuRe is designed to fit a UoS model, it can
recover the data structure in a wider range. For SSC, this method
specifically fits the condition when only a small portion of data are
outliers. Under the assumption that most of the data is corrupted,
it is hence very difficult to reconstruct samples by other corrupted
ones. We note that the modified SSC improves the performance of
SSC, but RoSuRe is still remarkably superior. The superior perfor-
mance of RoSuRe can be explained by the fidelity of its model, and
the much less conforming structure of outliers to the SSR property
as stipulated by the modified SSC in order to preserve convexity.

4.2. Experiments on computer vision problems

Since UoS model has been intensively researched and success-
fully applied to many computer vision and machine learning prob-
lems [1,8,15], we expect our model to be well adapted to this class
of problems. Here, we present experimental results of our method
on video background subtraction and face clustering problem, as
exemplars of the promising potential.
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(e) ERrosuRe

(C)WROS uRe

(f) |LO - LROSuRe|

Fig. 1. An example of robust subspace exact recovery.

4.2.1. Video background subtraction

Surveillance videos can be naturally modeled as a UoS model
due to their relatively static background and sparse foreground.
The power of our proposed UoS model lies in coping with both
a static camera and a panning one with periodic motion. Here we
test our method in both scenarios using surveillance videos from
MIT traffic dataset [29]. In Fig. 4, we show the segmentation re-
sults with a static background. For the scenario of a “panning cam-
era”, we generate a sequence by cropping the previous video. The

(e) ERrosure

Fig. 2. Comparison with Robust PCA.

(f) |LO - LRoSuRe

cropped region is swept from bottom right to top left and then
backward periodically, at the speed of 5 pixels per frame. The re-
sults are shown in Fig. 5. We can see that the results in the moving
camera scenario are only slightly worse than the static case.

More interestingly, the sparse coefficient matrix W provides im-
portant information about the relations among data points, which
potentially may be used to cluster data into individual clusters. In
Fig. 6(a), we can see that, for each column of the coefficient matrix
W, the nonzero entries appear periodically. In considering the pe-



154 X. Bian et al./Signal Processing 152 (2018) 148-159

10

(a)RoSuRe

10

(b)Robust PCA

20 30

(c) SSC

15
10

20 30

(d) Modified SSC

Fig. 3. Overall recovery results of different methods. [0 0.2] is mapped to [1 0] of grayscale image. The x axis shows the number of corrupted entries in each data vector

and the y axis refers to the dimension of the subspaces.

(d)Background

Fig. 4. Background subtraction on traffic videos (static camera).

riodic motion of the camera, we essentially mean that every frame
is mainly represented by the frames when the camera is in a simi-
lar position, i.e. a similar background, with the foreground moving
objects as sparse perturbations. We hence permute the rows and
columns of W according to the position of cameras, as shown in
Fig. 6(b). A block-diagonal structure then emerges, where images
with similar backgrounds are clustered as one subspace.

4.2.2. Face clustering under various illumination conditions

Recent research on sparse models implies that a parsimonious
representation may be a key factor for classification [1,30]. Indeed,
the sparse coefficients pursued by our method shows clustering
features in experiments of both synthetic and real-world data. To

(e)Foreground

(f)Original frame

further explore the ability of our method, we evaluate the cluster-
ing performance on the Extended Yale face database B [31], and
compare our results to those of state-of-the-art methods [8,15,32].

The database includes cropped face images of 38 different peo-
ple under various illumination conditions. Images of each person
may be seen as data points from one subspace, albeit heavily
corrupted by entries due to different illumination conditions, as
shown in Fig. 7. In our experiment, we adopt the same setting
as [15], such that each image is downsampled to 48 x 42 and is
vectorized to a 2016-dimensional vector. In addition, we use the
sparse coefficient matrix W from RoSuRe to formulate an affinity
matrix as A=W + W, where W is a thresholded version of W.
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(d)Background

(e)Foreground

Fig. 5. Background subtraction on traffic videos (panning camera).

(a) (b)

Fig. 6. Coefficient matrix W (a) without rearrangement according to the position of
the camera (b) with rearrangement according to the position of the camera.

