2018 IEEE Winter Conference on Applications of Computer Vision

Robust Subspace Clustering by Bi-sparsity Pursuit: Guarantees and Sequential
Algorithm

Ashkan Panahi'*

Xiao Bian?

Hamid Krim3 Liyi Dai*

1,23 ECE Department, North Carolina State Univerity, Raleigh, NC
1U.S. Army Research Office, Research Triangle Park, NC

apanahi1 , xbianz, ahk® @ncsu.edu

Abstract

We consider subspace clustering under sparse noise,
for which a non-convex optimization framework based on
sparse data representations has been recently developed.
This setup is suitable for a large variety of applications
with high dimensional data, such as image processing,
which is naturally decomposed into a sparse unstructured
foreground and a background residing in a union of low-
dimensional subspaces. In this framework, we further dis-
cuss both performance and implementation of the key opti-
mization problem. We provide an analysis of this optimiza-
tion problem demonstrating that our approach is capable of
recovering linear subspaces as a local optimal solution for
sufficiently large data sets and sparse noise vectors. We also
propose a sequential algorithmic solution, which is partic-
ularly useful for extremely large data sets and online vision
applications such as video processing.

1. Introduction

Linear models underlie many successful approaches in
machine learning, especially for large-scale problems. Prin-
cipal component analysis (PCA) is perhaps the most well-
known example, which identifies a generic low-dimensional
subspace representing a given data set [1]. In recent years
the premise of PCA has been extended to the case where the
data set can be divided into individual groups with arbitrar-
ily different underlying subspaces [2]. This notion is widely
referred to as the union of subspaces (UoS) model and has
been found significantly useful in many machine learning
and signal processing applications. A central problem un-
der the UoS model, is to uncover the data partitions and
detect the underlying subspaces for a given data set. This
problem is known as subspace clustering and has received
considerable attention in the recent unsupervised machine
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learning literature [3, 4]. As such, it is a natural choice for
learning multi-modal behavior of data, dimension reduction
and a suitable alternative for conventional vector cluster-
ing methods such as k-means in unsupervised learning tasks
[5,6,7,8].

Subspace clustering is an NP-hard problem and there are
several approaches to approximately solving it. One of the
most popular methods in the recent literature is the Sparse
Subspace Clustering (SSC) technique [9], which is based on
the following optimization

min
WGR’VLX n
subject to LW =L, Vi;(W);;

Wi

=0, (1)

where L is the input data set and (. );; denotes the entry
in the ¢ row and j™ column. Each column of the matrix
‘W provides a sparse representation of the data point in the
corresponding column of L in terms of the other ones. The
main rationale for SSC is that the data points from each sub-
space are more likely to be represented by other data points
of the same subspace. Hence, the support of W in (1) re-
flects the desired partitions. The sparse subspace clustering
method in (1) has a number of advantages over other ex-
isting methods. First, it is based on a convex optimization,
which provides superior convergence properties as well as
provable performance guarantees. Second, the number of
variables in (1) is independent of the data dimension (num-
ber of rows of X) which makes this approach suitable for
applications with high-dimensional data. In fact, a closer
look at (1) reveals that SSC relies on only the inner prod-
uct of the data points, which also makes this method a good
candidate for kernelization [10].

A natural extension of subspace clustering is to consider
the UoS model under uncertainty. This problem is gener-
ally referred to as robust subspace clustering. Various ap-
proaches to robust subspace clustering exist in the literature
[11, 12]. In [13, 14], Robust Subspace Recovery (RoSuRe)
by bi-sparsity pursuit is introduced as a generalization of



SSC, and is based on the following optimization:

min W11+ AE[|11
WeRnxn E€RmXn

subject to

X-E)W=(X-E), Vii(W)u=0 (2
where E denotes a sparse error matrix and X = L + E is
the noisy data. The RoSuRe approach is motivated by ap-
plications such as image processing where the data points
are decomposed into a small unstructured part (foreground)
modeled by E, and a large remainder (background) resid-
ing in a union of low-dimensional subspaces. Although the
optimization in (2) is non-convex, [14] verifies by numeri-
cal experiments that the non-linear optimization techniques
such as linearized Alternating Direction Method of Multi-
pliers (linearized ADMM) with well-tuned parameters, re-
liably provide the desired solution.

