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Abstract— Entropy-based divergence measures have proven
their effectiveness in many areas of computer vision and pattern
recognition. However, the complexity of their implementation
might be prohibitive in resource-limited applications, as they
require estimates of probability densities which are expensive
to compute directly for high-dimensional data. In this paper,
we investigate the usage of a non-parametric distribution-free
metric, known as the Henze–Penrose test statistic to obtain
bounds for the k-nearest neighbors (k-NN) classification accu-
racy. Simulation results demonstrate the effectiveness and the
reliability of this metric in estimating the inter-class separability.
In addition, the proposed bounds on the k-NN classification are
exploited for evaluating the efficacy of different pre-processing
techniques as well as selecting the least number of features that
would achieve the desired classification performance.

Index Terms— Dimensionality reduction, classification, diver-
gence measures, nearest neighbor graph, pattern recognition.

I. INTRODUCTION

COMPUTER vision and machine learning have witnessed
a wealth of great research activity in image analysis and

modeling for inference, all with their strengths and limitations
in extracting salient features from 1/multi-dimensional signals.
In imaging, a particular challenge that affects successful
object discrimination is the high-dimensionality of raw sensor
imagery and signature measurements. High dimensionality of
sensor data is computationally demanding, and shifts limited
computational resources away from other tasks, e.g. naviga-
tion, control and avionics. To further improve sensor resource
management, where various sensors may be tasked to collect
data, the importance and relevance of a particular sensor is tied
to its discrimination capability which often needs to be quan-
tified. The associated collected data is subsequently processed
and adequately exploited for object inference applications such
as multi-object classification.
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Information-theoretic divergence measures have been
widely used in many signal and image applications, e.g. image
registration [1]–[3], image segmentation and retrieval [4],
image alignment [5], speech classification [6] as well as a
variety of other problems. The better known divergence
measures include the Kullback-Liebler divergence [7] which
is based on Shannon entropy measure and the so-called
Renyi-divergence (alpha-divergence) measure [8] which is
based on Renyi entropy. Other divergence measures
include the Jensen-Shannon divergence [9], the Jensen-Renyi
divergence [10], total variation k-dP divergence [11] and
Bregman divergence [12].

A limitation common to all these measures is their typically
direct use of the probability density functions whose estima-
tion for high dimensional data is computationally prohibitive.
As a result, their adoption in addressing inference problems
for high dimensional data has been negatively impacted.
Friedman and Rafsky [13] proposed the idea of using Min-
imum Spanning Trees (MST) to extend the Wald-Wolfowitz
test [14], which is also known as the two-sample test, for
high dimensional data. As we elaborate later, we propose to
exploit this strategy by adopting a related Henze-Penrose (HP)
divergence measure [15] to quantitatively estimate the num-
ber of data features required to preserve a target classifica-
tion performance. This HP measure is, itself, based on the
Friedman-Rafsky result. The classification of our proposed
approach is evaluated by accuracy performance and its depen-
dence on the dimensionality of the data. We further derive
performance bounds for the K-Nearest Neighbors algorithm
accuracy [16] in terms of the HP metric. These bounds are
in turn used to gauge the performance of different feature
extraction techniques.

Bounds on classification error rates have been studied
and extensively reported in the machine learning literature.
Chernoff α-divergence measure [17] has been used to pro-
vide an upper bound on the classification error probability.
It was moreover shown that a special case of the Chernoff
α divergence measure α = 1

2 , as a Battacharya coeffi-
cient (BC) [18], could be used to upper/lower bound the Bit
Error Rate (BER) [19]. The BC divergence was also shown
to provide the tightest upper bound on the probability of
error when the classes mildly differed from one another [20].
Other works have established connections between the
Kullback-Liebler (KL) divergence and the Total Variation (TV)
distance [21], [22]. Numerous other bounds on probability
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of error have been derived in a variety of applications, and
using functionals of the Probability Density Function (PDF).
These for the most part, require some prior knowledge of the
associated PDFs of the target classes [23], [24]. On the other
hand, non-parametric approaches have been developed, and
rely on the estimation of PDFs. Their various applications may
be found in [25]–[27].