The spectral clustering method in [33] is utilized to determine the
clusters of data, with affinity matrix A as the input.

We compare the clustering performance of RoSuRe with the
state-of-the-art methods such as local subspace analysis(LSA) [32],
sparse subspace clustering (SSC) [15], and low rank representa-
tion(LRR) [8]. The best performance of each method is referenced
in Table 1 for comparison. As shown in the table, RoSuRe has the
lowest mean clustering error rate in all three settings, i.e. 2 sub-
jects, 5 subjects and 10 subjects. In particular, in the most chal-
lenging case of 10 subjects, the mean clustering error rate is as
low as 5.62% with the median 5.47%. Additionally, we show the ro-
bustness of our method with respect to A in a 10-subject scenario.
In Fig. 8, the correlation between the value of A and the cluster

Clustering Accuracy(percentage)

Table 1

(f)Original frame

Clustering error (%) on the Extended Yale Face Database B
compared to state-of-the-art methods [8,15,32].

Algorithm LSA LRR SSC RoSuRe

2-subjects mean 3820 254 1.86 0.71

Median 4766  0.78 0.00 0.39

5-subjects mean 58.02 6.90 431 3.24

Median 56.87 5.63 2.50 1.72

10-subjects mean  60.42 22.92 1094 5.62

Median 5750 2359 563 5.47

100 T
9 : ]
98 W
97 R
96 R
95} R
94 R
93 R
92 R
91 R
90 ; !
0 5000 10000 15000

The value of A

Fig. 8. Clustering accuracy vs the value of A.

Fig. 7. Sample face images in Extended Yale face database B.
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(a)Affinity matrix of 5 subjects  (b)Affinity matrix for 10 subjects

Fig. 9. Affinity matrix for face images from different subjects.

accuracy maintains above 98% with A varying from 500 to 15,000
(Fig. 9).

In Fig. 10, we present the recovery results of some sample faces
from the 10-subject clustering scenario. In most cases, the sparse
term E compensates for the missing information caused by light-
ning condition. This is especially true when the shadow area is
small, i.e. a sparser support of error term E, we can see a visu-
ally perfect recovery of the missing area. This result validates the
effectiveness of our method to solve the problem of subspace clus-
tering with sparsely corrupted data.

5. Conclusion

We have proposed in this paper a novel approach to recover un-
derlying subspaces of data samples from measured data corrupted
by general sparse errors. We formulated the problem as a non-
convex optimization problem, and a necessary condition of exact
recovery is proved. We also designed an effective algorithm named
RoSuRe to well approximate the global solution of the optimiza-
tion problem. Furthermore, experiments on both synthetic data
and real-world vision data are presented to show a broad range
of applications of our method.

Future work may include several aspects across computer vision
and machine learning. It would first be interesting to understand
and extend this work from a dictionary learning angle, to learn a
feature set for high dimensional data representation and recogni-
tion. Exploring a sufficient condition is not only theoretically inter-
esting, but also helpful for a deeper understanding the problem.
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Appendix A. Proofs
A.1. Proof of Lemma 1

At the beginning, we rewrite the objective function in

Eq. (11) as
L
fap = 2
A

It is clear that this will not change the minimum value. In addition,
we assume that there exists L € SRy, otherwise the statement would
be trivial, since Eq. (10) would be not feasible, and the value of the
objectivg fpnction in Eq. (11) would be infinite. A

Let (L,E) be a glgbal minimizer of Eq. (11), then L € SR;. If IF/,
such that ||E'[lo < ||E|lo and L’ = X — E’ € SR;,, we have

Wo (Ll

FUE) = B+ 1+ Y00
WoL')

A
Since (L,E) is a global minimizer, f(L, E) < f(L’,E’). Combined
with Eq. (17),

+ lEllo. (16)

1

< |IEllo + 1. (17)

_ @) - Wo(L)

0<f(L,E) - f(L.E) .