In this paper, our goals are twofold: 1) to explain the
persistent behavior of the RoSuRe in large-scale problems,
2) to provide its sequential implementation, which is desir-
able for online machine learning applications such as video
processing and surveillance. Our algorithm is inspired by
the incremental proximal optimization methods [15], which
are tightly related to the Stochastic Gradient Descent (SGD)
technique [16, 17], and addresses the associated constraints
by a quadratic penalty function. We show by numerical ex-
periments on both synthetic and real-world data that our al-
gorithm can run in real time, and is easily capable of decom-
posing videos into foreground and background. Related to
the analysis, due to non-convexity of RoSuRe, we are un-
able to provide a global convergence analysis. Instead, we
resort to local analysis, where the desired structure of parti-
tions is captured by a local, and not necessarily global, op-
timal point. As such, our analysis is generally conditioned
on a proper initialization. However, we empirically observe
that random initializations are often satisfactory.

1.1. Related Work

In comparison to the classical clustering methods such
as K-means, subspace clustering is a relatively new topic in
machine learning. The UoS model dates back to the seminal
work of Berger and Sinclar [18]. The CLIQUE algorithm
in [3] is one of the first proposals for solving the subspace
clustering problem. Since then, many other techniques have
been introduced in the context of clustering with dimension-
ality reduction. Extensive reviews of these methods can be
foundin [4, 19, 20] as well as in [21]. The book [22] also in-
cludes a chapter on subspace clustering. The paper [9] was
one of the first works, discussing the idea of sparse subspace
clustering. A generic analysis of SSC is given in [23], where
the geometric concept of subspace affinity was introduced.
Our analysis employs subspace affinity and other similar
geometric ideas to the ones in this paper. More recently,
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the problem of robust subspace clustering was considered
in different studies such as [11, 12, 24]. In this context,
the RoSuRe algorithm was first introduced in [14] and im-
mediately received attention in the background/forground
separation problem [25]. Another attempt for utilizing sub-
space structure for this problem is found in [26]. Our focus
is on the RoSuRe optimization framework. Although the
other robust subspace clustering studies provide guarantees
of similar nature to ours, their underlying models are dif-
ferent from RoSuRe and direct comparison is not straight-
forward. Related to implementation, a number of studies
address online algorithms for robust principal component
analysis (RPCA) and subspace tracking [27, 28, 29]. More-
over, there have been few attempts for subspace clustering
with sequential data [30], but we are not aware of any pre-
vious proposal for sequential implementation of RoSuRe.

2. Algorithmic and Numerical Implementation
2.1. Solution by Quadratic Penalty Function

One way to solve (2) is to employ a quadratic penalty
function to account for the constraint to yield the following
unconstrained optimization:

min [ W11 4+ AE 11+ 5 (X = EYW = D[[§, ()

where the minimization is taken over W € R}™" and
E’ € R™*™, Note that the optimal solution of (3) is iden-
tical to that of (2) when y increases to infinity. However,
solving (3) with a large value of y requires a careful choice
of the initialization, which leads one to rather proceed by
means of gradually increasing p. As a result, the solution
in an early stage with a small value of i, serves as a proper
initial point for the later stages with larger .. For simplic-
ity, we fix p to a moderately large value, which may lead
to an adequately precise solution with no substantial effort
for initialization. Due to non-smoothness in the objective
function of (3), a proximal optimization method is used to
solve (3). Each iteration of the resulting algorithm can be
written as the following [13, 31]:

Procedure P: W =74 [Wt —n(X - Et)TZt} ,
m
Et+1 = T% [Et —+ T}Zt(Wt — I)T] 7(4-)

where 7 is the step size, and we call Z; = (X—E;)(W;—1I)
the feasibility gap matrix as it represents the feasibility gap
in (2). The operator 7¢(.) applies soft thresholding to ev-
ery non-diagonal element, and sets the diagonal elements to
zero. Notice that 7 (. ) denotes elementwise soft threshold-
ing.