In this work, bounds for k-NN classifier performance were
derived leveraging the HP metric to mitigate both needs for
prior knowledge of the class distributions and the estimation
of their PDFs. Our proposed bounds, in addition, may be used
to estimate the classification error rate when the training and
the test data are drawn from different distributions, as noted
in [28].

The paper is organized as follows: Section 2 introduces
the Friedman-Rafsky and Henze-Penrose test statistics, and
provides an overview of their properties. Section 3 introduces
the bounds for the k-NN (k = 1) classification accuracy.
Section 4 describes our generalized bounds for k > 1 while
Section 5 shows some other bounds for the k-NN using the
inequalities derived for k = 1. In Section 6, we further
establish relations among our derived bounds and others
in the literature. Section 7 describes our dataset structure,
the experimental setup and presents the simulation results of
the proposed bounds, while Section 8 provides concluding
remarks. The derived bounds will be exploited to quantitatively
asses different image processing techniques.

II. GRAPH-THEORETIC DATA CLASSIFICATION

Consider two classes ω0 and ω1 over a space X with
samples of size m and n respectively from distribution
p(x) and q(x), both defined in IRd , where d is a positive
integer number. According to the Wald-Wolfowitz test, the null
hypothesis Ho specifies that p(x) = q(x) which means that
both samples are drawn from the same underlying distribution.
Our interest is in the case H1 : p(x) �= q(x) where each
sample belongs to a different class. The Wald-Wolfowitz
test (for d = 1) begins by sorting the univariate observations
N = m + n in an ascending order with respect to their
values. Each observation is then replaced by a label ω0 or ω1
depending upon the class to which it originally belonged.
The number of runs, Rm,n , is an integer number representing
the consecutive sequences of identical labels. Rm,n provides
a simple, yet effective non parametric measure of separa-
tion between the two samples of potentially distinct classes,
by making use of the local characteristics of the distributions.
Lower values of Rm,n correspond to increased separation
between the class distributions and vice versa.

Friedman and Rafsky [13] generalized the Wald-Wolfowitz
univariate statistic to multi-dimensional data using the number
of runs computed by the MST, which they prove to be well
adapted. The following is a brief description of the formalism.
Let a weighted graph consist of N nodes corresponding to N
pooled sample data points in IRd . An edge weight is a measure
of dissimilarity between the associated nodes, e.g. Euclidean
distance. The MST of this graph is thus the subgraph of
minimal total distance that provides a path between every pair
of nodes. The test statistic, Rm,n , is now given by the number

Fig. 1. Example for Rm,n computation for fairly separated and mixed data,
where the red dotted lines correspond to edges connecting nodes from different
classes. (a) Separated data (Rm,n = 2). (b) Mixed data (Rm,n = 12).

of connected components left after removing edges connecting
nodes of different classes in the MST. Rm,n computation for
fairly separated and mixed data is depicted in Figs. (1a and 1b)
respectively. Henze and Penrose [15] extended the work of
Friedman and Rafsky [13] by proving that as the number
of vertices m, n −→ ∞, a function of the statistic Rm,n

asymptotically converges to a member of the f-divergence
family almost surely as shown in Eqn. (1). The Henze-Penrose
divergence measure H P estimates the distributional overlap
between two distributions p(x) and q(x), where a and b ∈
[0,1], and a = m

m+n and b = 1 − a .

limm,n→∞ H P = 1 − Rm,n

m + n
−→

∫
a2 p2(x) + b2q2(x)

ap(x) + bq(x)
dx .

