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ABSTRACT

We propose a computationally efficient and high-performance
classification algorithm by incorporating class structural in-
formation in analysis dictionary learning. To achieve more
consistent classification, we associate a class characteristic
structure of independent subspaces and impose it on the clas-
sification error constrained analysis dictionary learning. Ex-
periments demonstrate that our method achieves a compara-
ble or better performance than the state-of-the-art algorithms
in a variety of visual classification tasks. In addition, our
method greatly reduces the training and testing computational
complexity.

Index Terms— Discriminate analysis dictionary learn-
ing, structured mapping, supervised learning.

1. INTRODUCTION

Sparse representation has been successfully applied in var-
ious image processing and computer vision problems, such
as image denoising, and image restoration. Dictionary learn-
ing is one way of obtaining sparse representations for signals
with unknown precise model. The resulting sparse represen-
tation as a linear combination of atoms varies according to the
type of dictionary learning techniques: Synthesis Dictionary
Learning(SDL) and Analysis Dictionary Learning(ADL).

In contrast to SDL, which assumes that the interesting
signal can be recovered by a dictionary with corresponding
sparse coefficients, ADL is based on applying the dictionary
to the data to yield sparse coefficients.

Due to the success of dictionary learning in image restora-
tion problems, task-driven dictionary learning methods are of
great interest in many inference problems, such as image clas-
sification. There are broadly two strategies to address the
task-driven dictionary learning method. The first strategy is
to learn multiple class-specific sub-dictionaries to make the
dictionary more structured, and to increase overall discrimi-
nation between different classes [1, 2, 3, 4]. To be structured,
the atoms in the dictionary are made to learn their own class
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labels. A class label for a new image can then be decided
by comparing reconstruction error from different classes. An-
other strategy is to learn a shared dictionary for all classes and
jointly learn a universal classifier to enforce more discrimina-
tive sparse representations [5, 6].

All of the above mentioned techniques have been devel-
oped and implemented in the SDL framework, while ADL has
increasingly received attention[7]. To the best of our knowl-
edge, none of the standard ADL algorithm such as the anal-
ysis K-SVD[8] or the Sparse Null Space(SNS) pursuit [9]
has addressed the task driven ADL problem. Shekhar et al.
[10] have adopted ADL together with SVM to digits and face
recognition, and demonstrated that ADL is more stable un-
der noise and occlusion with a competitive performance with
SDL. Guo et al. [11] integrated local topological structures
and discriminative sparse labels into the ADL to yield a k
Nearest Neighbor method to classify images.

Inspired by these past efforts and efficient coding of ADL,
we propose an integration of structured subspace regulariza-
tion and supervised learning into an ADL model to obtain a
more structured discriminative and efficient approach to im-
age classification. It has been shown, for example in the con-
text of sparse subspace clustering [12], that the sparse rep-
resentations of the data within a class share a low dimen-
sional subspace. A structuring block diagonal matrix there-
fore is introduced to achieve these localized subspaces of the
sparse codes. This yields more coherence for within-class
sparse representations and more disparity for between-class
representations. To induce additional robustness in the sought
sparse representation, a one-against-all regression-based clas-
sifier is jointly learned, with a resulting optimization func-
tional which we solve by a linearized alternating direction
method (ADM)[13]. This approach is computationally more
efficient than analysis K-SVD[8] and SNS pursuit [9]. More-
over, a great advantage of our algorithm is its extremely short
on-line encoding and classification time. Our experiments
demonstrate that our method achieves a better overall perfor-
mances than the synthesis dictionary approach.

The balance of this paper is organized as follows: In Sec-
tion 2, we state and formulate the problem. We discuss the
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resulting solution to the optimization problem in Section 3.
The experimental validation and results are comprehensively
presented in Section 4. We finally provide some concluding
comments in Section 5.

2. STRUCTURED ANALYSIS DICTIONARY
LEARNING

Notation: Uppercase and lowercase letters respectively de-
note matrix and vectors. The transpose and inverse of matrix
are represented as the superscripts T and −1, such as AT and
A−1. (ai)j represents the jth element in the ith column of
matrix A.

