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Abstract—Real-world social and/or operational networks
consist of agents with associated states, whose connectivity
forms complex topologies. This complexity is further com-
pounded by interconnected information layers, consisting, for
instance, documents/resources of the agents which mutually
share topical similarities. Our goal in this work is to predict the
specific states of the agents, as their observed resources evolve
in time and get updated. The information diffusion among the
agents and the publications themselves effectively result in a
dynamic process which we capture by an interconnected system
of networks (i.e. layered). More specifically, we use a notion
of a supra-Laplacian matrix to address such a generalized
diffusion of an interconnected network starting with the
classical ”graph Laplacian”. The auxiliary and external input
update is modeled by a multidimensional Brownian process,
yielding two contributions to the variations in the states of
the agents: one that is due to the intrinsic interactions in the
network system, and the other due to the external inputs or
innovations. A variation on this theme, a priori knowledge of
a fraction of the agents’ states is shown to lead to a Kalman
predictor problem. This helps us refine the predicted states
exploiting the error in estimating the states of agents.

Three real-world datasets are used to evaluate and validate
the information diffusion process in this novel layered network
approach. Our results demonstrate a lower prediction error
when using the interconnected network rather than the single
connectivity layer between the agents. The prediction error is
further improved by using the estimated diffusion connection
and by applying the Kalman approach with partial observa-
tions.

Index Terms—Multi-layer network, Information diffusion,
Topic propagation, Computer networks.

I. INTRODUCTION

The emergence and rapid growth of the Internet have led
to far greater access to and exchange of information between
machines and among people. Social media such as Face-
book, Twitter, and LinkedIn, have indeed connected billions
of people across the planet, and have in addition almost
trivialized information and resource exchange. As a physical
process, the information flow—through its rather extensive
connectivity and resulting frequent exchanges among the
nodes, as connecting entities—is a pervasive diffusion. The
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high activity over a typical network entails active dynamics,
and hence large variations in content. The states of agents
(nodes) in such a network are consequently actively altered
by the diffusion of information, according to associated
dynamical parameters of the network. Throughout this work,
we use the general term ”agent” to refer to users in social
networks, bloggers, authors, or any individual who produces
information content, and is networked with others. Agents
are usually/invariably interested in different topics irrespec-
tive of the structure of the network. Bloggers, for example,
may write about specific topics, while different authors may
only publish articles about their own research areas.

The interest of a given agent may, also, evolve over time,
as a result of diffusion of information from other agents
or sources. This work is, to the best of our knowledge,
first in addressing this problem in its full generality thus, in
particular, we propose layered and interconnected networks
to beyond a two-layer network, as has appeared in the
literature [9]. This in turn allows diffusion to take place
over many layers (a truly multi-layer diffusion network).

To proceed, we note that the diffusion phenomenon in a
network and our later formulation will also be useful in pre-
dicting the future state of agents in the network. Specifically,
information diffusion process on the topical states of agents
is further clarified with the following fundamental working
hypotheses:

1) Information and State of Agents:
To successfully model the information diffusion, it is first
imperative to carefully define the type of dynamics which
characterize the diffusion process. Many existing diffusion-
based methods have associated characteristics such as in-
fections, epidemics, diseases, viruses or contagions which
can spread over the network. For completeness, we briefly
describe some of these works: in Susceptible-Infected-
Susceptible (SIS) models [24,25,31] the infection can spread
from any infected agent to its neighbors under certain
conditions and sets of probabilities, and the agents can either
be in susceptible or infected states. In this case, an agent in
an infected state, will switch to a susceptible state over time,
with some probability p. However, in Susceptible-Infected-
Recovered (SIR) models [6,16,21,34] the agents will switch
to the recovered state, and may not catch the infection again.
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(a) Single layer network. (b) Multiplex network. (c) Interconnected network of heterogeneous
nodes of agents and documents.

Fig. 1: a) A single layer network between bloggers. Dashed edges show connections between bloggers. b) A multiplex network between bloggers. The
top layer is based on the hyperlink inter-connectivity of the bloggers, and the bottom layer is the friendship network between the bloggers. The straight
inter-layer edges are showing that the bloggers are the same people in both layers. c) An interconnected network of heterogeneous nodes of agents and
documents. The dotted edges are showing which blogger (agent) has produced which document. A similar set of dotted inter-layer edges are present
from the top layer to the bottom layer which has not been depicted in the picture.