(1)

Thus, given a distance or proximity measure, H P can provide
a measure of separation between two classes of objects in the
original representation space. A Henze-Penrose value of 0.5
implies that the densities p(x) and q(x) are drawn from the
same underlying distribution. As H P increases, the densities
p(x) and q(x) are increasingly separated to the point where
H P attains its maximum value at 1. Extending the capability
of the Henze-Penrose metric to measure the inter-class sepa-
ration for an arbitrary number of distributions is an interesting
idea worthy of exploration. This has been established for other
divergence measures [1], [10]. This would entail the gener-
alization of the Henze-Penrose metric which was originally
proposed for two populations, and for which we have derived
bounds. While in theory, the HP measure may be thought to
be readily extendable to an arbitrary number of distributions
(i.e., increasing the population to 3 or more distributions) by
redefining the HP metric via a modification of the integral
and the establishment of its equivalence to an appropriately
defined Friedman-Rafsky statistic, this is beyond the scope of
the present work and would likely be part of future work.

III. BOUNDS ON THE NEAREST NEIGHBOR

CLASSIFICATION ACCURACY

The k-Nearest Neighbors algorithm (k-NN) is a method
used for classification and regression [29]. In k-NN classi-
fication, an object is classified according to a majority vote
of its neighbors where the object class is chosen to be the
most common one among its k closest neighbors. For k = 1,
the object is simply assigned to the class of the nearest
neighbor and in this case, the classifier is referred to as the
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Nearest Neighbor (NN) classifier. The Henze-Penrose metric
can be used to provide bounds for the NN classification
accuracy as follows,

Theorem 1: Let labeled classes of m and n points form a
complete graph of unique distances. Given the Henze-Penrose
metric HP between the two classes and the number of con-
nected components in the nearest neighbor graph C, the near-
est neighbor classification accuracy, AN N , is bounded above
and below by:

2 ∗ H P + 2

m + n
− 1 ≤ AN N ≤ H P + C

m + n
. (2)

Practically, the lower bound is more useful since it does
not require calculating the number of nearest neighbor com-
ponents. It proves that as the H P metric tends to 1, so does
the NN classification accuracy. Both the upper and lower
bounds are tight and can not be improved upon without further
assumptions. See Appendix A for the full proof of Theorem 1.

A. Variations on the Bound Themes

The predicted classification accuracy on training data can
be used to bound the classification accuracy on the unlabeled
testing data. This is a well-known problem in the literature
known by domain adaption [28]. The test data often follow
a different distribution than the training data. It was shown
in [28] that the empirical error on the training data can
characterize the test data error of the classifier learned by this
training data. The problem is formalized by viewing the train-
ing data as defining the source domain data, and interpreting
the test data as the target domain data. X S and XT respectively
represent the source and target data while yS and yT are their
associated labels. The source and the target data are drawn
from the distributions fS(x) and fT (x) respectively. The
labeling function on inputs X is defined as y : X → {0, 1}.
The probability that a hypothesis h disagrees with the label
y(x) is defined for the source data as:

�S(h, yS) = Ex∼XS [|h(x) − yS(x)|]. (3)

where Ex∼XS is the expectation operator when x is drawn
from distribution fS(x). Equation.(3) can be similarly defined
for the target (or test) data. A bound on the target decision
error was shown [28] as,

�T (h, yT ) ≤ �S(h, yS) + d1(X S, XT )

+ min{Ex∼XS[|yT (x) − yS(x)|],
Ex∼XT [|yS(x) − yT (x)|]}, (4)

where d1(X S, XT ) = ∫ | fS(x) − fT (x)||h(x) − yT (x)|dx .
Assuming that the labeling functions for the source and the
target data are identical, i.e., yS(x) = yT (x) as would follow
from the covariate shift [30], yields Ex∼XT [|yS(x) − yT (x)|]
and Ex∼XS [|yT (x) − yS(x)|] equal to zero.

