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a b s t r a c t 

The success of sparse models in computer vision and machine learning is due to the fact that, high 

dimensional data is distributed in a union of low dimensional subspaces in many real-world applications. 

The underlying structure may, however, be adversely affected by sparse errors. In this paper, we propose 

a bi-sparse model as a framework to analyze this problem, and provide a novel algorithm to recover 

the union of subspaces in the presence of sparse corruptions. We further show the effectiveness of our 

method by experiments on real-world vision data. 
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1. Introduction 

Separating structured data from errors and noise has always

been a critical and important problem in signal processing, com-

puter vision and data mining [1] . Robust principal component pur-

suit is a particularly successful technique in recovering low dimen-

sional structures of high dimensional data under arbitrary sparse

errors [2] . Successful applications of sparse models in computer vi-

sion and machine learning [3–7] have, however, increasingly hinted

at a more general model, where the underlying structure of high

dimensional data consists of a union of subspaces (UoS) rather than

a single low dimensional subspace . Therefore, a natural and use-

ful extension question is about the feasibility of such an approach

in high dimensional data modeling where the union of subspaces

is further impacted by sparse errors. This problem is intrinsically

difficult, since the underlying subspace structure is also corrupted

by unknown errors, which may lead to unreliable measurement of

the distance among data samples, and make data deviate from the

original subspaces. 

Recent studies on subspace clustering [8–10] show a particu-

larly interesting and a promising potential of sparse models. In [8] ,

a low-rank representation (LRR) recovers subspace structures from

sample-specific corruptions by pursuing the lowest-rank represen-

tation of all data jointly. The contaminated samples are sparse

among all sampled data. The sum of column-wise norm is ap-

plied to identify the sparse columns in data matrices as outliers.

In [9] , data sampled from UoS is clustered using sparse repre-

sentation. Input data can be recovered from noise and sparse er-

rors under the assumption that the underlying subspaces are still
∗ Corresponding author. 
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ell-represented by other data points. In [10] , a stronger result is

chieved such that data may be recovered even when the underly-

ng subspaces overlap. Outliers that are sparsely distributed among

ata samples may be identified as well. Another sparsity-based ap-

roach was more recently proposed in [11,12] , with an ability to

lso recover overlapping subspaces under mild conditions. 

In this paper, we consider a more stringent condition that all

ata samples may be corrupted by sparse errors. Therefore the UoS

tructure is generally damaged and no data sample is close to its

riginal subspace under a measure of Euclidean metric. More pre-

isely, the main problem can be stated as follows: 

roblem 1. Given a set of data samples X = [ x 1 , x 2 , . . . , x n ] , find a

artition { X 1 , X 2 , . . . , X J } of the columns of X , such that each part

 I for I = 1 , 2 , . . . , J can be decomposed into a low dimensional

ubspace (represented as low rank matrix L I ) and a sparse error

represented as a sparse matrix E I ), such that 

 I = L I + E I , I = 1 , . . . , J. 

Then, each L I represents one low dimensional subspace of the

riginal data space, and L = [ L 1 | L 2 | . . . | L J ] is the union of sub-

paces. Furthermore, the partition recovers the clustering structure

f original data samples disrupted by the errors E = [ E 1 | E 2 | . . . | E J ] .

Concretely, the goal of this problem is twofold: First, we wish

o find out the correct partition of data so that the data subsets

eside in low dimensional subspaces. Second, we wish to recover

ach underlying subspace from the corrupted data. It is worth not-

ng that the corrupted data may highly affect the partition, and

ence decoupling the two tasks is problematic. In this paper, we

ropose a unified optimization framework to decompose the given

orrupted data matrix into two parts, one associated with the

lean data and the other with the sparse errors/outliers, respec-

ively. In this framework, the correct partitioning of the data, as

https://doi.org/10.1016/j.sigpro.2018.05.024
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Algorithm 1 Subspace recovery via bi-sparsity pursuit (RoSuRe). 

Initialize: Data matrix X ∈ R m ×n , λ, ρ , η1 , η2 

while not converged do 

Update W by linearized soft-thresholding 

L k +1 = X − E k , 

W k +1 = T 1 
μη1 

(
W k + 

L T 
k +1 

(L k +1 
ˆ W k −Y k /μk ) 

η1 

)
. 

W 

ii 
k +1 

= 0 . 

Update E by linearized soft-thresholding 
ˆ W k +1 = I − W k , 

E k +1 = T 1 
μη2 

(
E k + 

(L k +1 
ˆ W k +1 −Y k /μk ) ̂

 W 

T 
k +1 

η2 

)
Update the lagrange multiplier Y and the augmented lagrange 

multiplier μ
Y k +1 = Y k + μk (L k +1 W k +1 − L k +1 ) 

μk +1 = ρμk 

end while 
ell as the individual subspaces, are to be simultaneously recov-

red. Moreover, we present scenarios, where the correct partitions

re exactly recovered as the global minimum of the proposed opti-

ization problem, and provide a search algorithm to approximate

he global optimizer, and henceforth referred to as robust subspace

ecovery via bi-sparsity pursuit (RoSuRe). We have previously pre-

ented preliminary ideas related to RoSuRe in [13,14] and present a

ore elaborate discussion herein, from both theoretical and exper-

mental viewpoints. It is also worth noting that in [15] a convex

odification to sparse subspace clustering (MSSC) is briefly dis-

ussed, in order to address the presence of outliers, but at a cost

f a loss in accuracy as shown in the experimental section. We

oint out, as further clarified throughout the paper, that our pro-

osed method presents several advantages over MSSC, on account

f at least the following: first, the formulated functional directly

heoretically reflects the practical mixture of a UoS structure to-

ether with sparse outliers, whereas Elhamifar and Vidal [15] re-

orts to a mathematical technicality to safeguard the convexity of

he functional (the reader should note that the data X appears as

oth the observation as well as the underlying UoS structure in

he formulation). An error in reflecting the exact model appears at

he outset. We additionally provide theoretical guarantees for our

roposed approach, in tandem with substantiating numerical ex-

mples to demonstrate its superior performance relative to [15] .

imilar concerns are observed in some other recent works [16,17] ,

hich consider different formulations than ours, hence being irrel-

vant for comparison. 

.1. Organization of the paper 

The remainder of this paper is organized as follows. In

ection 2 we present our main contribution, the RoSuRe algorithm,

s a numerical solution of an optimization problem. Section 3 is

evoted to a more detailed discussion of our contribution. In

ection 3.1 , we provide the fundamental concepts necessary for

he development of our proper modeling. Building on this model

n Section 3.2 , we develop the rationale along with the condition

or subspace recovery. In Section 4 , we finally present experimental

esults on synthetic data and real-world applications. 