2.1. ADL Formulation

Given a data matrix X = [x1, . . . , xn] ∈ Rm×n, the orig-
inally formulated ADL[8] problem seeks a representation
frame Ω with a sparse coefficient set U .

arg min
Ω,U

1

2
‖U − ΩX‖22 + λ1‖U‖1

s.t. Ω ∈ Rr×m ⊂ W,

(1)

where U ∈ Rr×n andW is a non-trivial solution set.

2.2. Mitigating Inter-Class Feature Interference

The basic idea in our algorithm is to employ the representa-
tion U to obtain a classifier. To reduce the impact of inter-
class common atoms on the discriminative power of ADL,
we propose two additional constraints on U by way of: (1)
A structural map of U to minimize interference of inter-class
common features. (2) A classification error performance min-
imization.
(1) Structural Mapping of U: This constraint is particularly
enforced by imposing that each class belongs to a subspace
defined by a span of the associated coefficients. This im-
proves the consistency of the analysis representations within
a class and enhances the divergence between different classes.
A block-diagonal matrix H ∈ Rs×n as shown below is hence
introduced in the training phase,

H =



h1
1 h1

2 h1
3 h2

4 h2
5

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

,
where s ≥ n is the length of structured representation. Each
diagonal block represents a class and each column hji is a
structured representation for the corresponding data point i in
the jth class. This constraint may also be deviated by an error
term, to be jointly minimized with the ADL functional,

H = QU + ε1, (2)

where Q ∈ Rs×r is matrix to be learned with Ω and U , ε1 is
the tolerance.
(2) Minimal Classification Error: The second constraint is a
classification error as a feedback term to the learning process
of Ω and U . A regression-based classifier W ∈ Rc×s is ap-
plied to the structured representations QU in this term. We
write it as

L = W (QU) + ε2, (3)

where ε2 is also the tolerance, and the label matrix L ∈ Rc×n,
with c denoting for the number of classes. If image j
belongs to class i, Lij = 1; otherwise, Lij = 0.

2.3. Structured ADL Formulation

To ensure that the structure for each image class is preserved
together with minimal interference between different classes,
the minimization of tolerance errors is also required. Then,
using Eqs.(2), (3) and the minimization of tolerance errors to-
gether, the resulting algorithm formulation for our structured
ADL is written as

arg min
Ω,U,Q,
W,ε1,ε2

1

2
‖U − ΩX‖2F + λ1‖U‖1

+
ρ1

2
‖ε1‖22 +

ρ2

2
‖ε2‖22

s.t. H = QU + ε1,

L = W (QU) + ε2,

‖ωTi ‖22 = 1;∀i = 1, . . . , r,

(4)

where ωTi is the row of Ω, ρ1 and ρ2 are the penalty coef-
ficients. Recall H is the structured representation, Q is the
structuring transformation, L is the classifier label, and W is
the linear classifier, and λ1 is the tuning parameters.

3. ALGORITHMIC SOLUTION

The objective function in Eq.(4), on account of its non-
convexity, is transformed to an augmented Lagrange formu-
lation with dual variables Y (1), Y (2) and µ. After straight
forward calculations that lead to eliminations of ε1 and ε2,
we obtain the following expression for this function:

L(Ω, U,Q,W, Y (1), Y (2), µ) =
1

2
‖U − ΩX‖2F + λ1‖U‖1

+ λ2 < Y (1), H −QU > +λ3 < Y (2), L−W (QU) >

+
µ

2
‖H −QU‖22 +

µ

2
‖L−W (QU)‖22,

(5)

where λ1, λ2, λ3 > 0 are the new tuning parameters. Then, to
minimize the objective functional in Eq.(5), we first randomly
initialize the analysis dictionary Ω and two linear transforma-
tions Q and W . The sparse representation U is initialized by
U = 0, the zero matrix. ηQ, ηWQ, and ηWU > 0 are the
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parameters for the learning rate. Then, we alternately update
different variables when fixing the others, which is summa-
rized in Algorithm 1.