In the following, we elaborate how the Henze-Penrose
metric may be used to characterize the test data classification
accuracy using the accuracy lower bound calculated on the
training data. To do so, we use an auxiliary distance measure
introduced in [31], which can be considered as a modified

Henze Penrose metric demonstrated in Eqn. (1),

D̃a(p, q)

= 1 − 2(
Rm,n − 1

m + n
) −→ 1 − 4ab

∫
p(x)q(x)

ap(x) + bq(x)
dx, (5)

From Eqn.(1), it can be concluded that,

D̃a(p, q) = 2H P + 2

m + n
− 1. (6)

Proceeding as above, and given a hypothesis h, the target
error �T (h, yT ) can be bounded by the source error �S(h, yS),
the difference between the labels, and a distance measure D̃
between the source and target distributions,

�T (h, yT ) ≤ �S(h, yS) + Ex∼XS [|yS(x) − yT (x)|]
− 2

√
D̃ 1

2
( fS, fT ), (7)

where D̃ 1
2
( fS , fT ) assumes equiprobable data from the source

and target distributions (i.e a and b = 1
2 ). Eqn.(7) can be

re-written as,

�T (h, yT ) ≤ �S(h, yS) + Ex∼XS [|yS(x) − yT (x)|]
− 2

√
2H P( fS, fT ) + 2

m + n
− 1. (8)

If we, again, assume that the labeling functions for the source
and the target are the same, the bound in Eqn. (8) reduces to:

�T (h, yT ) ≤ �S(h, yS) − 2

√
2H P( fS, fT )+ 2

m+n
− 1. (9)

Moreover, if the hypothesis h follows the NN error �N N ,
we can use the results from Theorem 1 to rewrite the bound
in Eqn.(9) as,

�T (h, yT ) ≤ 2(1 − H P(pS, qS) + 1

m + n

−
√

2H P( fS, fT ) + 2

m + n
− 1), (10)

where H P(pS, qS) is the distance between the two classes
of interest in the source data domain, while H P( fS, fT ) is the
distance between the source and target data. From the above
equation, we may conclude that the classification error of the
test (or target) data can be upper bounded using the training
(or source) data even with the possibility that the training
and the test data might be drawn from different distributions.
In addition, using the Henze-Penrose metric would mitigate
the need for prior knowledge of the test data distribution.

IV. BOUNDS ON THE k-NEAREST NEIGHBOR

CLASSIFICATION ACCURACY

The k-NN classifier assigns a point x to a particular class
based on a majority vote among the classes of the k nearest
training points to x . Error rates for k-NN classifiers have
been extensively studied in [32]. Some of these results will
be adopted in Section 5. The Henze-Penrose measure can be
further exploited to bound the k-NN accuracy for the cases
where k > 1 by following a different approach than the
one employed in Section 3. Denote by w the total number
of wrong votes for all nodes in the graph, where a wrong
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vote on a node among the k closest neighbors, implies its
connection to a node that belongs to a wrong class. In addition,
we assume no relation between the MST and the k-NN graph
as previously done for k = 1. Moreover, we consider D as
the edit distance [33] between the MST and k-NN graph,
i.e. the total number of edges in the k-NN graph and absent
in the MST together with the number of edges in the MST
but absent in the k-NN graph. If EdkN N represents the set of
edges in k-NN and EdM ST is the set of edges in MST, the edit
distance D can be described as follows,

D = |(EdkN N ∪ EdM ST ) − (EdkN N ∩ EdM ST )|.
Theorem 2: Let labeled classes of m and n points form a

complete graph. Given the Henze-Penrose metric HP between
the two classes and the edit distance D between the MST
and the k-NN graph, the k-nearest neighbor classification
accuracy, AkN N , is bounded above and below by:

1 − 2

m + n

⌈
(1 − H P)(m + n) + D − 1⌊ k

2

⌋
⌉

≤ AkN N

≤ 1 − 1

m + n

⌈
(1 − H P)(m + n) − D − ⌊ k

2

⌋
(m + n)⌈ k

2

⌉
⌉

.

(11)
See Appendix B for the proof of Theorem 2.