2.2. An Online Sequential Algorithm

In this paper, we seek an online solution of the optimiza-
tion in (2), where the data points x; are provided sequen-



tially, and the computational complexity is limited by the
data rate. Note that the problem size increases by acquiring
new observations, thus increasing the number of parameters
to update in later iterations. This may quickly become in-
tractable for problems of large size n. We hence propose
a simplified approach, which, in general, leads to a good
approximate solution of (2).

Our approach is to apply P in (4) at each iteration of
the proposed algorithm. As the data sequentially streams
in, each new data point is appended to the matrix X, with
the size of matrices E;, W, simultaneously increasing. To
control the complexity of the algorithm, we also delete from
X old data points which have less contribution in the sub-
sequent iterations. We propose two different criteria for se-
lecting the old data points in the sequel. Finally, removing
a data point from X entails re-calculating W and conse-
quently reducing its dimension, as we elaborate below. The
algorithmic procedure is detailed in Algorithm 1. Note that
the proposed approach calls for dynamically variable size
matrices, highlighted by X; and n; respectively denoting
the matrix X and the cardinality of its column set at itera-
tion ¢.

Algorithm 1 Sequential Bi-Sparsity Pursuit

Input Parameters «, ;1 and 7 and the maximum size ny,.
Initialize Wy =[], Eo =[], Xg =[] and ¢t = 0.

loop
Obtain a new observation x;;1 and update X;,; =
[Xt Xt+l]~
Update
W
W; [ Ot g; }7 E; < [E; g2

where g, g9 are standard Gaussian vectors, normal-
ized to give £(||lg1]]?) = &(||lg2]|?) = 1 and g is a
standard Gaussian variable.
Apply Procedure P in (4) and set ¢ < ¢ + 1.
if the maximum size of X, is reached then
Calculate the uncertainty and centrality levels ¢}, u!
and select the index i with the smallest value ¢} +
au! (Quality Criterion), or set i = 1 (FIFO).
Apply the update in (5), remove the ™ column of
E, and X, as well as the i row and column of W.
end if
end loop

2.2.1 Recalculation after Deletion of a Data Point

To proceed, recall that the elements of W reflect the self
representations of the denoised data vectors. Denote by I}
the i™ column of the denoised data matrix L; = X; — E;.

Then, the definition of the feasibility gap matrix in (4) yields
1l = Zw;ﬂ(t)lf + 2!
k=1

where wy; (t) is the (k, i) element of Wy, and z! is the i
column of Z;. Now, suppose that the i column of X; is to
be removed. For any other column j # i we have that

H =" wi(O1F + wi; (1] + 2]
k#i

= wi (1 + wi (1) <Z wri (D1} + Zi) + 12

k#i k=1
= > [wi (8) + wra (£)wi; ()] 1 +wjs (Hwi; (Y +wi; ()2 +2]

k#i,j

The first term in the above equation is the new representa-
tion, while the next three terms are the updated feasibility
gap. This leads to the following iterative update:

w;ik(t) { w; () + u())ki(t)wij (t) Z ii

2] w;i(t)wi; (Y + wy; (t)z + 2. ®)

)

In summary, when deleting column ¢ from X; and E;, we
proceed to update W in (5) and also delete the i column
and ™ row from W,. The omitted columns from E; and
‘W, (before recalculation by (5)) are the final acceptable es-
timates for the dropped data point. They will be key compo-
nents in configuring the similarity graph and the final clus-
tering step, which is performed in a single batch. Notice
that the error vectors from E; does not need any further
processing and are provided in real time.

2.2.2 Selecting Deleted Data Point

We consider the deletion of a single column ¢ of X when the
maximum allowable size n,, of X; is attained. We discuss
two different approaches to the selection of ::

First In First Out (FIFO): We simply remove the old-
est sample in X;. If data is appended from right to X;, we
remove the leftmost sample from X; (z = 1). This is suit-
able for preserving the order of the samples in the output
stream, e.g in video processing applications.