Algorithm 1 Structured Analysis Dictionary Learning
1: Initialize Ω, Q, and W as random matrices, and initialize
U as a zero matrix; T is maximum iteration;

2: while not converged and k < T do
3: k = k + 1;

4: Uk+1 = τ λ1
µk(ηQ+ηWQ)

(
Uk −

5UL(Ωk,Uk,Qk,Wk,Y
(1)
k ,Y

(2)
k )

µk(ηQ+ηWQ)

)
;

5: Qk+1 = Qk −
5QL(Ωk,Uk+1,Qk,Wk,Y

(1)
k ,Y

(2)
k )

µk(ηQ+ηWU ) ,

6: Wk+1 = Wk −
5WL(Ωk,Uk+1,Qk+1,Wk,Y

(1)
k ,Y

(2)
k )

µkηQU
;

7: Ωk+1 = Uk+1X
T (XXT + λ4I)−1;

8: Normalize Ωk+1 by ωTi =
ωTi
‖ωTi ‖2

,∀i;

9: Y
(1)
k+1 = Y

(1)
k + µk(H −Qk+1Uk+1);

10: Y
(2)
k+1 = Y

(2)
k + µk(L−Wk+1Qk+1Uk+1);

11: µk+1 = min{ρµk, µmax}; %ρ is the learning rate
12: end while

4. EXPERIMENTS AND RESULTS

We evaluate our proposed SADL method on four popular
visual classification datasets which have been widely used in
previous works and with known performance benchmarks.
They include Extended YaleB[14] face dataset, AR[15] face
dataset, Caltech101[16] object categorization dataset and
Scene15[17] scene image dataset. The features of these 4
datasets are extracted by the same settings in [6].

In our experiments, we provide a comparative evaluation
of three state-of-the-art techniques and our proposed tech-
nique, including classification accuracy and training and test-
ing times. The testing time is defined as the average process-
ing time to classify a single image. For a fair comparison,
we measure the performances of all algorithms by using the
same dictionary size on each dataset and experiment over 10
realizations to obtain an average performance. In relation to
competitive methods, ADL+SVM [10] is a baseline. SRC
[1] is the classical Sparse Representation based Classifica-
tion. LC-KSVD [6] is a SDL approach that jointly learns a
discriminative dictionary and a universal classifier. In our ta-
bles, the accuracy in the parentheses with the citation is the
one that was reported in the original paper. The difference of
the accuracy of our implementing and the original one might
be caused by the different segmentations of the training and
testing samples.

4.1. Face Recognition

Extended YaleB: This face dataset contains in total 2414
frontal face images of 38 persons under various illumina-

Fig. 1. Examples of Face Dataset: The left figure is Extended
YaleB Dataset, and the right one is AR Dataset.

tion and expression conditions, as illustrated in Fig.1. Each
Extended YaleB face image has a 504-dimensional feature
vector. We randomly choose half of the images for training,
and the rest for testing. The dictionary size is set to 570
atoms, λ1 = 0.001, λ2 = 9, λ3 = 3, λ4 = 0.5 and T = 780.

Table 1. Classification Results on Extended YaleB Dataset
Methods Accuracy (%) Training (s) Testing (s)
ADL+SVM[10] 82.91% 91.78 1.13×10−3

SRC[1] 80.5% No Need 3.74×10−1

LC-KSVD[6] 94.56% (95% [6]) 234.67 1.63×10−2

SADL 94.91% 51.29 2.72×10−6

The classification results, training and testing times are
summarized in Table 1. Our proposed SADL method achieves
the highest classification accuracy in the test, but tinily lower
than the reported accuracy of LC-KSVD. However, it is still
substantially more efficient than the others in terms of numer-
ical complexity and classification .

For a more thorough evaluation, we compare SADL with
LC-KSVD for different dictionary sizes, and display the clas-
sification accuracy in Fig.2. We ran our experiments for dic-
tionary sizes by 32, 128, 224, 320, 416, 512, 608, 704, 800,
896, 992, and 1216 (all training size). SADL exhibits a more
stable performance than that of LC-KSVD. In particular, the
accuracy of LC-KSVD significantly decreases, when the dic-
tionary size approaches the all training sample size. In addi-
tion, our method apparently has a much higher classification
accuracy than LC-KSVD, when the dictionary size is small.
The significant decrease in accuracy may be caused by the
trivial solution of dictionary in SDL.
AR: The AR face dateset has 2600 color images of 50 fe-
males and 50 males with more facial variations than the Ex-
tended YaleB database, such as different illumination condi-
tions, expressions and facial disguises, as shown in Fig. 1.
Each person has about 26 images of size 165 × 120. The
AR Face feature dimension is 540. 20 images of each person
are randomly selected as a training set and the other 6 images
for testing. The dictionary size of the AR dataset is set to
500 atoms, λ1 = 0.001, λ2 = 8, λ3 = 10, λ4 = 0.5 and
T = 1040.