V. OTHER BOUNDS ON THE k-NN ACCURACY

In the following, we will be showing some other bounds on
the k-NN classification accuracy. Using the bounds discussed
in [32], we can generalize the lower bound derived for k = 1
in Section III to obtain tighter accuracy lower bounds for the
k>1 case. For all odd k and all distributions, it was proved
in [32] that:

AkN N ≥ AN N − 1√
ke

, (12)

where e = ex p(1). From eqn. (2), we have:

AN N ≥ 2H P + 2

m + n
− 1, (13)

yielding,

AkN N ≥ 2H P + 2

m + n
− 1√

ke
− 1. (14)

In addition, we can use the bound that ties the Bayes classifica-
tion accuracy AB with the k-NN classification accuracy. It has
been shown in [32] that for all distributions and all odd k,

AkN N ≥ AB −
√

(
2(1 − AN N )

k
), (15)

Since AN N ≤ AB , we invoke the following,

AkN N ≥ AN N −
√

(
2(1 − AN N )

k
), (16)

which results in,

AkN N ≥ 2(H P+ 1

m + n
−

√
(
1 − H P − 1

m+n

k
) − 1

2
). (17)

Moreover, we have the following for k > 3 [34],

AkN N ≥ 1 − (1 +
√

1

k
)(1 − AB), (18)

which results in,

AkN N ≥ 1 − (1 +
√

1

k
)(1 − AN N ), (19)

AkN N ≥ 1 − (1 +
√

1

k
)(2 − 2H P − 2

m + n
). (20)

From all the above, we may conclude that the three dif-
ferent lower bounds for the k-NN classification accuracy in
Eqns. (14), (17) and (20), are all dependent on the H P metric,
the number of nearest neighbor k, and the number of elements
in each class.

VI. BOUNDS ON THE BAYES ERROR

AND BHATTACHARYYA DISTANCE

USING THE HENZE PENROSE

Classification Bayes error is a desirable entity as it rep-
resents a good benchmark performance. Bounds on Bayes
error rate based on non-parametric divergence measures were
investigated in [31]. D̃a(p, q), given in Eqn. (5), was shown
useful in approximating the upper and lower bounds on the
Bayes error rate as follows,

0.5 − 0.5
√

D̃a(p, q) ≤ �Bayes ≤ 0.5 − 0.5D̃a(p, q), (21)

which may, equivalently, be expressed as,

0.5−0.5

√
2H P+ 2

m + n
− 1 ≤ �Bayes ≤ 1−H P − 1

m + n
.

(22)

This result is of interest in our paper, as by merely comparing
the upper bound on the k-NN error �N N for k = 1 ( or equiva-
lently the lower bound on the NN classification accuracy AN N )
given by Eqn. (2),

�N N ≤ 2 − 2H P − 2

m + n
,

with the upper bound for the Bayes error in Eqn. (22),

�Bayes ≤ 1 − H P − 1

m + n
.

From the above equations, we may then conclude that the
bounds derived in this paper are consistent with the results
in [31], namely,

�N N ≤ 2�Bayes, (23)

where �Bayes → 0, �N N ≈ 2�Bayes .

VII. EXPERIMENTAL VALIDATION

We demonstrated the derived bounds on a synthetic dataset.
The synthetic imagery data-set we use, consists of a variety
of vehicles, some with high variability and others with high
similarity. It is comprised of 7056 images for fourteen different
vehicles; ten of them are civilian vehicles and the other four
are military vehicles. Six of the civilian vehicles are sedans,
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TABLE I

THE DATASET DESCRIPTION

Fig. 2. The different adopted features. (a) Originl imaage. (b) SURF features.
(c) HoG features. (d) Mask.

two are sport utility vehicles (SUVs), one is a minivan and
the other one is a pickup truck. Two of the military vehicles
are treaded tanks, and the other two are armored carriers with
wheels. We divided our dataset into three classes as discussed
in Table I.

The images for each vehicle were collected at seven dif-
ferent elevations and seventy two different azimuth values
such that each elevation level has 72 different viewpoints to
represent the same vehicle. This resulted in 504 images for
each vehicle. All the images were converted to gray-scale
values and cropped to 76×76 pixels to increase the com-
putational efficiency. The images were vectorized, xi =
vectorize(Imagei ), and the Euclidean distance, d(xi , x j ) =

xi − x j
2, was used as a proximity measure for all the
experiments.