Quality Criteria: When the order of the output stream
is not a concern, we may use the following criteria:

Uncertainty : The " column in X is said to be uncer-
tain if applying the update in (4) substantially changes
its corresponding representation (column of W). Ob-
serve that the change in the i column of W is limited
by the magnitude u! = ||z¢|| of the i column of the
feasibility gap matrix, which is the uncertainty level of
the ™ column.
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Centrality The " column of X is said to be noncentral
in the representation W if the deletion step in (5) of
this column does not substantially increase the objec-
tive value in (3). Given that the objective value in (3)
can be written as |W ||1 1+ || E||1,1+#/2||Z||3, we can
simply find the following upper bound for the change
of objective according to (5):

>

JikEi 7k
20w (Eyw]; (6) Lias + 20 ) wiy (0123,
JF#i i

where Lt is the maximum value of ||I]|| for j =
1,2, ..

.. We call ¢! the centrality level of the i™ col-
umn.

¢ [wgi () [|wiz (2)]

These characteristics constitute a natural set of qualita-
tive criteria to select the proper column in X;. Specifically,
we select the column with the smallest ¢} + au} where « is
a design parameter.

3. Convergence Guarantees

The purpose of our analysis is to ensure that the opti-
mization in (2) is capable of correctly recognizing clusters
under sparse noise. To that end, we consider the following
standard generative model: Consider a collection of K lin-
ear subspaces {£;, C R™}X |, where m is the dimension
of data samples and dj; denotes the dimension of L. Take
data samples 1y,15,...,1,, € R™ where each data sample
belongs to exactly one of the subspaces L. Suppose that
each sample 1; is corrupted by a sparse additive noise e;.
We observe the corrupted vectors X1, Xo, . . . , X, Which can
be simply written as

x,=l+e, i=12,...,n. (6)

Our objective is to guarantee that the optimization in (2)
has a local optimal point satisfying the following extended
subspace detection (ESD) properties:

1. The solution E coincides with the true noise, i.e. E =
[e1 €2 ...e,].

2. For any pair 1;,1; of samples belonging to different
subspaces, (W);; = 0.

We call such a local optimal solution an ESD point.

3.1. Previous Work: Noiseless Case

The noiseless case is discussed in [23], by using E = 0
and reducing (2) to (1) with X = L = [l; 1...1,]. The
analysis of (1) is performed in three different ways: a) deter-
ministic, where both subspaces and samples are specified,
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b) partially probabilistic, where the subspaces are specified
but the samples are random and c) probabilistic, where both
subspaces and samples are random. Our results in this paper
are similar in spirit to the deterministic and partially proba-
bilistic ones in [23]. For the sake of clarity, we only focus
on the partially probabilistic results in this section and post-
pone the deterministic case to Section 4.

The partially probabilistic result in [23] concerns a case
where the data points are uniformly sampled from the unit
spheres in the subspaces, and the number of samples ny
from the k™ subspace is proportional to its dimension d,.
i.e. ny = pdg, where p is a constant known as a sampling
density. The result is based on the following geometric no-
tion of subspace affinity:

Definition 1. The affinity aff(L£;, £2) between two sub-
spaces L1, Lo is defined as

aff(L1, L2) = \/m
k

where 01,05, . .. are the principal angles between L1, Lo '.

For convenience, we only state a simplified result where
the dimension dj, of the subspaces are equal to d, and ev-
ery subspace has an equal number of samples given by
ny = pd = n/K. Then [23] states (with some further sim-
plifications) that there exists a constant C' = C'(p) such that
the solution of (1) satisfies the subspace detection property
with probability at least 1 — 1/»° if for any two subspaces
Ei, [,j:

1

aff([li,ﬁj) <
~ Clogn’

Vd

This result essentially shows that as d (and consequently
n = K pd) grows to infinity, subspace clustering is success-
ful under (7) with exceeding probability. Conversely, it is
more difficult to detect lower dimensional subspaces with
a fixed amount of affinity. The choice of power 10 is also
arbitrary, and can be replaced by any other positive number
with a different choice of L.

3.2. Partially Probabilistic Guarantee with Adver-
sarial Noise

(7

Our study is in the same spirit as the noiseless analysis
in Section 3.1. However, introducing a sparse noise in (2)
restricts some of the conditions. In particular, we require
the following additional factors in our analysis:

Definition 2. We say that a subspace £L C R™ is
(r, €)—balanced if for any r distinct indices 1,142, ..., %,
in [m] and values x1,x9,...,2, in the interval [—1 1],
there exists a vector y = (y1,¥2,...,Ym) € L such that
yi, = ap fork = 1,2,....rand Vj ¢ {i1,42,...,%r},
ly;| <e.