.2. Notation 

In the following, we present a brief summary of the notations

sed throughout this paper: The dimension of a m × n matrix X is

enoted as dim (X ) = (m, n ) . ‖ X ‖ 0 denotes the number of nonzero

lements in X , while ‖ X ‖ 1 is the vector l 1 norm (sum of absolute

alues of all entries). For a matrix X and an index set J , we let X J 

e the submatrix containing only the columns of X corresponding

o the indices in J . col( X ) denotes the column space of matrix X .

e write P �A 
X to refer to the orthogonal projection of matrix X

n the support of A , and P �c 
A 

X = X − P �A 
X . The sparsity of a m × n

atrix X is denoted by ρ(X ) = 

‖ X ‖ 0 
mn . 

. Main contribution 

We consider a problem, where a set of n data points l i ∈ R d , i =
 , 2 , . . . , n are selected from a union of subspaces S = ∪ S k . Suppose

hat each sample is corrupted by an additive sparse noise vector

 i , and we observe the set { x i = l i + e i } n i =1 
. Our aim is to recover

he subspaces S k and possibly the noiseless samples l i from the

bserved vectors. As we further elaborate in Section 3.1 , our ap-

roach leads us to the following optimization problem: 

min 

W , E , L 
‖ W ‖ 1 + λ‖ E ‖ 1 , (1) 

.t. X = L + E , L = LW , W ii = 0 , 
here X is the data matrix, including the data point x i at the i th

olumn i = 1 , 2 , . . . , n . The variables L and E in (1) correspond

o the underlying components of the noiseless data and sparse

orruptions/outliers, respectively. Similarly to the sparse subspace

lustering (SSC) method in [15] , the matrix W in the solution of

1) is used for detecting the clusters by first obtaining the sym-

etric affinity matrix ˜ W = W + W 

T and then applying a standard

weighted) graph clustering technique such as spectral clustering

o ˜ W . 

Other than posing this problem as a recovery and clustering

roblem, we may also view it from a dictionary learning angle.

ote that the constraint X = L + E may be rewritten as X = LW +
 , to therefore reinterpret the problem as that of finding L and E

s a dictionary learning problem. In addition to the sparse model,

toms in dictionary L are brought from data samples with sparse

ariation. It may hence be seen as a generalization of [18] in the

ense that we not only pick representative samples from the given

ata set using l 1 norm, but also adapt the representative samples

o that they can “fix” themselves, and hence be robust to sparse

rrors. 

.1. Algorithm: Robust subspace recovery via bi-sparsity pursuit 

Obtaining an algorithmic solution to Eq. (1) is complicated

y the bilinear term in the constraints yielding a non-convex

ptimization. We leverage the successes of alternating direction

ethod (ADM) [19] and linearized ADM (LADM) [20] in large scale

parse representation problem, and focus on designing an appro-

riate algorithm to approximate the minimum of Eq. (1) . 

Recall our proposed method – referred to as RoSuRe–, is based

n a linearized ADMM [20] , which can also be regarded as a

hambolle–Pock algorithm [21,22] without the acceleration step

nd with a variable step size. Concretely, we pursue the sparsity

f E and W alternatively until convergence. Besides the effective-

ess of ADMM on l 1 minimization problems, a more profound ra-

ionale for this approach is that the augmented Lagrange multiplier

ALM) method can address the non-convexity of Eq. (1) [23,24] . Al-

hough there is no guarantee on the convergence of general non-

onvex problems, Theorem 4 in [24] states that under the ALM

etting, the duality gap may be zero when certain conditions are

atisfied. We show the zero duality gap property of Problem (1) in

ppendix B . We can then approximate the optimizer by solving the

ual problem, with an appropriate augmented Lagrange multiplier

 Algorithm 1 ). 

Specifically, substituting L by X − E , and using L = LW , we can

educe Eq. (1) to a two-variable problem, and hence write the aug-
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1 Consider M 1 , M 2 ∈ SR 1 , let M 1 = ( 
1 2 

0 0 
) and M 2 = ( 

0 0 

2 1 
) . It is easy to see 

that M = (M 1 + M 2 ) / 2 = ( 
1 / 2 1 

) / ∈ SR 2 . 
mented Lagrange functional of Eq. (1) as follows, 

L (E , W , Y , μ) = λ‖ E ‖ 1 + ‖ W ‖ 1 + 〈 LW − L , Y 〉 
+ 

μ

2 

‖ (X − E ) W − (X − E ) ‖ 

2 
F , (2)

where Y is the Lagrange multiplier. Letting ˆ W = I − W , we alterna-

tively update W and E , 

W k +1 = arg min 

W 

‖ W ‖ 1 + 〈 L k +1 W − L k +1 , Y k 〉 
+ 

μ

2 

‖ L k +1 W − L k +1 ‖ 

2 
F , (3)

E k +1 = arg min 

E 
λ‖ E ‖ 1 + 〈 (E − X ) ̂  W k +1 , Y k 〉 

+ 

μ

2 

‖ (E − X ) ̂  W k +1 ‖ 

2 
F . (4)

The solutions to Eqs. (3) and (4) can be well approximated in each

iteration by linearizing the augmented Lagrange term [20] , 

W k +1 = T 1 
μη1 

( 

W k + 

L T 
k +1 

(L k +1 
ˆ W k − Y k /μk ) 

η1 

) 

, (5)

E k +1 = T 1 
μη2 

( 

E k + 

(L k +1 
ˆ W k +1 − Y k /μk ) ̂  W 

T 
k +1 

η2 

) 

, (6)

where η1 ≥ ‖ L ‖ 2 
2 
, η2 ≥ ‖ ̂  W ‖ 2 

2 
, and T α(·) is a soft-thresholding

operator. 

In addition, the Lagrange multipliers are updated as follows, 

Y k +1 = Y k + μk (L k +1 W k +1 − L k +1 ) , (7)

μk +1 = ρμk . (8)

3. Theoretical discussion 

3.1. Details on derivation of RoSuRe 

At first, we assume that the number of clusters k is known. We

relax this requirement in Section 3.1.1 . Our approach is based on

the observation that assuming sufficient sample density, each sam-

ple l i can be represented by the others from the same subspace

S ( l i ). 

l i = 

∑ 

i 	 = j, l j ∈ S(l i ) 

w i j l j . 

Furthermore, we represent the above relation in a matrix form

using L = [ L 1 | L 2 | . . . | L k ] , where L I for I = 1 , 2 , . . . , k is the collec-

tion of the samples from the I th subspace. Then, we have 

L = LW , W ii = 0 , (9)

where W is a n × n matrix with zero diagonals. Since each sample

is represented by other samples only from the same subspace, we

observe that many elements of W are zero. More precisely, in any

suitable matrix W for our purpose, we have W i j = 0 whenever the

indexes i, j correspond to samples from different subspaces. This

motivates us to introduce the following definition for the suitable

matrices W : 

Definition 1. (k-block-diagonal matrix) . We say that an n × n ma-

trix M is k-block-diagonal if and only if there exists a permutation

matrix P , such that ˜ M = PMP 

−1 is a block-diagonal matrix with k

diagonal blocks. The space of all such matrices is denoted as BM k . 