In addition, one commonly defines the state of an agent as
active or a passive [2, 33]. The active agents will influence
their neighbors to activate/trigger them.

Despite the subtle differences in these models, the state
space of the agents is usually binary indicating influence
from a certain information. While these types of diffusions
may capture some dynamics, they present serious limitations
in any practical network settings. A case in point is that of a
diffusion process due to a blogger’s read of other blogs in a
network, and whose state/opinion changes as a result. This in
turn, changes the dynamics of the network. In Instagrams,
users may ”repost” each other’s images (with or without
modification of the original image), thus implying that the
information diffusing through the network may come from
text, image, video, and other types of documents.

2) The connectivity model:
Information diffusion over a network is intimately related
to the connectivity structure. While the connectivity model
describes nodes with a potential to influence/(or be influ-
enced by) others, it may assign a quantitative value on the
relation of the agents defined by their mutual influence.
Graphs are most commonly used to model the connectivity
among agents who are represented by nodes, and whose
connection is depicted by edges.

In the aforementioned ”bloggers” example, connectivity
between bloggers highlights the fact that they read each
other’s blog. Fig. (1a) shows a single layer connectivity
structure between the bloggers; but various structures be-
tween them are also possible. We may, for instance, consider
the information about the hyperlink connectivity as well
as the friendship network between the bloggers. Fig. (1b)
depicts a two-layer connectivity structure (multiplex with
two layers) between bloggers.

In this work we define the state of each agent as a feature
vector. Specifically, we will consider the state of each agent
as a topic vector, to reflect the extent to which an agent is

associated with specific topics. Our goal in this endeavor is
to also provide the evolution of the topic vector of each agent
over time. The goals and contributions in this paper are:
creating a multi-layer diffusion network among agents and
information contents, estimating the future state of agents,
learning the structure of the supra-Laplacian matrix from
previous diffusion history, and predicting the future states
assuming that a partial observation of the states of agents is
available.

1) We go beyond the two-layer case to account for topical
connectivity among the content nodes (sources of data
characteristic of the information permeating the intercon-
nected network) thus yielding a multi-layer network. In our
example, blogs consist of a set of documents generated by
bloggers over time, and as illustrated in Fig. (1c). These
document sets may share some topical similarities (in spite
of their distinct blogger sources). Structuring these relational
properties into a network of document sets, introduces addi-
tional connecting edges between agents and document sets,
as well as among agents. These additional paths will diffuse
information at a secondary degree, specifically, an absence
of a direct connection between two bloggers, does not
exclude one blogger getting updated on another blogger, and
this on account of topical similarities between documents,
they are associated with. We will refer to this complex struc-
ture of connected networks, as an interconnected network
of heterogeneous nodes, with advantages further discussed
in Section III. This structure will help us understand the
process in which the author’s topical interests are changing
from a topic to another, or why different topics are getting
different amounts of attention by users in online social
networks.
2) While the current states of agents represent their en-
gagement in different topics, they will evolve over time to
reflect new documents being produced, hence updating the
agents’ states. We propose to estimate the state of the agents



3

at time t1, knowing their state at time t0 < t1 with the
help of the interconnected network. This is accomplished
by considering a multi-layer diffusion network among the
agents and documents.
3) In many cases, the actual diffusion among the agents is
different from the fixed connectivity which we observe in
the network (e.g, for a given friendship network between
bloggers, a connection between two friend bloggers does
not necessarily imply an influence of one on the other.). By
observing diffusion related patterns over a short period of
time, we particularly attempt to understand such a static in-
fluence network (reasonably for a short time interval), which
has the presumably close connection to agents involvement
in some common interest, with the capacity of leading to
a common consensus. To that end, we learn the structure
of the supra-Laplacian matrix of the underlying network of
influence, which we subsequently use that in our prediction
phase.
4) In certain online social networks, one often encounters
a set of conservative users with strict privacy policy and
a fraction of hub nodes with public information, and this
clearly alters the previously designed state prediction prob-
lem. We exploit the flexibility of the Kalman filter to address
the problem, assuming that a partial observation of the states
of agents is available. The Kalman filter enables us to refine
the predicted states by exploiting the prediction error in the
available states.