1. (18)
Then it follows that
A < Wo (L) = Wy (L). (19)

Note that when Le SR, 0 < Wy (L) < n?, where n is the number of
columns of L. Therefore, letting A >n? will violate Eq. (19) since

A >n?>W(l) — Wo(L). (20)

Fig. 10. Recovery results of human face images. The three rows from top to bottom are original images, the components E, and the recovered images, respectively.
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Hence, with A>n2, E is also a solution of Eq. (10). Lemma 1 is
proved. O

A.2. Proof of Theorem 1

Let X represent the dataset with unit-length data and S=S'u
S2U-.-USY? its underlying structure as a union of subspaces. Con-
sider the partition of X corresponding to S is X = [X!, X2, ..., X9],
then for any x; € X/, there is a linear combination of other samples
in X/ represent x; as X; = Zxk XJ ki WkXk. We therefore have a fea-

sible solution for the following problem,
w* =argmin [|wl|;
st X .w=x;. (21)

Then the dual problem of Eq. (21) as follows also has at least one
feasible point,

max(x;, &) s.t. | (X)) Al < 1. (22)

Let the support of w* be Qp, and consider the dual vector A*
satisfying

) =argmin |,
s.t. (Xg,)TA = sgn(wp, ). [|(Xg) Al < 1. (23)

It is worth noting that Eqgs. (21) and (23) imply that x; €
cone(X! ). Additionally, there are some properties of A* which are
crucial in the proof.

First, let A* = A% +)L;L. Since A* is the feasible point with the

J j
least I, norm, and (X{zo)TA% =0, (szg)T)‘EjL =0, we have )L;}L =0,

and therefore A* €5;.
Furthermore, the first constraint in Eq. (23) can be rewritten
as

[T, A% =1, X2 =1,Vx e X] (24)
which implies that A* passes the origin of the circumscribed

sphere of X{lo where XJQO c iX{Qn and (%), 1*) = 1,¥q € Qp.

Now consider the A-density condition for x;, it follows that
O X) <A VxeX] . (25)
Combined with ||x||, = 1, we have
IA*]l2 = 1/ cos(A) (26)

We then would like to utilize A* and w* to further constrain
the optimal solution of Eq. (15).

In particular, we have the following lemma from [27] using the
dual certificate technique,

Lemma 2. Consider there exists c € R" which is feasible for the primal
problem

min [|z[|; st. Az=y, (P)
and the support of ¢ is RCQ, then if there is dual vector v satisfying
ARV = sgn(cr), [|AGreVllo <1, [[AGVIloo < 1,

all optimal solutions z* to (P) have z}, = 0.

We next construct a primal feasible point for Eq. (15) by w*.
Consider the index set of X/ in X is Q, then w satisfying wg =
w*, WCQ =0 is also feasible for Eq. (15). Additionally, since Xq, =

X{lo’ X%UQ =X ¢, A* have the following property from Eq. (23),

Xp, A" = sgn (W), [IXge oA lloo < 1 (27)

Then according to Lemma 2, if we further have |X[A*[lo <1,
then combined with the condition that wyc =0, all optimal so-
lutions W of Eq. (15) satisfy Wqoc = 0, which essentially implies the
l; subspace detection property.

Consider that the principle angle between any pair of subspaces
is larger than A, we have

IPsix|l2 < [IX[[2 cos(A) = cos(A), VX € Xqe (28)
Combined with Eq. (26), for all X € Xqc, it follows that
[{x, A7) | = [(Pyx, A*)| < [IPsX[l21|A" 2

< cos(A) - c0s(A) =1,

and therefore Theorem 1 is proved.

A.3. Proof of Theorem 2

Suppose that the optimal solution of Eq. (12) is given by the
pair (L+Z,E —Z) for some matrix Z. First, note that

Wi(L+Z) + A||E-Z|; < Wi (L) + Al[E]1,

which leads to

Wi (L)
IZll, - IEll, < IE-Z||; < 1)\ + [E]l:.
We conclude that
Wi (L
Izl < % +2[[E|l; <e€.