Let n i be the number of samples from S i , and ( b i , b i ) the di-

mension of block W I of W . Then, n i ≥ b i and as a result, the

relation ρ(W ) = ‖ W ‖ /n 2 ≤ max { b } /n ≤ max { n } /n holds, which
0 i i 
hows that a k −block-diagonal matrix is sparse. We next define

he space of matrices of which the columns reside in UoS based

n the space BM k of W . 

efinition 2. (k-self-representative matrix) . We say that a d × n ma-

rix Y with no zero column is k-self-representative if and only if 

 = YW , W ∈ BM k , W ii = 0 . 

he space of all such d × n matrices is denoted by SR k 

Recasting the retrieval of a union of subspaces as decomposing

 data matrix X into a sparse outlier component together with a

elf-representative entity L ∈ SR k with the blocks in the underlying

 −bolck-diagonal matrix W of L , may be formulated as, 

in ‖ E ‖ 0 s.t. X = L + E , L ∈ SR k . (10)

In addition to not accounting for low dimensionality of the un-

erlying susbpaces, this formulation unfortunately presents some

ther fundamental difficulties in solving Eq. (10) , including the

ombinatorial nature of ‖·‖ 0 and the complicated geometry of SR k .

or the former one, there are established results of using the l 1 
orm to approximate the sparsity of E [25,26] . The main difficulty,

owever, is that not only SR k is a non-convex set, 1 but even worse,

t is not path-connected. Intuitively, it is helpful to consider L 1 ,

 2 ∈ SR k , and let col (L 1 ) ∩ col (L 2 ) = 0 . Then, all possible paths con-

ecting L 1 and L 2 must pass the origin. Given that L is a matrix

ith no zero columns, and 0 	∈ SR k , we see that it is impossible to

onnect L 1 , L 2 through SR k . 

To cope with the above problems, we opt to integrate the con-

traint in Eq. (10) into the objective function, and see the problem

rom a different angle by the following steps: First, we observe that

he sparsity of the matrix W in Eq. (9) is further tied to the di-

ension of the subspaces. To see this, notice that each data point

 k can be represented by at most d k = dim (S(l k )) other linearly in-

ependent samples from its subspace. This shows that the sparsity

f the matrix W can be as small as max k d k /n . This motivates us to

ntroduce the following definition: 

efinition 3. ( W 0 -function on a matrix space). For any d × n matrix

 , if there exists W ∈ BM k , such that Y = YW , then 

 0 (Y ) = min 

W 

‖ W ‖ 0 , s.t. Y = YW , W ii = 0 , 

 ∈ BM k . 

therwise, W 0 (Y ) = ∞ . 

We next introduce the following problem: 

in 

L , E 
W 0 (L ) + λ‖ E ‖ 0 s.t. X = L + E . (11)

he optimization in Eq. (11) is our framework for subspace clus-

ering to reflect a) clustering through the constraint W ∈ BM k ,

) low dimensional subspace through minimizing ‖ W ‖ 0 and c)

arsimonious corruption by minimizing E 0 . The relation between

qs. (10) and (11) is also established by the following lemma: 

emma 1. For a certain λ, if ( ̂ L , ̂  E ) is a pair of global optimizers of

q. (11) , then ( ̂ L , ̂  E ) is also a global optimizer of Eq. (10) . 

The proof of Lemma 1 is presented in Appendix A.1 . 
1 1 / 2 
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.1.1. � 1 Relaxation 

Finally, we will leverage the parsimonious property of l 1 norm

o approximate ‖·‖ 0 . We extend the definition of W 0 (·) to a l 1 
orm-based function: 

efinition 4. ( W 1 -function on a matrix space). For any d × n matrix

 , if there exists W ∈ BM k , such that Y = YW , then 

 1 (Y ) = min 

W 

‖ W ‖ 1 , s.t. Y = YW , W ii = 0 , 

 ∈ BM k . 

therwise, W 1 (Y ) = ∞ . We also denote the optimal point in the

bove definition by ˆ W 1 (Y ) . 

We then rewrite the problem in Eq. (11) as, 

in 

L , E 
W 1 (L ) + λ‖ E ‖ 1 s.t. X = L + E 

It is worth noting that formulation Eq. (12) bears a similar form

o the problem of robust PCA in [2] . Intuitively, both problems at-

empt to decompose the data matrix into two parts, both with a

arsimonious supports, but in different domains. For robust PCA,

he parsimonious support of the low rank matrix lies in the do-

ain of singular values. In our case, the sparse support of L lies in

he matrix W in the W 0 function, meaning that columns of L can

e sparsely self-represented. 

Under the conditions shortly stated in Theorem 1 , we can sub-

equently modify W 1 (L ) into a convex function and define it in a

onnected domain by dropping the constraint W ∈ BM k . This also

elaxes the requirement that k is known. Specifically, we have 

˜ 
 1 (L ) = min 

W 

‖ W ‖ 1 , s.t. L = LW , W ii = 0 . (12) 

ubstituting W 1 (L ) by ˜ W 1 (L ) in Eq. (12) allows us to relax the con-

traints of Eq. (12) and directly work on the problem in 1. 

.2. Guarantees on recovery of union of subspaces 

In this section, we discuss the important question of when the

nderlying structure can be exactly recovered by solving Eq. (12) .

his problem is essentially twofold: first, it is about the exact re-

overy of ( ̂ L , ̂  E ) ; and second, it is about when 

ˆ W correctly reflects

he true UoS structure. For numerical reasons, we are particularly

nterested in identifying cases, where the condition W ∈ BM k can

e relaxed, without disturbing the optimal solution. 

.2.1. Geometric interpretation of subspace detection property 

Starting with the question of a correct choice of ˆ W , we assume

hat L and E can be correctly selected and the problem of finding

parse coefficients W is equivalent to subspace clustering without

parse errors. We shortly discuss the problem of solving for L and

 . Specifically, W is determined by the problem defined in W 1 (L )

 Definition 4 ). However, it is fundamentally difficult to constrain W

n BM k in the optimization. On the other hand, if we can lift this

onstraint without affecting the solution of W 1 (L ) , then the prob-

em will degenerate to a classical l 1 minimization problem with

inear constraints. 

We next focus on the constraint W ∈ BM k in W 1 (L ) . Intuitively,

ince the sparsity of W is bounded below by max { b i }/ n , where b i is

he size of each block, we can see that the set of sparse matrices

nd BM k overlap. A natural question then would be under what

ondition we can simply use l 1 minimization to obtain an accurate

 , i.e. reflecting the underlying subspace structure. 

In a more formal way, if W is the solution of the following

roblem, 

in 

W 

‖ W ‖ 1 s.t. XW = X , W ii = 0 , (13) 

t

nd supp ( W ) ⊆supp ( A ) ∈ BM k , then the solution of Eq. (13) is the

ame as that with a constraint X ∈ BM k , where 

 i j = 

{
1 if x i and x j are in the same subspace, 
0 otherwise. 