We subsequently applied some common feature extraction
techniques like Speeded Up Robust Features (SURF) [35] and
Histogram of Gradients (HoG) [36], to assess their effective-
ness in preserving separation between each pair of classes
in our dataset. We also computed the gradient mask (or the
silhouette) for the vehicles through contrasting the vehicle
from the background. Changes in contrast can be detected by
operators that calculate the gradient of the image. Furthermore,
a threshold was applied to create a binary mask containing
the segmented vehicle after filling the interior gaps inside the
vehicle as shown in Fig. (2d). The adopted features are shown
in Figs. (2a-2d). In Fig. (2b), the SURF features are displayed
as green circles centered on the key feature and the diameter
of the circle indicates the extent of the feature histogram at
the key scale while in Fig. (2c), HoG features are visualized
using a grid of uniformly spaced rose plots. The cell size
and the size of the image determines the grid dimensions.
Each rose plot shows the distribution of gradient orientations
within a HoG cell. The length of each petal of the rose plot
is scaled to indicate the contribution each orientation makes
within the cell histogram. As previously stated in Section II,
the Henze-Penrose metric estimates the distributional over-
lap between two distributions, implicitly accounting for the

TABLE II

THE HENZE-PENROSE METRIC VALUES FOR THE
DIFFERENT FEATURE SPACES

Fig. 3. The Henze-Penrose metric and the classification accuracy for SVM
and kNN classifiers computed between each pair of classes using original data,
HoG, SURF and Mask respectively. (a) Original dataset. (b) HoG. (c) SURF.
(d) Mask.

marginal distributions when given a distance measure between
the data points from the two classes. This hence obviates
the explicit computation of the distributions, instead, allowing
us the direct use of the observed data. Levels of separation
between each pair of classes, represented by the H P metric,
for different feature spaces are depicted in Table II.

A. Experimental Results
We evaluate the inter-class separability versus the classi-

fication accuracy using two classification methods: the k-NN
classifier (k = 1) [37] and the Support Vector Machine (SVM)
classifier [38]. A representative one-third of the dataset was
used to train each classifier, and the rest of the data was used
to carry out the testing. The accuracy of classification for each
pair of classes was computed using the previously mentioned
classifiers along with the inter-class H P metric. The results
are shown in Figs. (3a-3d). As expected; the accuracy for
both classifiers increases as the H P value increases. This
is intuitive since as the separation between different classes
increases, it becomes easier for the classifier to efficiently
perform the discrimination task. Furthermore, the H P values
and the NN classification accuracy nicely track, to coincide
with the bounds derived in Section III.

Looking at Fig. (3), we observe that the HoG descriptor,
which gives special attention to geometric features, outper-
formed the other feature extraction techniques. The mask
(or the silhouette), which only preserves the most general
geometric features performed slightly worse than the original
dataset. The SURF descriptor, which focuses more on regional
features such as texture, was the worst performing feature
extraction technique. This is reasonable because in our dataset
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Fig. 4. The three-dimesional embedding for the original dataset using PCA.

Fig. 5. The Henze-Penrose metric for each pair of classes as a function
of the dimensionality for the different feature spaces. (a) Class 1 and 2.
(b) Class 1 and 3. (c) Class 2 and 3.

geometric information is better suited than texture information
for vehicle classification.

We next consider applying Principal Component Analy-
sis (PCA) [39], a well-known linear dimension reduction tech-
nique, to the different feature spaces. The three dimensional
embedding for the original dataset is shown in Fig. (4).
We propose using the bounds derived in Section 3 to predict
the number of features (or principle components) that would
achieve a desired classification performance. Figs. (5a-5c)
display the H P score for each pair of classes as a function of
the number of principal components for the original dataset,
HoG and mask. For a NN accuracy of at least 0.95, we require
a HP value greater than 0.94975 between each pair of classes.
We selected the minimum number of features that would
achieve our desired H P metric values. After choosing the
number of principal components that would represent each
image, we applied the NN classifier on the reduced-dimension
dataset to compute the actual classification accuracy. The
results are shown in Table III. We may conclude that using
the dataset in original sensed space is more efficicent than
the extracted features since it involves less number of PCA
components along with higher actual accuracy. Moreover,
we considered fixing the number of features obtained for
the different pre-processing techniques we used to evaluate
the efficacy of each one of them fairly with respect to the
dimensionality of the feature space. The results are outlined