Next, we decompose Z = Zg + Zqc = Zqg + Z,,. where the support

Q of Zq is the same as E and the support of Zgc does not over-
lap with Q. Furthermore, Zg, is the completion of Zg which exists
since the subspaces are 6/—balanced. Clearly, Z,. is supported on
Q¢ and we have that

1Zaell < 11Zaellx +6llZell1,
1Zalli = (1+60)|Zall:. (30)

We shortly show that

7 1ZGc Il
Wi (L+Zg) — cosQ(A; (31)

Wi (L+Z) >

1+ Tl
cos(A)

Then, we have that

Wi(L+Z)+ A||E-Z||1

=Wi(L+2Z) + A(|lE - Zall1 + |1 Za<|l1)

7 1Z6c 111
W W1 (L+Zg) — &%
= o+ MIE -+ A Zaell ~ 1Zoll)

1 cos(A)

@ WiL) + pllZa s — L2y
> T + ME + 2 (1 Zacllh = 1Za 1)

14 5%

cos(A)

3)
> Wi (L) + A|[E|l1,

where Inequality (1) is obtained by Eq. (31), Inequality (2) is a re-
sult of (€, u)—identifiability and triangle inequality, and Inequality
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(3) can be verified by noticing that

1Z6c 111
Wi (L) + rllZell — 25
”Z/chll cos(2) +)\'(||ZQE”1 - ||ZQ||1)

1+ cos(A)

Zoc 0||1Z
O Wi + 1liZe| — [Zecl izl

- 1Zgelh +611Zally
1+ cos(A)

+ A1 Zac llh = 1Zell1)

1Zgellq +01Zg |l 1Zge llq +01Zg |l
Wl(L)+N«|IZQ“1—%4‘)\(]‘*‘%)(“295”1—“252”1)

1 1Zge ll1+01Zg 114
cos(A)

1Zge Nl +01Zg |l
@ WL+l Zg I — 2L 4 M| Zge |14 — M| Zg |y (14 m2E0e)

cos(A) cos(A)
IZge ll1+011Zg 14
cos(A)

1+

Wi (L)+ ”ZQ H1 (M B cos?A) B )"(-1 + ms;s(zij)é ))+ ”ZQC ”1 ()L B cosl(A))

IZgye ll1+011Zg 14
cos(A)

1+

owy (L) Wy (L 1Zoelli+01Zg I
o WO+ Zal (G )+ 1251 (B4E)  wim)(1+ el )
> =

1Zgell1+01Zg 114
cos(A)

- 1Zge ll1+01Zg 114
1+ cos(A)

1+
=W (L),

where Inequality 1 is according to Eq. (30), Inequality 2 is obtained
by noticing that

1Zoc |1 + 011 Za]lx IZ|l; max(1,6)
=1+ cos(A) =1+ cos(A)
emax(1,60)
=1+ cos(A)

and Inequality 3 is obtained by noticing that according to the con-
ditions on A in Theorem 1, we have that

0 max(1,0)e oW, (L)
= cos(a) _)L<1 T os(A) ) = Cos(A)
and

1 - Wi (L)
“ cos(A) T cos(A)

We observe that the optimal value is obtained by the pair (L, E)
and conclude the proof.

It remains to prove Eq. (31). For this, note that since ||Zg|/; <
IIZ]l1 < €, and according to the (e, A)—subspace detection prop-
erty, the conditions of Theorem 1 are satisfied for the data set
X0 = L+ Zg. By Theorem 1, we conclude that the optimizations in
Eq. (15) by the data set X, have solutions w? forming a k—block-
diagonal matrix and hence satisfying

WiL+Zg) =) [Iw];.
i

From the argument in the proof of Theorem 1, we know that these
optimizations have dual vectors A; satisfying ||A;]l, < #(A).

Now, take any matrix WeBM,; with Wj; =0 such that (L+
Z)W =L+ Z. This can also be written as (X? + Z )W = X + Zg,,
or

X(i,-W,' - XI-O = Zf - Z—i,waiv (32)

where w; is the ith column of W without the ith element, and
x?, z{ are the ith columns of Xy and Zg,, respectively. The matri-
ces XE,. and Z_; oc are obtained by removing the ith column from

X, and Z(,., respectively. From the optimality condition of Eq. (15),

we observe that (X‘L.)Tk,- e d||w?|;. which leads to
T
Iwilly = w11 = (X)) A w; —w?)