(14) 

In [27] , Theorem 2.5 guarantees the correctness of the subspace

egmentation, which they call l 1 subspace detection property. In-

uitively, if the “subspace incoherence” for each subspace is high,

nd the distribution of points in each subspace is not skewed, then

 ij 	 = 0 if and only if x i and x j are in the same subspace. In this sec-

ion, we provide additional insight on this problem. 

Specifically, we focus on each x i in X , and rewrite Eq. (13) as

ollows for each x i , 

in 

w 

‖ w ‖ 1 s.t. X −i w = x i , (15) 

here X −i is the matrix of all columns of X except x i . 

We next give the l 1 subspace detection property as [27] , and

hen provide a sufficient condition for the l 1 subspace detection

roperty to hold. 

efinition 5. ( l 1 subspace detection property) Let dataset X lie in

 union of subspaces S = S 1 ∪ S 2 ∪ . . . S J . For each x i ∈ X , the optimal

olution of Eq. (15) is w i . Then we say the pair ( X , S ) satisfies the

 1 subspace detection property if and only if supp ( w i ) ⊆{ j | x i , x j ∈ S l }.

Before presenting our main result, we would like to discuss the

otential factors on this issue. On one hand, given the dataset X

n a union of subspaces, it would be easier to segment X correctly

f the “distance” between any two subspaces is sufficiently large.

n the extreme case, if two subspaces overlap, then the identity

f the points in the overlap region would not be well-defined. On

he other hand, the density of samples in each subspace is impor-

ant, in the sense that we need a subspace to be well-represented

y the samples on it, so that we do not create “false outliers” by

nsufficient sampling. For example, in a two-dimensional subspace

ith a x − y Cartesian coordinate system, if we somehow only have

ne sample p along y coordinate, and all the rest along x coordi-

ate, then without knowing the underlying structure, it would be

egitimate to assume that p is an outlier, and is not able to be rep-

esented by other samples, and the rest of the data fall on a one-

imensional subspace. We therefore would expect a sufficient con-

ition to include both of the above conditions: subspaces keeping

 “safe distance” from each other, and each having enough samples

n each of them. 

In particular, the distance between two subspaces can be mea-

ured by the first principal angle between them as �( S i , S j ). To

rovide some intuition here, if �(S i , S j ) = 0 , then S i and S j overlap;

nd if �(S i , S j ) = π/ 2 , we have S i ⊥ S j . On the other hand, to mea-

ure the sufficiency of samples, we need to first define the data

ensity in an appropriate way. We hence next introduce concepts

elated to the measure of data sufficiency. 

efinition 6. (Conic hull [28] ) The conic hull of a set C is 

one (C) = { α1 x 1 + · · · + αk x k | x i ∈ C, αi ≥ 0 , i = 1 , . . . , k } 
It is worth noting that cone ( C ) is also the smallest convex cone

hat contains C [28] . 

We then give the 
-density condition to measure the data suf-

ciency as follows, 

efinition 7. ( 
-density condition) For all x l 
i 
∈ X 

l , if there exists

n affine independent set { x l 
k 1 

, . . . , x l 
k q 

} k i 	 = i ⊂ ±X 

j such that x l 
i 
∈

 

l 
i 
= cone (x l 

k 1 
, . . . , x l 

k q 
) , and the minimal circumscribed sphere in

 

l of { x l 
k 1 

, . . . , x l 
k q 

} centered at O i obeys �(O i , x 
l 
k j 

) ≤ 
, j = 1 , . . . , q,

hen we say that X 

l in S l satisfies the 
-density condition. 
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Our main result now stated as the following theorem, 

Theorem 1. A data set X of unit-length points that lie on a union of

subspaces S = S 1 ∪ S 2 ∪ . . . S J satisfies the l 1 subspace detection prop-

erty if it satisfies the 
-density condition, and for any pair of S i and

S j , �( S i , S j ) > 
, where �( S i , S j ) is the first principal angle between

S i and S j . 

The proof is presented in Appendix A.2 . The interpretation of

Theorem 1 is straightforward: the angle between subspaces is

bounded below by 
, which is exactly our measure for the data

density, the maximum “size” of the smallest conic hull contain-

ing each sample. Specifically, if we have a higher density of sam-

ples, which means we have a clearer image of each subspace, then

the segmentation of the union of subspaces can be accurately car-

ried out with a more stringent condition, i.e. the angle between

subspaces can be smaller. On the other hand, if the samples are

sparse and far from each other, it would be more difficult to re-

cover the underlying structure, and therefore we need the union

of subspaces to be widely separated, i.e. a larger principal angle. 

3.2.2. A sufficient condition for exact recovery 

Now, we focus on the recovery of noiseless samples from noisy

observations. The exact recovery of L and E relies on the proper-

ties of both matrices. In particular, we expect these two matrices

to be fundamentally different from each other to ensure exact re-

covery. For example, if E shares the same UoS structure as L , then

a segmentation of L and E is impossible without further prior in-

formation. In other words, if any perturbation caused by a sparse

vector E affects the UoS structure of L , we cannot distinguish E

from L only using the information of their geometric space. This

motivates introducing the following definition: 

Definition 8. The subspaces { S k } and the noiseless data matrix L

are said to be θ−balanced with respect to a support � if for any

vector E supported on �, there exists a completion denoted by Ē

such that Ē agrees with E on the support, each column of Ē be-

longs to the same subspace as its corresponding column in L and

‖ ̄E ‖ 1 ≤ (1 + θ ) ‖ E ‖ 1 . 
Definition 9. A noiseless data matrix L and a sparse error matrix

E are said to be (ε, μ) −identifiable if for any error matrix E 

′ with

the same support as E and ‖ E 

′ ‖ ≤ ε, the relation 

W 1 (L + Ē 

′ ) − W 1 (L ) ≥ μ‖ E 

′ ‖ 1 

holds. 

Recall that W 1 (. ) reflects the similarity of a data set to a

UoS structure. Hence, the above definitions refer to a case, where

adding a sparse error always leads to a less structured data set. We

next introduce a stronger version of the conditions in Theorem 1 : 

Definition 10. A noiseless data matrix L on a UoS { S k } and a sparse

error matrix E are said to satisfy (ε, 
) −subspace detection prop-

erty if for any error matrix E 

′ with the same support as E and

‖ E 

′ ‖ ≤ ε, the data set X = L + Ē 

′ satisfies the 
−density property

and �( S k , S l ) > 
 for any two distinct subspaces S k , S l . 

Then, we have the following result for perfect recovery: 

Theorem 2. The pair ( L, E ) can be exactly recovered by solving Eq.

(12) with λ> 0, i.e. ( ̂ L , ̂  E ) = (L , E ) , if 

1. The subspaces are θ-balanced with respect to the support of E . 

2. The pair ( L, E ) is (ε, μ) −identifiable. 

3. The pair ( L, E ) satisfies (ε, 
) −subspace detection property. 

4. The following relations hold, 

2 ‖ E ‖ 1 + 

W 1 (L ) ≤ ε

λ

and 

1 + W 1 (L ) 

cos (
) 
≤ λ ≤

μ − θ (1+ W 1 (L )) 
cos (
) 

1 + 

ε max (1 ,θ ) 
cos (
) 

. 