TABLE III

RESULTS FOR NN CLASSIFICATION ACCURACY VERSUS
THE PREDICTED LOWER BOUND FOR ACCEPTABLE

CLASSIFIER PERFORMANCE OF AT LEAST 95%

TABLE IV

RESULTS FOR NN CLASSIFICATION ACCURACY

VERSUS THE PREDICTED LOWER BOUND

FOR A FIXED NUMBER OF FEATURES

Fig. 6. Results showing the tightness of the lower bound for the case when
k = 1, where the x-axis represents the number of features and the y-axis
shows the kNN actual accuracy versus the lower bound. (a) Class 1 and 2.
(b) Class 1 and 3. (c) Class 2 and 3.

in Table IV. From the results, we can conclude that using the
original dataset with no prior preprocessing, again, is better
than extracting the HoG or mask descriptors. In Figs. (6a-6c),
we show the tightness of the predicted lower bound in Eqn. (2)
versus the actual NN classification accuracy as a function of
the number of features for our dataset in the original sensed
space. It is obvious from the figures that the tightness of
the lower bound increases as we increase the number of the
PCA components. In addition, they almost overlap after certain
number of components which demonstrates the effectiveness
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Fig. 7. The achieved accuracy versus the predicted lower bound for k = 5,
where the x-axis represents the number of features needed to achieve the
corresponding accuracy. (a) Class 1 and 2. (b) Class 1 and 3. (c) Class 2 and 3.

TABLE V

RESULTS FOR k-NN CLASSIFICATION ACCURACY VERSUS THE

PREDICTED LOWER BOUND FOR ACCEPTABLE CLASSIFIER

PERFORMANCE OF AT LEAST 95% AND FOR k = 5

TABLE VI

RESULTS FOR k-NN ACTUAL ACCURACY VERSUS
THE PREDICTED LOWER BOUND FOR A FIXED

NUMBER OF FEATURES AND FOR k = 5

and the reliability of the lower bound in predicting the actual
classification accuracy. Besides, we performed the same exper-
iment for k = 5 using the bound in Eqn. (20) and the results
are shown in Figs. (7a-7c).

Furthermore, we use the bound in Eqn. (20) to evaluate the
number of features that would retain a favorable classification
performance of at least 95%, much like the experiment that
was carried out for the case of k = 1. The numerical
results are depicted in Table (V). We next fix the number of
features obtained for the different pre-processing techniques.
The results are outlined in Table VI. From the results, again,

Fig. 8. The achieved accuracy versus the predicted lower bound for k = 1.
(a) Class 1 and 2. (b) Class 1 and 3. (c) Class 2 and 3.

Fig. 9. The achieved accuracy versus the predicted lower bound for k = 5.
(a) Class 1 and 2. (b) Class 1 and 3. (c) Class 2 and 3.

we can conclude that using the original dataset without any
prior preprocessing is better than extracting the HoG or mask
descriptors for our dataset.

B. Using Extended Yale Face Database
To further substantiate our proposed approach, we apply

our bounds to the data from the Extended Yale Face
Database B [40]. The Extended Yale Face Database B con-
tains 16128 images of 28 human subjects under 9 poses and
64 illumination conditions. We used three sets of images
that belong to three different people. Images belonging to
one person were considered as one class. Each class consists
of 585 different images representing the face in different
illumination conditions with some changes in the background.
The images were downsampled to 240 × 320 pixels and then
vectorized. We next applied PCA to the data in the original
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Fig. 10. The achieved accuracy versus the predicted lower bound for k = 9.
(a) Class 1 and 2. (b) Class 1 and 3. (c) Class 2 and 3.

sensed space. We used the lower bounds in Eqs. (2) and (20) to
compare them against the actual k-NN classification accuracy
as a function of the number of principal components for the
dataset in the original sensed space. The results are shown in
Figs. (8a-8c), (9a-9c) and (10a-10c) for k = 1, 5 and 9 respec-
tively. Similar to the previous experiments, we can see that
the tightness of the lower bound increases as the number of
the PCA components increases. Moreover, they overlap past a
number of a few number of components, hence demonstrating
the fidelity of estimating the actual classification accuracy
using our derived bounds for k ≥ 1.