'For more details see [23].



Definition 3. We define ambiguity of a subspace £L C R™
as the maximal number of zero entries in a nonzero vector
of L.

In addition, a difficulty with the analysis of (2) is its non-
convexity and consequently propensity for local minima.
Our analysis guarantees existence of a local minimum point
with the desired ESD property. Our numerical results fur-
ther suggest that in large-scale problems with local search
methods, this local minimum is likely to be attained by a
random initialization and a careful choice of design param-
eters.

To proceed, we provide the following natural character-
istics for the noise vectors:

Definition 4. For a sequence ey, es, . .., e, of sparse noise
vectors we define the noise level m. as the maximum num-
ber of non-zero entries the noise vectors. We also define
the incidence number n. as the maximum number of noise
vectors with nonzero values in some common entry.

We express a simplified result which is comparable to the
condition in (7). A general case is found in the supplement.

Theorem 1. Consider a constant number K of subspaces
with equal dimension d in R™. Supposed that for an ab-
solute constant p, a data set of size pd is sampled indepen-
dently and randomly from each subspace Ly, by orthogo-
nally projecting a standard Gaussian vector onto Ly. De-
note the noise level and the incidence number of the sparse
noise by m, and n., respectively. Further, denote the max-
imal ambiguity of the subspaces Ly, by s. Then, the opti-
mization in (2) with a sufficiently large value of A\ has an
ESD point with probability 1 — 1/n'°? if

aff(ll“[ll) 1
Vd — Clogn’
1
1 4
ne<d ()" mepdmets  ®

where C' is a constant only depending on p, and the
orthogonal complement of L1 ® Lo & ... ® L is
(M, CL\/E)fbalanced.

Proof. The proof is discussed in Section 4. O

3.3. Discussion

As clearly evident, our result above is tightly connected
to the geometric analysis of [23], with substantial differ-
ences that we clarify in the sequel. An important observa-
tion is that the “embedding” dimension m is absent in (7),
since the space R™ only serves as an “embedding” or “’rep-
resentation” space for the problem in (7). As evident in (8),

2The choice of power 10 is arbitrary.
3The sum £1 @ Lo @ ... ® L of subspaces is simply the subspace
obtained by taking the linear span of their union.
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the induced noise changes the problem. In fact, the condi-
tion m > pdm, + s suggests that in spite of a linear relation
between n and d, the embedding dimension m should grow
super-linearly for an interesting range of increasing noise
level m.. While in many typical cases, the ambiguity s is
in the order of the dimension d, the required dimension m
effectively amounts in this case, to the product of the noise
level and the dimension.

Another interesting observation is that our analysis ne-
cessitates a highly balanced orthogonal complement of £ =
L1@ Ly @ ... D Lg. This emphasizes that the dimension
m should be much larger than the “total used” dimension
of £ which is in the range (in fact bounded by) of K pd,
where K is the number of subspaces. In our application of
interest, this is not a restrictive fact as the dimension m is
the number of pixels in an image, which easily attains hun-
dreds of thousands, while the pd K = nK hardly exceeds
few hundreds.

A more restrictive factor in Theorem 1 is the growth rate
for the noise incidence number n = o(n ). For this, recall
that the noise in our analysis has an adversarial nature. In
other words, we consider a worst-case-scenario with respect
to the error. Notice that a random noise corresponds to 7.
O(n), which is not supported by our analysis. However, we
can lift this restriction by considering a fully probabilistic
analysis. We postpone a careful study of this case to a future
paper, as the nature of the vision problem considered here,
does not assume random sparse noise (foreground). In the
vision setup, our analysis shows that the foreground should
be relatively smaller than the background for a guaranteed
performance, which often holds.

Finally, we note that we establish local optimality of the
solution for any sufficiently large value of A. This clearly
shows that the local optimal point of interest is not always
the global optimal point as the noise term in the global opti-
mal point can be arbitrarily (and undesirably) small with an
extremely large value of \. This suggests that in practice,
our desired local minimum point can be difficult to attain
by an uncommonly large value of A. The study of this phe-
nomenon is also postponed to future work.