The proof of Theorem 2 is presented in Appendix A.3 . In par-

icular, this theorem gives an “incoherence” condition between L

nd E to guarantee an exact recovery. In practice, as we will see

n the experimental section, the sparse errors typically reside in a

pace distant from the data space, since errors are generally lack

oherent structures as high dimensional data. 

. Experiments and validation 

.1. Experiments on synthetic data 

Section 3.2 discusses the necessary condition to recover data

tructure by solving Eq. (10) . In this section, we hence empirically

nvestigate the viability extent of RoSuRe with various conditions.

he recovery results are compared with Robust PCA [2] using the

ethod presented in [19] and sparse subspace clustering as well as

ts modification for sparse corruption using the algorithms in [15] . 

The data matrix L is fixed to be a 200 × 200 matrix, and all data

oints are uniformly sampled from a union of 5 subspaces. The

orm of each sample is normalized to 1. 10% elements of each col-

mn in sparse matrix E 0 are random selected to be nonzeros. The

alue of each nonzero element in E 0 then follows a Gaussian distri-

ution with mean 0.5 and variance 0.5. Fig. 1 shows one example

f the exact recovery and clustering. Note that ( L RoSuRe , E RoSuRe ) and

 L 0 , E 0 ) are almost identical, and W RoSuRe shows clear clustering

roperties such that w ij ≈ 0 when l i , l j are not in the same sub-

pace. In Fig. 2 we compare with the result of Robust PCA, and

emonstrate the big improvement of our method. 

Fig. 3 is the overall recovery results of RoSuRe, robust PCA, SSC

nd the modification of SSC for the sparse error. White shaded

rea means a lower error and hence amounts to exact recovery.

he dimension of each subspace is varied from 1 to 15, and the

parsity of S from 0.5% to 15%. Each submatrix L I = X I Y 

T 
I 

with

 × d matrices X I and Y I , are independently sampled from an i.i.d

ormal distribution. The recovery error is measured as er r (L ) =
 L 0 − ˆ L ‖ F / ‖ L 0 ‖ F . We can see a significant larger range of RoSuRe

ompared to robust PCA and SSC. The contrasting results achieved

y RoSuRe and robust PCA is due the difference of data models.

oncretely, when the sum of the dimension of each subspace is

mall, the UoS model degenerates to a “low-rank + sparse” model,

hich suits robust PCA very well. On the other hand, when the

imension of each subspace increases, the overall rank of L tends

o be accordingly larger, and hence the low rank model may not

old anymore. Since RoSuRe is designed to fit a UoS model, it can

ecover the data structure in a wider range. For SSC, this method

pecifically fits the condition when only a small portion of data are

utliers. Under the assumption that most of the data is corrupted,

t is hence very difficult to reconstruct samples by other corrupted

nes. We note that the modified SSC improves the performance of

SC, but RoSuRe is still remarkably superior. The superior perfor-

ance of RoSuRe can be explained by the fidelity of its model, and

he much less conforming structure of outliers to the SSR property

s stipulated by the modified SSC in order to preserve convexity. 

.2. Experiments on computer vision problems 

Since UoS model has been intensively researched and success-

ully applied to many computer vision and machine learning prob-

ems [1,8,15] , we expect our model to be well adapted to this class

f problems. Here, we present experimental results of our method

n video background subtraction and face clustering problem, as

xemplars of the promising potential. 
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Fig. 1. An example of robust subspace exact recovery. 

Fig. 2. Comparison with Robust PCA. 
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.2.1. Video background subtraction 

Surveillance videos can be naturally modeled as a UoS model

ue to their relatively static background and sparse foreground.

he power of our proposed UoS model lies in coping with both

 static camera and a panning one with periodic motion. Here we

est our method in both scenarios using surveillance videos from

IT traffic dataset [29] . In Fig. 4 , we show the segmentation re-

ults with a static background. For the scenario of a “panning cam-

ra”, we generate a sequence by cropping the previous video. The
ropped region is swept from bottom right to top left and then

ackward periodically, at the speed of 5 pixels per frame. The re-

ults are shown in Fig. 5 . We can see that the results in the moving

amera scenario are only slightly worse than the static case. 

More interestingly, the sparse coefficient matrix W provides im-

ortant information about the relations among data points, which

otentially may be used to cluster data into individual clusters. In

ig. 6 (a), we can see that, for each column of the coefficient matrix

 , the nonzero entries appear periodically. In considering the pe-
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Fig. 3. Overall recovery results of different methods. [0 0.2] is mapped to [1 0] of grayscale image. The x axis shows the number of corrupted entries in each data vector 

and the y axis refers to the dimension of the subspaces. 

Fig. 4. Background subtraction on traffic videos (static camera). 
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riodic motion of the camera, we essentially mean that every frame

is mainly represented by the frames when the camera is in a simi-

lar position, i.e. a similar background, with the foreground moving

objects as sparse perturbations. We hence permute the rows and

columns of W according to the position of cameras, as shown in

Fig. 6 (b). A block-diagonal structure then emerges, where images

with similar backgrounds are clustered as one subspace. 

4.2.2. Face clustering under various illumination conditions 

Recent research on sparse models implies that a parsimonious

representation may be a key factor for classification [1,30] . Indeed,

the sparse coefficients pursued by our method shows clustering

features in experiments of both synthetic and real-world data. To
urther explore the ability of our method, we evaluate the cluster-

ng performance on the Extended Yale face database B [31] , and

ompare our results to those of state-of-the-art methods [8,15,32] . 

The database includes cropped face images of 38 different peo-

le under various illumination conditions. Images of each person

ay be seen as data points from one subspace, albeit heavily

orrupted by entries due to different illumination conditions, as

hown in Fig. 7 . In our experiment, we adopt the same setting

s [15] , such that each image is downsampled to 48 × 42 and is

ectorized to a 2016-dimensional vector. In addition, we use the

parse coefficient matrix W from RoSuRe to formulate an affinity

atrix as A = 

˜ W + 

˜ W 

T , where ˜ W is a thresholded version of W .
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Fig. 5. Background subtraction on traffic videos (panning camera). 

Fig. 6. Coefficient matrix W (a) without rearrangement according to the position of 

the camera (b) with rearrangement according to the position of the camera. 
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Table 1 

Clustering error (%) on the Extended Yale Face Database B 

compared to state-of-the-art methods [8,15,32] . 

Algorithm LSA LRR SSC RoSuRe 

2-subjects mean 38.20 2.54 1.86 0.71 

Median 47.66 0.78 0.00 0.39 

5-subjects mean 58.02 6.90 4.31 3.24 

Median 56.87 5.63 2.50 1.72 

10-subjects mean 60.42 22.92 10.94 5.62 

Median 57.50 23.59 5.63 5.47 

Fig. 8. Clustering accuracy vs the value of λ. 
he spectral clustering method in [33] is utilized to determine the

lusters of data, with affinity matrix A as the input. 