This paper is organized as follows: In Section II we dis-
cuss some background and related work to our contribution.
Section III describes our basic formulation of the problem.
We propose our new approach in Section IV, and present
substantiating experimental results in Section V. We provide
some concluding remarks in Section VI.

II. RELATED WORKS

In recent years, a number of studies of real-networks have
focused on epidemic spreading in multiplex networks. In
[32], two epidemies spreading in a two-layered multiplex
network was addressed. While agents in the two-layered
multiplex network are the same, their connectivity structures
are different. In the state transition diagram of the model,
each agent can be infected either by the first epidemy (I1),
or by the second epidemy (I2), or possibly susceptible state
(S). The suggested model is in the form of SI1I2S. The
infected agent by the first epidemy should first get into a
susceptible state to later get infected by the second epidemy.
Also, thresholds determining the epidemies persistence, are
defined. In [4], the authors study a similar environment
(SI1SI2S) in a two-layered multiplex network. The work
focused on the long-term extinction, coexistence and ab-
solute dominance of the two epidemies with a different
definition of dominance than that of [32]. In [9], the authors
discuss the diffusion dynamics in a two-layered multiplex
network. The authors introduce supra-Laplacian matrix, and
used a perturbation analysis to study the effects of changes
in the spectral properties of single layer on the spectral

properties of the whole network. Similarly in [8], the authors
study the spreading of two different processes in a multiplex
network. Their work mostly focused on the impact of
the degree correlation of the two layers on the epidemic
properties of the processes. The state space they considered,
similar to many others was of binary nature (infected or not-
infected) to model the spreading processes.

We can classify the information diffusion process models
into three major groups, probabilistic models, thermody-
namic models, and counting models. NETINF [10], NE-
TRATE [22] and INFOPATH [11] are the probabilistic mod-
els which infer the underlying diffusion network between
information sources using consecutive hit times of the nodes
by a specific cascade. The diffusion network was the result
of solving an optimization problem which is computationally
very expensive (super-exponential). The main idea behind
the thermodynamic models [7, 9, 19, 27] is that heat will
propagate from a warmer region to a colder region or gas
will move from the region with higher density to the region
with lower density. Modeling the information as heat or gas,
we can write the rate at which information is changing in
agent i as: dψi

dt = D
∑
j A(i, j)(ψj−ψi). Where ψi(t) is the

state of the ith agent at time t, D is the diffusion constant
which is the amount of information passing from an agent
to another agent in a small interval of time, and A(i, j),
the so-called adjacency matrix, reflects the connectivity
between agents i and j. The counting models [12, 18, 26]
form counting processes to find the number of nodes in
each group of susceptible or infected nodes. Assuming that
each agent has β contacts with other agents per unit time,
and in each contact of an infected agent with a susceptible
node, the diseases will definitely spread, the overall rate of
new infections is βSX/n, where n is the total number of
nodes. X and S are the number of infected and susceptible
individuals respectively. We therefore, can write the rate of
change of X and S as dX

dt = β SXn and dS
dt = −β SXn .

In this paper we address following limitations from the
aforementioned information diffusion models.

A) Almost all existing information diffusion models are
based on the contagion principle, using an abstract term or
a clear data tag. Specifically, many information diffusion
models in social networks, for example, consider a specific
”Hashtag” or repost as contagion [7, 9, 10, 27]. We would,
thus, need to advance existing information diffusion models,
if one were interested in, tracking the way bloggers influence
each other, or how articles and related research fields vary
over time, or parsing through very large multi-modal data
sets.