4. Technical Details of Convergence Analysis

Our strategy is similar to [23]: We first introduce a fully
deterministic analysis, and next verify its conditions for the
probabilistic model of the data and next randomize it to ob-
tain the result in Theorem 1. We explain this procedure in
this section.

4.1. Deterministic Guarantee

Without loss of generality, assume that the samples are
ordered such that each sample from £; appears in the se-
quence {1;}!_, before every sample from L with & > I.



Next, define L = [1; 1o, ... 1,,] and take Ly, as the sub ma-
trix of L consisting of all data points 1;, from the subspace
L. and denote

min

W11
| LyW=L,

Wo,x = arg ©)
w
Take Z j, as the dual vectors at the optimal point of (9). In

other words,

Zo ) = arg max

Z.Ly).
e A IPTACI

Without loss of generality, we assume that each column of
Zy 1. belongs to Ly, (otherwise the projection of the columns
onto Ly, is also a valid dual vector). Define Wy as a block
diagonal matrix where its k" diagonal block is W, and
take Zg [Zo1Zo2 ... Zo k] The supports of Wy and
E are respectively denoted by € and £. Denote by A the
collection of all indexes (i, j), for which 1; and 1; do not
belong to the same subspace. We denote by Pq, Pg and Py
the projection operators, which respectively stack the ele-
ments of their arguments on €2, £ and A in the returned vec-
tor. Similarly, Pqe and Pge stack the off-support elements
of their arguments. By finally defining Wy = W, — I, we
state the following result:

Theorem 2. The pair (W = W, E' = E) is a local opti-
mal solution of Eq. (2 in Paper), hence an ESD point, if the
following conditions hold:

Local Identifiability: For any pair of matrices AW, AE
satisfying LAW — AEW = 0, if PecAE = 0 and
PAAW = 0, then AE = 0 and AW = 0.

Strong Dual Verifiers Property: There exists a vector
Z € R™*N and a number 0 < 6 < 1 such that

= sgn(Wi;) Wij, #0
(LTZ)Z S [—1 1] Wij =0, (Zvj) ¢ A7
€[-64] (i,7) € A,
and
- = —Asgn(Eij) Eij #0,
(ZWO )] { E[-A XS] By =0,

Proof. The proof can be found in the supplement.

4.1.1 Simplified Dual Verifiers Property

A refinement of the result in Theorem 2 follows by pro-
viding the dual verifier matrix Z. Denote the orthogonal
complement of a subspace £ by £*, and introduce the fol-
lowing,

Definition 5. We say that a square matrix W = (W;;) €

RP*P is (v, 3, q)-regular if forevery i € {1,2,...,p}, and

every subset J C {1,2,...,p} with |[J| < ¢, we have
T Wil S, 350, Wiyl < B
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We now state the following lemma:

Lemma 1. Suppose the number of nonzero entries in each

row and column of E is bounded by n, and m,, respec-

tively. Furthermore, the matrix Wy is (o, 3, n,)-regular,

and the subspace (L1 ® Lo @ ... D L) is nonzero and

(me, €)-balanced. Set ) = max |[ZoWL]; ;| the largest ab-
0.

solute value in ZoW{, and Suppose that for any (i, j) € A,
17z;| < & where § < 1 is a constant. Then, there exists
a matrix Z satisfying the strong dual verifier condition in
Theorem 2 if e + 8 < 9/2 and X\ > 1/(5-2(ae+8)).

Proof. The proof can be found in the supplement. O

4.1.2 Final Step in Proof of Theorem 1

To prove theorem 1, we need to show that the local identifia-
bility condition in Theorem 2 and the conditions of Lemma
1 are satisfied with high probability. We perform this by
introducing the following result:

Lemma 2. Suppose that a € R™ and each column of a
matrix A € R™*" agre independently generated by taking
a standard Gaussian vector and projecting it to a subspace
S with dimension d. Assume that n = pd for a constant
p > 0. Denote respectively by w € R™ and z € R™ the
solution and its corresponding dual vector of the following
optimization:

min ||w||; subject toa = Aw
WGRW

Then,
a) There exists a constant w only depending on p such

L

Pr M_w > € <_e*C77«E
Vd €2

b) We have

2

Ln —enst
Pr ([[wlloo > 0) < —ge"

c) If g is obtained by independently generating a stan-
dard Gaussian vector and projecting it onto a subspace T,
taff(S,T)

then
Pr(z'g >
( 82TV

Proof. The proof of part (a) is given in [32]. Part (b) is also
similarly obtained by the approach in [32] and noticing that
if |w||loc > ¢ the objective function increases according
to the approach in [32] and hence it cannot be the global
solution. The third part is also given in [23]. O

> S Le—ct

Once this result is obtained, we can conclude Theorem

1
1 as follows: We take 6 = L (135—”)4 and t = Llogn in



Lemma?2, and ¢ = #,6:3/4,04: 4 and 8 = 1/sin

Lemma 1 we obtain that with probability larger than 1 — ﬁ
for all k:

1
1 [logn\*
wils <V, il < 7 (52)
2] < aff (L1, L2) logn
— L\/E )

where wy, is the k™ column of W and 1,1, belong to
L1, Lo, respectively. Then, it is simple to see that under the
assumptions of Theorem 1, the conditions of Lemma 1 and,
as a result, the strong dual verifiers condition holds. Finally,
to check local identifiability notice that LAW = AEW
implies that each column of AE; Wy, is in £y, where
AEy is a block of AE corresponding to L. This means
that the number of nonzero elements in AE; W j, which
is bounded by pdm., is larger than m — s which contradicts
the assumption. This completes the proof.

5. Numerical Results

To investigate the performance of the proposed online
learning algorithm, we consider two different experimen-
tal scenarios. In the first experiment, we consider synthetic
data obtained by the probabilistic model in Section 3. In
the second experiment, we apply our algorithm to a real-
world video sequence. The superiority of non-sequential
RoSuRe to the state of the art methods in these setups is
readily shown in [13, 14]. Our numerical results show
that the sequential implementation can obtain similar per-
formance to the batch procedure in [13, 14] and hence im-
proves the state-of-the-art, from both performance and com-
putation perspectives.

5.1. Synthetic Experiment

We consider three d = 5 dimensional subspaces L1, Lo
and L3 in an m = 200 dimensional space, which are rep-
resented as the column spaces of there 200 x 5 matrices
A, Ay and Aj, respectively. We generate the entries of
Ay for k = 1,2 and 3 independently and randomly from
a standard Gaussian distribution and then normalize their
columns to have unit magnitude. Each noiseless data sam-
ple I; is generated by selecting a subspace & = 1,2, 3 with
probabilities 0.35,0.35, 0.3, respectively, and multiplying
A to a 5—dimensional standard Gaussian vector normal-
ized by 1/v/5. The observed vector is generated by adding an
independent identically distributed (i.i.d) sparse noise vec-
tor e;. Each entry of e, is either zero with a probability p,
or randomly generated by a standard Gaussian distribution.
In our algorithm, we set A = 1 and ;¢ = 10, and use the
quality criterion in Section 2.2.2 with o = 20.
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Figure 1: a)Performance versus window size for different
values of 7 and p = 0.02. b) Performance versus window
size for ny, = 100,77 = 0.11.

We consider a scenario with 1000 + n,,, samples, where
Ny, 1 the window size (maximum number of samples un-
der processes). After deletion of each column from Wy,
it is stored in a matrix Wgy,) for calculating the clusters.
We obtain the clusters after completion of the online learn-
ing stage. For this purpose, we define a symmetric affinity
matrix H, where

(H)ij = { :

0
and perform spectral clustering on H [33]. We calculate the
percentage f of correctly clustered data points for different
values of p,n and n,,. Notice that we do not count the un-
deleted samples in X; and hence the fraction f is always
calculated over 1000 deleted samples.