We compare the clustering performance of RoSuRe with the

tate-of-the-art methods such as local subspace analysis(LSA) [32] ,

parse subspace clustering (SSC) [15] , and low rank representa-

ion(LRR) [8] . The best performance of each method is referenced

n Table 1 for comparison. As shown in the table, RoSuRe has the

owest mean clustering error rate in all three settings, i.e. 2 sub-

ects, 5 subjects and 10 subjects. In particular, in the most chal-

enging case of 10 subjects, the mean clustering error rate is as

ow as 5.62% with the median 5.47%. Additionally, we show the ro-

ustness of our method with respect to λ in a 10-subject scenario.

n Fig. 8 , the correlation between the value of λ and the cluster
Fig. 7. Sample face images in Extended Yale face database B. 
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Fig. 9. Affinity matrix for face images from different subjects. 
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accuracy maintains above 98% with λ varying from 500 to 15,0 0 0

( Fig. 9 ). 

In Fig. 10 , we present the recovery results of some sample faces

from the 10-subject clustering scenario. In most cases, the sparse

term E compensates for the missing information caused by light-

ning condition. This is especially true when the shadow area is

small, i.e. a sparser support of error term E , we can see a visu-

ally perfect recovery of the missing area. This result validates the

effectiveness of our method to solve the problem of subspace clus-

tering with sparsely corrupted data. 

5. Conclusion 

We have proposed in this paper a novel approach to recover un-

derlying subspaces of data samples from measured data corrupted

by general sparse errors. We formulated the problem as a non-

convex optimization problem, and a necessary condition of exact

recovery is proved. We also designed an effective algorithm named

RoSuRe to well approximate the global solution of the optimiza-

tion problem. Furthermore, experiments on both synthetic data

and real-world vision data are presented to show a broad range

of applications of our method. 

Future work may include several aspects across computer vision

and machine learning. It would first be interesting to understand

and extend this work from a dictionary learning angle, to learn a

feature set for high dimensional data representation and recogni-

tion. Exploring a sufficient condition is not only theoretically inter-

esting, but also helpful for a deeper understanding the problem. 
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ppendix A. Proofs 

.1. Proof of Lemma 1 

At the beginning, we rewrite the objective function in

q. (11) as 

f (L , E ) = 

W 0 (L ) 

λ
+ ‖ E ‖ 0 . (16)

t is clear that this will not change the minimum value. In addition,

e assume that there exists L ∈ SR k , otherwise the statement would

e trivial, since Eq. (10) would be not feasible, and the value of the

bjective function in Eq. (11) would be infinite. 

Let ( ̂ L , ̂  E ) be a global minimizer of Eq. (11) , then 

ˆ L ∈ SR k . If ∃ E 

′ ,
uch that ‖ E 

′ ‖ 0 < ‖ ̂ E ‖ 0 and L ′ = X − E 

′ ∈ SR k , we have 

f (L ′ , E 

′ ) = ‖ E 

′ ‖ 0 + 1 + 

W 0 (L ′ ) 
λ

− 1 

≤ ‖ ̂

 E ‖ 0 + 

W 0 (L ′ ) 
λ

− 1 . (17)

ince ( ̂ L , ̂  E ) is a global minimizer, f ( ̂ L , ̂  E ) < f (L ′ , E 

′ ) . Combined

ith Eq. (17) , 

 < f (L ′ , E 

′ ) − f ( ̂ L , ̂  E ) ≤ W 0 (L ′ ) − W 0 ( ̂ L ) 

λ
− 1 . (18)

hen it follows that 

< W 0 (L ′ ) − W 0 ( ̂ L ) . (19)

ote that when L ∈ SR k , 0 < W 0 (L ) ≤ n 2 , where n is the number of

olumns of L . Therefore, letting λ≥ n 2 will violate Eq. (19) since 

≥ n 

2 > W 0 (L ′ ) − W 0 ( ̂ L ) . (20)
are original images, the components E , and the recovered images, respectively. 

https://doi.org/10.13039/100006168
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ence, with λ≥ n 2 , ˆ E is also a solution of Eq. (10) . Lemma 1 is

roved. �

.2. Proof of Theorem 1 

Let X represent the dataset with unit-length data and S = S 1 ∪
 

2 ∪ · · · ∪ S q its underlying structure as a union of subspaces. Con-

ider the partition of X corresponding to S is X = [ X 

1 , X 

2 , · · · , X 

q ] ,

hen for any x i ∈ X 

j , there is a linear combination of other samples

n X 

j represent x i as x i = 

∑ 

x k ∈ X j ,k 	 = i w k x k . We therefore have a fea-

ible solution for the following problem, 

 

∗ = arg min 

w 

‖ w ‖ 1 

s.t. X 

j 
−i 

w = x i . (21) 

hen the dual problem of Eq. (21) as follows also has at least one

easible point, 

ax 〈 x i , λ〉 s.t. ‖ (X 

j 
−i 

) T λ‖ ∞ 

≤ 1 . (22) 

Let the support of w 

∗ be Q 0 , and consider the dual vector λ∗

atisfying 

∗ = arg min 

λ
‖ λ‖ 2 

s.t. (X 

j 
Q 0 

) T λ = sgn (w 

∗
Q 0 

) , ‖ (X 

j 
Q c 

0 
) T λ‖ ∞ 

≤ 1 . (23) 

It is worth noting that Eqs. (21) and (23) imply that x i ∈
one (X 

j 
Q 0 

) . Additionally, there are some properties of λ∗ which are

rucial in the proof. 

First, let λ∗ = λ∗
S j 

+ λ∗
S ⊥ 

j 

. Since λ∗ is the feasible point with the

east l 2 norm, and (X 

j 
Q 0 

) T λ∗
S ⊥ 

j 

= 0 , (X 

j 

Q c 
0 

) T λ∗
S ⊥ 

j 

= 0 , we have λ∗
S ⊥ 

j 

= 0 ,

nd therefore λ∗ ∈ S j . 

Furthermore, the first constraint in Eq. (23) can be rewritten

s 

〈 x 

T , λ∗〉| = 1 , ‖ x ‖ 2 = 1 , ∀ x ∈ X 

j 
Q 0 

, (24) 

hich implies that λ∗ passes the origin of the circumscribed

phere of ˆ X 

j 
Q 0 

, where ˆ X 

j 
Q 0 

⊂ ±X 

j 
Q 0 

and 〈 ̂ x 
j 
q , λ

∗〉 = 1 , ∀ q ∈ Q 0 . 

Now consider the 
-density condition for x i , it follows that 

(λ∗, x ) ≤ 
, ∀ x ∈ 

ˆ X 

j 
Q 0 

. (25) 

ombined with ‖ x ‖ 2 = 1 , we have 

 λ∗‖ 2 ≤ 1 / cos (
) (26) 

We then would like to utilize λ∗ and w 

∗ to further constrain

he optimal solution of Eq. (15) . 