The classification performances are summarized in Table
2. Our proposed SADL achieves higher classification accu-
racy than others. Our method is about 10000 times faster than
SRC and LC-KSVD for the testing phase.
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Fig. 2. Classification Accuracy

Table 2. Classification Results on AR Dataset
Methods Accuracy (%) Training (s) Testing (s)
ADL+SVM[10] 90.40% 218.54 9.10×10−3

SRC[1] 66.50% No Need 5.25×10−2

LC-KSVD[6] 87.78% (93.7%[6]) 244.52 1.42×10−2

SADL 95.08% 89.13 3.67×10−6

4.2. Object Recognition

Fig. 3. Caltech101 Dataset Examples

The Caltech101 dataset has 101 different categories of
different objects and 1 non-object category. Most categories
have around 50 images. Fig.3 gives some examples from the
Caltech101 dataset. The standard bag-of words+spatial pyra-
mid matching (SPM) framework [17] is used to calculate the
SPM features. PCA is then adopted to reduce the dimension
of a SPM feature to 3000. The dictionary size is set to 510,
λ1 = 0.001, λ2 = 10, λ3 = 3, λ4 = 4.6 and T = 990.

We evaluate all methods with a dictionary size of 510. The
classification performances are summarized in Table 3. Our
proposed SADL still achieves the highest performance of the
lot. SADL has again a short testing time, which is around
10000 times faster than LC-KSVD.

4.3. Scene Classification

Scene15 dataset contains a total of 15 categories of different
scenes, and each category has around 200 images. The ex-

Table 3. Classification Results on Caltech101 Dataset
Methods Accuracy (%) Training (s) Testing (s)
ADL+SVM[10] 54.93% 447.80 7.75×10−3

SRC[1] 67.70% No Need 4.34×10−1

LC-KSVD[6] 71.79% 487.61 1.35×10−2

SADL 72.36% 773.66 8.10×10−6

Fig. 4. Scene15 Dataset Examples

amples are listed in Fig.4. Proceeding as for the Caltech 101
dataset, we compute the SPM features for scene images. Each
scene image is transformed to a 3000 dimensional feature by
PCA. We randomly pick 100 images per class as training data,
and use the rest of images as testing data. The settings and
steps follow [6]. The dictionary size is set to 450, λ1 = 0.001,
λ2 = 10, λ3 = 4, λ4 = 0.001 and T = 220.

Table 4. Classification Results on Scene15 Dataset
Methods Accuracy (%) Training (s) Testing (s)
ADL+SVM[10] 49.35% 110.47 1.14×10−4

SRC[1] 91.80% No Need 4.06×10−1

LC-KSVD[6] 98.83% (92.9%[6]) 270.93 1.26×10−2

SADL 98.16% 121.02 9.23×10−6

The classification performances are summarized in Table
4. Our performance is slightly lower than LC-KSVD, but
is still higher than SRC, ADL+SVM and the LC-KSVD re-
ported accuracy. However, the testing phase is superior to the
others. Note that, the testing time is 10 thousand times faster
than LC-KSVD.

5. CONCLUSION

We proposed an image classification method referred to as
structured analysis dictionary learning (SADL). To obtain
SADL, we constrained a structured subspace(cluster) model
in the enhanced ADL method, where each class was repre-
sented by a structured subspace. The enhancement of ADL
was realized by constraining the learning by a classification
fidelity term on the sparse coefficients. Our formulated op-
timization problem was efficiently solved by the linearized
ADM method, in spite of its non-convexity due to bilinearity.
Taking advantage of analysis dictionary, our method achieved
a significantly faster testing time.
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