VIII. CONCLUSION

In this paper, we derived new bounds on the k-NN classifier
performance using a non parametric distribution free metric,
known as the Henze-Penrose metric. The metric was exploited
to quantify the inherent separation between classes from a
labeled set of high-dimensional synthetic vehicle imagery data.
The derived bounds for k ≥ 1 allow to incorporate prior
knowledge regarding the performance of the k-NN classifier
assuming no prior information about the class distributions
and the estimation of their PDFs. The predicted bounds on the
labeled training data have been used to bound the classification
accuracy on the unlabeled test data. In short, distribution-free
metrics such as Henze-Penrose and Friedman-Rafsky provide
an avenue to quantify the efficiency of a particular dataset with
regards to its discrimination capability, which also affords the
minimum number of reduced dimensions required to maintain
a desired discrimination that is comparable to the original
dataset.

APPENDIX A
PROOF OF THEOREM 1

Proof: Suppose two classes of m and n points form a
complete graph of unique distances. Therefore, the minimum
spanning tree is unique and the NN graph will be a subset

of the MST. We proceed by first relating the number of
misclassified points, E , the number of edges which are present
in the MST but not in the NNG, C − 1, and the number of
edges connecting different classes in the MST, Rm,n −1. Each
edge connecting different classes in the MST causes at most
two classification errors, and each edge connecting different
classes in the MST either does not exist in the NNG or causes
at least one classification error,

E

2
≤ Rm,n − 1 ≤ C − 1 + E .

We next prove the lower bound by writing:

AN N = 1 − E

m + n
,

≥ 1 − 2(Rm,n − 1)

m + n
,

≥ 1 − 2((1 − H P)(m + n) − 1)

m + n
,

≥ 2H P + 2

m + n
− 1.

Lastly, we prove the upper bound by proceeding as:

AN N = 1 − E

m + n
,

≤ 1 − Rm,n − C

m + n
,

≤ 1 − (1 − H P)(m + n) − C

m + n
,

≤ H P + C

m + n
.

�

APPENDIX B
PROOF OF THEOREM 2

Proof: We first establish a relationship between the
number of wrong votes, w, the edit distance, D, and the
number of edges connecting different classes in the MST,
Rm,n − 1. Each edge connecting different classes in the MST
causes at most two wrong votes and can either be included
among the D edges or causes at least one wrong vote,

w

2
− D ≤ Rm,n − 1 ≤ w + D − 1.

In addition, the number of misclassification errors will be
bounded above and below by:⌈

max((w − ⌊ k
2

⌋
(m + n)), 0)⌈ k

2

⌉
⌉

≤ E ≤
⌈

w⌈ k
2

⌉
⌉
.

We next prove the lower bound by writing,

AN N = 1 − E

m + n
,

≥ 1 − 1

m + n

⌈
w⌈ k
2

⌉
⌉

,

≥ 1 − 2

m + n

⌈
(1 − H P)(m + n) + D − 1⌈ k

2

⌉
⌉

.
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Lastly, we prove the upper bound by proceeding as:

AN N

= 1 − E

m + n
,

≤ 1 − 1

m + n

⌈
max((w − ⌊ k

2

⌋
(m + n)), 0)⌈ k

2

⌉
⌉

,

≤ 1 − 1

m + n

⌈
max((m + n)((1 − H P) − ⌊ k

2

⌋
) − D, 0)⌈ k

2

⌉
⌉

.
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