B) A few information diffusion models [9, 27] have re-
cently considered multiplex connectivity models. The over-
whelming majority of these works model the connectivity
by just using simple graphs. Agents may, however, display
several forms of connectivity, through multiple online social
networks, or other social clubs, thus making simple graph
models highly biased for capturing the real world complexity
of information diffusion models.
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C) Existing models are layered by lack of considering
external perturbations/inputs. Specifically, considering the
bloggers’ example, the documentation evolves with time,
and so do the nodes of the network, hence impacting the
mutual influence the agents have on each other. This is
indeed key to one’s ability to proceed to any future state
prediction on the network. In the present work, we model
each agent state vector as a topic vector, effectively as a topic
proportion associated with the agent’s own documents. In so
doing, our solution predicts the users’ future topic vectors
by considering their interactions inside the interconnect
network agents, as well as those of the documents. The latter
network is allowed to vary over time on account of both the
diffusion effect as well as that of the external input as new
documents are added.

Our work is similar to the research in [9], we however,
consider the interconnected network of heterogeneous nodes
of documents and agents (Fig. 1c) rather than the simpler
multiplex network (Fig. 1b) in [9]. We will also generalize
the scalar state space of agents to a higher dimensional state
space of topic proportions. Furthermore, we will consider an
open system, and we study the external effect on each agent
from the agents or documents which have not been captured
by the diffusion in the network.

III. PROBLEM FORMULATION

We represent agents within a social network setting,
by nodes on a graph, and their connectivity by edges
between them. The connectivity may reflect friendship, co-
authorship, or other forms of behavioral similarities. If we
consider a set VA of N agents, we can imagine MA different
graphs G(m)

A = (V
(m)
A , E

(m)
A ), m = 1, ...,MA based on the

MA different connectivity structures among these N agents.
We will use throughout, the term “agent-layer” to refer to
the network comprised of communicating agents. In Fig. (2)
we can see two agent-layers. We note in this case, that the
agents are the same in both layers, and we hence have a
direct one to one connections between them (the blue edges
in Fig. (2)).

Agents are usually assumed to possess some data or to
produce information in their embedding network. If, for
instance, the agents were bloggers or social network users,
they would be producing blog-documents or their online
accounts, if they were researchers, they would be turning
out scientific papers. These sets of documents, may also
mutually store topical similarities which will play a role in
the overall information diffusion throughout the network.
Of central interest in our work, is the evolution of the
topical states of the agents, as the information diffusion
takes place. Latent Dirichlet Analysis (LDA) [1], Latent
Semantic Indexing (LSI) [5] and several other topic mod-
eling algorithms afford us the ability to represent any text
document as state vectors of length T . T is an arbitrarily
chosen number of topics (dimension) in a collection of text
documents. Considering the documents as vectors in a T

Fig. 2: The interconnected network I (Eqn. (2)) with two agent-layers
and one information-layer. A set of inter-layer edges (similar to the red
lines) are present from the top layer to the bottom layer which have not
been depicted in the picture for simplicity.

dimensional vector space, we can build a similarity network
between these vectors using their euclidean inter-distances,
as well as a neighborhood criterion between them (e.g. K-
Nearest Neighbors algorithm, Epsilon-Neighborhood). We
consider a set VI of S documents. The subscript I specifies
the information nature of the network and of its members
(i.e, it pertains to documents in this case), with MI different
graphs G(m)

I = (V
(m)
I , E

(m)
I ), m = MA + 1, ...,MA +MI ,

each describing a different connectivity structure among S
documents (the bottom layer in Fig. (2)). Note that similarly
efficient tools (e.g. ISOMAP [28], Principal Component
Analysis (PCA) [13], Multi-Dimensional Scaling (MDS)
[29]) for dimension reduction are available for multi-modal
documents (images, videos, ...), to possibly represent them
as separate networks. In this work, we refer to the network
among the documents as the information-layer. Table I lists
all notations used in this paper along with their definitions.

By adopting an adapted notation of [15], we represent the
document p by Ip, and the agent i by Ai. The red inter-layer
edges (EA,I ) in Fig. (2) relates agents to their respective
documents (publisher-publication network). The information
of document Ip is denoted by a T dimensional vector xIp ∈
RT . The state of agent Ai in layer m, is defined as the
average of the T dimensional vectors of their associated
documents:

x(m)
Ai

=
1

|NI(Ai)|
∑

p∈NI(Ai)

xIp , (1)

where NI(Ai) is the set of documents produced by agent
Ai or more formally, the neighbor set of agent Ai in
the information-layer, which |NI(Ai)| is the cardinality of
that set. The interconnected graph in Fig. (2) may thus be
denoted by:

I =

((
V

(1)
A ∪V (2)

A ∪V (3)
I

)
,
(
E

(1)
A ∪E

(2)
A ∪E

(3)
I ∪E

(1,2)
A,A ∪E

(1,3)
A,I ∪E

(2,3)
A,I

))
.