Figure la depicts performance f averaged over 100 in-
dependent trials versus window size for two different values
of n = 0.1 and n = 0.11. The error bars show the sample
variance over the trials. Smaller variance reflects a more
stable behavior in our algorithm. We observe that increas-
ing the window size and/or the step size does not always
improve the performance of our algorithm. This is because
increasing the window size may reduce the speed of conver-
gence, while increasing the step size can lead to a divergent
solution. Small values of the step size may also lead to unre-
solvable clusters in H. Another observation in Figure la is
that different ranges of window size requires readjustment
of the step size to provide best performance and stability. In
particular, window sizes of size 140 and larger perform bet-
ter with n = 0.10, while smaller windows are more accurate
with n = 0.11. Figure 1b also shows average performance

(Wﬁnal)i,j + (Wﬁnal)]},i 2 0.01
otherwise

)



(b)

Figure 2: a)The resulting foreground for frames 1, 60, 180.
b) The original frames.

versus noise sparsity level p with n = 0.11 and n,, = 100.
Clearly, a smaller noise leads to a higher performance.

5.2. Foreground-Background Decomposition
5.2.1 MIT Traffic Dataset

We consider the MIT traffic data set [34], where the goal
is to decompose the video sequence into a foreground and
a background. The foreground can be used for surveil-
lance purposes. We consider 300 frames of a 30-second
video (10 frames per second), down-sampled to the reso-
lution 240 x 360 and set 4 = 103, n = 0.02 and win-
dow size n,, = 100. We also utilize FIFO deletion rule in
Section 2.2.2. The algorithm runs on MATLAB R2016a
with a 3GHZ CPU with rate 0.43 seconds per frame (2
frames/second). We also attain the rate 0.24 seconds per
frame with window size 50, which slightly degrades the
performance. Note that the overall complexity of our al-
gorithm is O(T'mn2) where T is the number of frames,
while the complexity of the batch process is O(mT?) per
iteration with a considerable number of iterations for con-
vergence. This shows the remarkable advantage of the se-
quential method over the batch process. Figure 2 depicts
few slides of the resulting foreground (E), which shows an
excellent identification of fast moving objects such as vehi-
cles and pedestrians.

5.2.2 Microsoft Wallflower Dataset

In a different experiment, we compare our proposed method
to the Grassmannian Robust Adaptive Subspace Tracking
(GRASTA) Algorithm in [28] by considering the “boot-
strap” segment from the wallpaper dataset [35]. The pa-
rameters for the proposed algorithm is similar to the pre-
vious section with window length 100. For GRASTA, we
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Figure 3: Wallflower bootstrap dataset frame 300. From
left: Original frame, GRASTA and proposed method

Prop. 100 [ Prop. 50 | GRASTA | Wallflower
FP 379 357 301 356
FN 1471 9544 3658 2025
F1 index 0.6112 0.3416 0.5559
Best F 0.6505 0.6375 0.6714

Figure 4: Number of false positive (FP) and false negative
(FN) samples of different techniques as well as F index.

track a d = 5 dimensional subspace. We set a maximum
of 100 iterations in the internal loop of representation learn-
ing for a similar computational complexity to the proposed
approach.

Figure 3 shows the result at the frame number 300, for
which a hand segmented figure exists and is used for quan-
titavely studying the result in Figure 4. Clearly, GRASTA
leads to a larger part of background incorporated in the fore-
ground. In Figure 4, two threshod values for each method
is used. One value is adjusted to provide around 350 false
positive pixels. The other is adjusted for the best F value.
Interestingly, GRASTA can lead to a slightly better F value
but it requires a large threshold which is not practical.

6. Conclusion

We considered the problem of robust subspace cluster-
ing under sparse noise by bi-sparsity pursuit and its applica-
tion to a video foreground/background decomposition prob-
lem. We presented an analysis of bi-sparsity pursuit, which
provides bounds on the level of noise based on the coher-
ence between subspaces, presented by the affinity measure.
This ties our analysis to the previous studies of (noiseless)
sparsity-based subspace clustering techniques. We also pro-
posed a sequential implementation of the underlying opti-
mization, which is suitable for online and real-time video
processing applications. The results on the real-world data
shows that we can easily attain a real-time implementation
of our algorithm by improving computational resources,
better programming and parallelization. As seen in the re-
sults, the performance of our algorithm highly depends on
the step size. Hence, theoretical analysis of the effect of
step size and the possibility of adaptive step size selection
should be considered in a future study.
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