In particular, we have the following lemma from [27] using the

ual certificate technique, 

emma 2. Consider there exists c ∈ R n which is feasible for the primal

roblem 

in 

z 
‖ z ‖ 1 s.t. Az = y , (P) 

nd the support of c is R ⊆Q, then if there is dual vector v satisfying 

 

T 
R v = sgn (c R ) , ‖ A 

T 
Q∪ R c v ‖ ∞ 

≤ 1 , ‖ A 

T 
Q c v ‖ ∞ 

< 1 , 

ll optimal solutions z ∗ to (P) have z ∗
Q c 

= 0 . 

We next construct a primal feasible point for Eq. (15) by w 

∗.

onsider the index set of X 

j in X is Q , then w̄ satisfying w̄ Q =
 

∗, w̄ 

c 
Q 

= 0 is also feasible for Eq. (15) . Additionally, since X Q 0 
=

 

j 
Q 0 

, X Q c 
0 
∪ Q = X 

j 

Q c 
0 

, λ∗ have the following property from Eq. (23) , 

 

T 
Q 0 

λ∗ = sgn ( ̄w 

∗
Q 0 

) , ‖ X 

T 
Q c ∪ Q λ

∗‖ ∞ 

≤ 1 (27) 

0 s  
hen according to Lemma 2 , if we further have ‖ X 

T 
Q c 

λ∗‖ ∞ 

< 1 ,

hen combined with the condition that w̄ Q c = 0 , all optimal so-

utions ˆ w of Eq. (15) satisfy ˆ w Q c = 0 , which essentially implies the

 1 subspace detection property. 

Consider that the principle angle between any pair of subspaces

s larger than 
, we have 

 P S j x ‖ 2 < ‖ x ‖ 2 cos (
) = cos (
) , ∀ x ∈ X Q c (28) 

ombined with Eq. (26) , for all x ∈ X Q c , it follows that 

〈 x , λ∗〉| = |〈 P S j x , λ∗〉| ≤ ‖ P S j x ‖ 2 ‖ λ∗‖ 2 

< cos (
) · 1 

cos (
) 
= 1 , (29) 

nd therefore Theorem 1 is proved. 

.3. Proof of Theorem 2 

Suppose that the optimal solution of Eq. (12) is given by the

air (L + Z , E − Z ) for some matrix Z . First, note that 

 1 (L + Z ) + λ‖ E − Z ‖ 1 ≤ W 1 (L ) + λ‖ E ‖ 1 , 

hich leads to 

 Z ‖ 1 − ‖ E ‖ 1 ≤ ‖ E − Z ‖ 1 ≤ W 1 (L ) 

λ
+ ‖ E ‖ 1 . 

e conclude that 

 Z ‖ 1 ≤ W 1 (L ) 

λ
+ 2 ‖ E ‖ 1 ≤ ε. 

ext, we decompose Z = Z � + Z �c = Z̄ � + Z 

′ 
�c where the support

of Z � is the same as E and the support of Z �c does not over-

ap with �. Furthermore, Z̄ � is the completion of Z � which exists

ince the subspaces are θ−balanced. Clearly, Z 

′ 
�c is supported on

c and we have that 

 Z 

′ 
�c ‖ 1 ≤ ‖ Z �c ‖ 1 + θ‖ Z �‖ 1 , 

‖ ̄Z �‖ 1 ≤ (1 + θ ) ‖ Z �‖ 1 . (30) 

We shortly show that 

 1 (L + Z ) ≥
W 1 (L + Z̄ �) − ‖ Z ′ 

�c ‖ 1 
cos (
) 

1 + 

‖ Z ′ 
�c ‖ 1 

cos (
) 

. (31)

hen, we have that 

 1 (L + Z ) + λ‖ E − Z ‖ 1 

 W 1 (L + Z ) + λ( ‖ E − Z �‖ 1 + ‖ Z �c ‖ 1 ) 

1) ≥
W 1 (L + Z̄ �) − ‖ Z ′ 

�c ‖ 1 
cos (
) 

1 + 

‖ Z ′ 
�c ‖ 1 

cos (
) 

+ λ‖ E 1 ‖ + λ( ‖ Z �c ‖ 1 − ‖ Z �‖ 1 ) 

2) ≥
W 1 (L ) + μ‖ Z �‖ 1 − ‖ Z ′ 

�c ‖ 1 
cos (
) 

1 + 

‖ Z ′ 
�c ‖ 1 

cos (
) 

+ λ‖ E 1 ‖ + λ( ‖ Z �c ‖ 1 − ‖ Z �‖ 1 ) 

3) ≥ W 1 (L ) + λ‖ E ‖ 1 , 

here Inequality (1) is obtained by Eq. (31) , Inequality (2) is a re-

ult of (ε, μ) −identifiability and triangle inequality, and Inequality
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(3) can be verified by noticing that 

W 1 (L ) + μ‖ Z �‖ 1 − ‖ Z ′ 
�c ‖ 1 

cos (
) 

1 + 

‖ Z ′ 
�c ‖ 1 

cos (
) 

+ λ( ‖ Z �c ‖ 1 − ‖ Z �‖ 1 ) 

(1) ≥
W 1 (L ) + μ‖ Z �‖ 1 − ‖ Z �c ‖ 1 + θ‖ Z �‖ 1 

cos (
) 

1 + 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

+ λ( ‖ Z �c ‖ 1 − ‖ Z �‖ 1 ) 

= 

W 1 (L ) + μ‖ Z �‖ 1 − ‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

+ λ
(

1 + 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

)
( ‖ Z �c ‖ 1 −‖ Z �‖ 1 ) 

1+ 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

(2) ≥
W 1 (L ) + μ‖ Z �‖ 1 − ‖ Z �c ‖ 1 + θ‖ Z �‖ 1 

cos (
) 
+λ‖ Z �c ‖ 1 − λ‖ Z �‖ 1 

(
1+ 

max (1 ,θ ) ε
cos (
) 

)
1+ 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

= 

W 1 (L ) + ‖ Z �‖ 1 
(
μ − θ

cos (
) 
− λ

(
1+ 

max (1 ,θ ) ε
cos (
) 

))
+ ‖ Z �c ‖ 1 

(
λ − 1 

cos (
) 

)
1+ 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

(2) ≥
W 1 (L ) + ‖ Z �‖ 1 

(
θW 1 (L ) 

cos (
) 

)
+ ‖ Z c 

�
‖ 1 

(
W 1 (L ) 

cos (
) 

)
1+ 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

= 

W 1 (L ) 
(

1+ 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

)
1 + 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 
cos (
) 

= W 1 (L ) , 

where Inequality 1 is according to Eq. (30) , Inequality 2 is obtained

by noticing that 

1 ≤ 1 + 

‖ Z �c ‖ 1 + θ‖ Z �‖ 1 

cos (
) 
≤ 1 + 

‖ Z ‖ 1 max (1 , θ ) 

cos (
) 

≤ 1 + 

ε max (1 , θ ) 

cos (
) 
, 

and Inequality 3 is obtained by noticing that according to the con-

ditions on λ in Theorem 1 , we have that 

μ − θ

cos (
) 
− λ

(
1 + 

max (1 , θ ) ε

cos (
) 

)
≥ θW 1 (L ) 

cos (
) 

and 

λ − 1 

cos (
) 
≥ W 1 (L ) 

cos (
) 
. 