) 2)

—~

= (A2 = Zoiowy) > —[|Aille]|Zf - Zoiowi]
® 1 :
> 7cos(A)(”ch”1 +1Zgell lIwill),

where Equality (1) is obtained by Eq. (32), Inequality (2) is the
Hoélder’s inequality, and Inequality (3) is a result of the triangle in-
equality and replacing infinity norm with two norm. We conclude
that

llz
”WlO”] - cos'(Al)

1Z6c Il
cos(A)

lIwilly >

and summing over i provides the desired result.
Appendix B. Zero duality gap of the dual problem

In Section 2.1, we elaborated our algorithm RoSuRe for Prob-
lem (1). Essentially, our algorithm can be seen as a dual method,
which relies on solving the dual problem instead of the primal
one. However, as we mentioned in Section 2.1, a duality gap usu-
ally exists for general non-convex programming. We then use the
framework of augmented Lagrange method to “convexify” the La-
grange function of (1). To substantiate our motives, in this section
we would like to show the zero duality gap between the primal
problem (1) and the associated “augmented” dual problem.

First of all, consider the nonlinear programming problem with
equality constraints in the following general form,

min f(x) s.t. h(x) =0,x € Q, (P)

then the primal function associated with (P) is defined as

p(z) =inf{f(x) : h(x) <z, -h(x) <z,x € 2}. (33)
In addition, the augmented Lagrange function is defined as

L.y, ) = F) + (. h(0) + S IhGO I x € . (34)

which lead to the dual problem of (P) as follows,
maxg(y, u), where g(y, u) = inSgL(x,y) (D)
Xe

Augmented Lagrange method for non-convex programming is
intensively studied in [24], and a sufficient and necessary condi-
tion for a zero duality gap is further proved. In particular, two
conditions, i.e. the quadratic growth condition and the stable of
degree 0, are critical for a non-convex problem to be solved by a
dual method. We therefore first give the definition of these two
conditions, and then show that Problem (1) satisfies them.

Definition 11. (Quadratic growth condition) We say that (P) satisfies
the quadratic growth condition if for certain real number g,

Lx,0, ) = f0 + SIHEI? = . ¥x e 2. (35)

Definition 12. (Stable of degree k) If there is an open neighborhood
U of the origin of R", and a function w: U— R of class C¥, such that
the primal function p(z) of (P) satisfies the following condition:

p(2) > w(z), Vz € U, with p(0) = w(0),
then (P) is (lower) stable of degree k.

Lemma 3. The associate primal function of (1) satisfies the quadratic
growth condition and is stable of degree 0.
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Proof. We first show that the primal function p(z) satisfies the
quadratic growth condition. Note that the quadratic growth con-
dition holds if f{x) is bounded below on . In Eq. (1), f(x) =
IIW|l1 + A||E|l; > 0, and thus the associated p(z) has a lower bound
on Q.

We next show p(z) is stable of degree 0. First of all, the stability
of degree 0 is equivalent to the following condition [24]:

p(0) = lirr(}infp(z) > —00 (36)

Then constructing a compact set including p(0) would suffice to
Eq. (36). Specifically, a sufficient condition to Eq. (36) may be as
follows: Q2 is closed, h(x) is continuous, and for some z € Rix” and
C > infp(z), the set

S={xeQ|f(x) <C -z=<h(x) <z}

is compact.

In Problem (1), Q = {(W,E) € R™" x RI*"|W;; = 0} is closed,
and h(x) is obviously continuous. To check the compactness of S,
let C>A||X]|l;. It is easy to see that (0, X) is a feasible point in
the union of compact sets S; = {x € Q |f(x) <C}and S, = {x| —z <
h(x) < z}. Then S =S; NS, is also a compact set. We therefore have
the conclusion that p(z) of Eq. (1) is stable of degree 0. O

We finally have the sufficient condition, i.e. Lemma 3 to show
the zero duality gap of (P) and (D), given the theorem proved in
[24]:

Theorem 3. The duality equation of (P)
inf(P) = sup(D)

holds, if and only if (P) satisfies the quadratic condition and is stable
of degree 0.
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