(2)
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TABLE I: Terminology

Symbol Definition Symbol Definition
A, I Agents & documents resp. W(k)

A Intra-layer connectivity matrix of agents in layer k.
Ai, Ip Agent i & documents p resp. W(k,m)

A,I Inter-layer conn. of layer k to m among agents and docs.

G
(m)
A , G(m)

I Intra-layer graphs of layer m. D
(k)
A Intra-layer diffusion constant of the agents in layer k.

I The interconnected graph. D
(k,l)
A Diffusion constant of agents from layer k to l.

T Length of the topic vectors. D
(k,m)
A,I Diffusion const. of layer k to m. among agents and docs.

L(m) Laplacian matrix of layer m. N , S, P # of agents, documents & all nodes resp.
x(m)
Ai

State of agent i in layer m. L Supra-Laplacian matrix.

xIp State of document p. X A P × T matrix consisted of the state of all nodes.

With this inter-connected formulation, and in analyzing
an associated information diffusion process, we address in
this paper,
• The ability to achieve a diffusion of information be-

tween agents via multiple connectivity structures. The
same set of agents may have different intra-layer con-
nectivity at different layers;

• The ability to model networked documents in a sep-
arate network layer, will enable us to consider the
similarities, and their evolution overtime between the
documents as an information diffusion medium. For
instance, agents Ai and Aj in Fig. (2) are not connected
via any paths through the top two agent-layers G(1)

A ,
and G(2)

A . There is, however, a path between these two
agents by way of the similarity of their documents Ip
and Iq in G(3)

I . The intuition supporting the interaction
between Ai and the Aj in the blogger’s example,
follows from: blogger Ai noticing Ip document’s sim-
ilarity (written by blogger Aj) to his/her Iq document,
would read the document and being influenced, as a
result.

• The preservation of the conventional information dif-
fusion structures such as the co-authorship network in
the introduced interconnected network model (e.g the
agents Aj and Ak who have collaborated to produce
the Ip).

IV. THE PROPOSED METHOD

In this section we address the information diffusion across
agents as a result of topic adoption and adaptation, as well
as external topic additions. To that end, we next consider a
closed interconnected network with no additions. In Section
IV-B, we consider an open interconnected network and ac-
count for an innovation injection. In Section IV-C, we define
the estimation of the supra-Laplacian matrix using learning
data. In Section IV-D, we further refine the predicted state
of the nodes using Kalman filtering. In Section IV-E, we
analyze the effect of a weak inter-layer connection on the
over-all diffusibility of the interconnected network.

A. Closed system: Information diffusion in a heterogeneous
network

In closed systems, all changes in the states of agents are a
result of interaction of the agents in the network. In a single

layer diffusion process [7, 9, 19, 27], an agent state maybe
formalized as:

dxAi

dt
= D

N∑
j=1

W(i, j)(xAj
− xAi

), (3)

where dxAi

dt is the ith agents’ topic vector change over time.
W(i, j) reflects the connectivity status between agents i and
j, while D is the diffusion constant, or the fractional amount
of information passing from j to i in a small time interval.
By further simplification of Eqn. (3), we may write dXA

dt as
follows:

dXA
dt

+DLXA = 0, (4)

where XA is an N × T matrix, where row i is denoted by
the row vector xTAi

; L is an N ×N graph Laplacian matrix
(i.e., L = K−W, K being the diagonal matrix of the nodes’
degree).

Independent of the nodes in the network being agents or
documents, we can state the following,

Proposition 1. We can generally write the supra-Laplacian
matrix of an M layer multiplex network with N nodes in
each layer as L = LL + LI . Where LL is the supra-
Laplacian matrix of the intra-layer connectivity and LI is
the supra-Laplacian matrix of the inter-layer connectivity.
LL may be in turn, written as direct sum of the Laplacian
matrices of the independent intra-layer connectivities:

L = LL + LI , (5)

LL =

M⊕
α=1

D(α)L(α) =


D(1)L(1)

D(2)L(2)

. . .
D(M)L(M)

 .