We observe that the optimal value is obtained by the pair ( L, E )

and conclude the proof. 

It remains to prove Eq. (31) . For this, note that since ‖ Z �‖ 1 ≤
‖ Z ‖ 1 ≤ ε, and according to the (ε, 
) −subspace detection prop-

erty, the conditions of Theorem 1 are satisfied for the data set

X 

0 = L + Z̄ �. By Theorem 1 , we conclude that the optimizations in

Eq. (15) by the data set X 

0 , have solutions w 

0 
i 

forming a k −block-

diagonal matrix and hence satisfying 

W 1 (L + Z̄ �) = 

∑ 

i 

‖ w 

0 
i ‖ 1 . 

From the argument in the proof of Theorem 1 , we know that these

optimizations have dual vectors λi satisfying ‖ λi ‖ 2 ≤ 1 
cos (
) 

. 

Now, take any matrix W ∈ BM k with W ii = 0 such that (L +
Z ) W = L + Z . This can also be written as (X 

0 + Z 

′ 
�c ) W = X 

0 + Z 

′ 
�c 

or 

X 

0 
−i w i − x 

0 
i = z c i − Z −i, �c w i , (32)

where w i is the i th column of W without the i th element, and

x 0 
i 
, z c 

i 
are the i th columns of X 0 and Z 

′ 
�c , respectively. The matri-

ces X 

0 
−i 

and Z −i, �c are obtained by removing the i th column from

X 0 and Z 

′ 
�c , respectively. From the optimality condition of Eq. (15) ,
e observe that 
(
X 

0 
−i 

)T 
λi ∈ ∂‖ w 

0 
i 
‖ 1 , which leads to 

 w i ‖ 1 − ‖ w 

0 
i ‖ 1 ≥ 〈 (X 

0 
−i 

)T 
λi , w i − w 

0 
i 〉 

(1) = 〈 λi , z 
c 
i − Z −i, �c w i 〉 (2) ≥ −‖ λi ‖ ∞ 

∥∥z c i − Z −i, �c w i 

∥∥
1 

(3) ≥ − 1 

cos (
) 

(‖ z c i ‖ 1 + ‖ Z 

′ 
�c ‖ 1 ‖ w i ‖ 1 

)
, 

here Equality (1) is obtained by Eq. (32) , Inequality (2) is the

ölder’s inequality, and Inequality (3) is a result of the triangle in-

quality and replacing infinity norm with two norm. We conclude

hat 

 w i ‖ 1 ≥
‖ w 

0 
i 
‖ 1 − ‖ z c 

i 
‖ 1 

cos (
) 

1 + 

‖ Z ′ 
�c ‖ 1 

cos (
) 

, 

nd summing over i provides the desired result. 

ppendix B. Zero duality gap of the dual problem 

In Section 2.1 , we elaborated our algorithm RoSuRe for Prob-

em (1) . Essentially, our algorithm can be seen as a dual method,

hich relies on solving the dual problem instead of the primal

ne. However, as we mentioned in Section 2.1 , a duality gap usu-

lly exists for general non-convex programming. We then use the

ramework of augmented Lagrange method to “convexify” the La-

range function of (1) . To substantiate our motives, in this section

e would like to show the zero duality gap between the primal

roblem (1) and the associated “augmented” dual problem. 

First of all, consider the nonlinear programming problem with

quality constraints in the following general form, 

in f (x ) s.t. h (x ) = 0 , x ∈ �, (P)

hen the primal function associated with (P) is defined as 

p(z) = inf { f (x ) : h (x ) ≤ z, −h (x ) ≤ z, x ∈ �} . (33)

In addition, the augmented Lagrange function is defined as 

 (x, y, μ) = f (x ) + 〈 y, h (x ) 〉 + 

μ

2 

‖ h (x ) ‖ 

2 , x ∈ �, (34)

hich lead to the dual problem of (P) as follows, 

ax g(y, μ) , where g(y, μ) = inf 
x ∈ �

L (x, y ) (D)

Augmented Lagrange method for non-convex programming is

ntensively studied in [24] , and a sufficient and necessary condi-

ion for a zero duality gap is further proved. In particular, two

onditions, i.e. the quadratic growth condition and the stable of

egree 0, are critical for a non-convex problem to be solved by a

ual method. We therefore first give the definition of these two

onditions, and then show that Problem (1) satisfies them. 

efinition 11. (Quadratic growth condition) We say that (P) satisfies

he quadratic growth condition if for certain real number q , 

 (x, 0 , μ) = f (x ) + 

μ

2 

‖ H(x ) ‖ 

2 ≥ q, ∀ x ∈ �. (35)

efinition 12. (Stable of degree k) If there is an open neighborhood

 of the origin of R n , and a function ω: U → R of class C k , such that

he primal function p ( z ) of (P) satisfies the following condition: 

p(z) ≥ ω(z) , ∀ z ∈ U, with p(0) = ω(0) , 

hen (P) is (lower) stable of degree k. 

emma 3. The associate primal function of (1) satisfies the quadratic

rowth condition and is stable of degree 0. 
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roof. We first show that the primal function p ( z ) satisfies the

uadratic growth condition. Note that the quadratic growth con-

ition holds if f ( x ) is bounded below on �. In Eq. (1) , f (x ) =
 W ‖ 1 + λ‖ E ‖ 1 > 0 , and thus the associated p ( z ) has a lower bound

n �. 

We next show p ( z ) is stable of degree 0. First of all, the stability

f degree 0 is equivalent to the following condition [24] : 

p(0) = lim 

z→ 0 
inf p(z) > −∞ (36) 

hen constructing a compact set including p (0) would suffice to

q. (36) . Specifically, a sufficient condition to Eq. (36) may be as

ollows: � is closed, h ( x ) is continuous, and for some z ∈ R d×n 
+ and

 > inf p(z) , the set 

 = { x ∈ � | f (x ) ≤ C, −z ≤ h (x ) ≤ z} 
s compact. 

In Problem (1) , � = { (W , E ) ∈ R n ×n × R d×n | W ii = 0 } is closed,

nd h ( x ) is obviously continuous. To check the compactness of S ,

et C > λ‖ X ‖ 1 . It is easy to see that (0, X ) is a feasible point in

he union of compact sets S 1 = { x ∈ � | f (x ) ≤ C} and S 2 = { x | − z ≤
 (x ) ≤ z} . Then S = S 1 ∩ S 2 is also a compact set. We therefore have

he conclusion that p ( z ) of Eq. (1) is stable of degree 0. �

We finally have the sufficient condition, i.e. Lemma 3 to show

he zero duality gap of (P) and (D) , given the theorem proved in

24] : 

heorem 3. The duality equation of (P) 

nf (P ) = sup (D ) 

olds, if and only if (P) satisfies the quadratic condition and is stable

f degree 0. 
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