(6)
The inter-layer supra-Laplacian can be written as LI =∑M
α=1(Kα

I −W
α
I ), where the Kα

I is the diagonal inter-layer
degree matrix of layer α, showing the inter-layer degree
of the nodes in layer α and the Wα

I is the inter-layer
connectivity matrix of the nodes in layer α with the nodes
in the other layers. The Kα

I and Wα
I are formally defined

in Eqns. (7 and 8) respectively:

Kα
I = e(α,α) ⊗ (

M∑
β=1β 6=α

D(α,β)K(α,β)), (7)
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L =

 D(1)L(1) +D(1,2)I +D(1,3)K(1,3) −D(1,2)I −D(1,3)W(1,3)

−D(2,1)I D(2)L(2) +D(2,1)I +D(2,3)K(2,3) −D(2,3)W(2,3)

−D(3,1)W(3,1) −D(3,2)W(3,2) D(3)L(3) +D(3,1)K(3,1) +D(3,2)K(3,2)

 . (11)

Wα
I =

M∑
β=1β 6=α

(e(α,β) ⊗ (D(α,β)W(α,β))), (8)

where K(α,β), is the diagonal matrix reflecting the degree
of each node in the inter-layer connectivity between layer α
and layer β, W(α,β) quantifies the inter-layer connectivity
of the layer α nodes to the layer β nodes and e(α,β) is an
all 0, M ×M , matrix with an only 1 element in (α, β).

Proof. Considering the interconnected network case de-
picted in Fig. (2), with MA and MI layers of connectivity
among the agents and the documents respectively, we can
write,

dx(k)Ai

dt
= D

(k)
A

N∑
j=1

W(k)
A (i, j)(x(k)

Aj
− x(k)Ai

) (9)

+

MA∑
l=1

D
(k,l)
A (x(l)Ai

− x(k)Ai
)

+

MA+MI∑
m=MA+1

D
(k,m)
A,I

S∑
p=1

W(k,m)
A,I (i, p)(x(m)

Ip
− x(k)Ai

).

The first term of Eqn. (9) represents the intra-layer diffusion
of the information inside layer k, the second term accounts
for the diffusion of the information between different agent-
layers for agent i, while the third term describes the diffusion
of information from different information-layers to agent i
at layer k. W(k)

A depicts the connectivity of agents within
layer k, while W(k,m)

A,I does that of agents in layer k and
documents in layer m. The D(k)

A is the intra-layer diffusion
constant of agents in layer k, while D(k,l)

A is the inter-layer
diffusion constant of agents from layer k to agents in layer
l, and D

(k,m)
A,I is the inter-layer diffusion constant between

agents in layer k and documents in layer m.
Further simplification of Eqn. (9) yields the following

differential equation:

dX
dt

= −LX, (10)

where X is an P×T matrix. In case of an M layer multilayer
network, rewriting the L matrix will lead us to Eqn. (5).

Following is an example which further clears steps of the
proof.

Example 1. In a three-layer interconnected network similar
to Fig. (1c), X is a P × T matrix (P = 2N + S) which
represents the states of agents in the top two layers (X(1)

and X(2)), and of the topic vectors of the documents in
the third layer (X(3)). Following the terminology in [9],
we refer to L as a supra-Laplacian matrix, by its ability
to capture the diffusion in inter-connected network system.
Assuming undirected graphs in each layer, and symmetric

diffusion constants (D(k,m) = D(m,k)), we can write for
easier explanation, the supra-Laplacian matrix in case of a
three layer-network (Fig. (2)), with two agent-layers and
one information-layer as Eqn. (11). For this specific a 3
layer inter-connected network, we simplify our notation by
dropping the subscripts (as in Eqn. (11), specifying the
nature of a network layer) in favor of superscripts. 1 This
hence makes matrix Lm represent the Laplacian of the intra-
layer connectivity matrix of layer m, I the identity matrix,
while Km is a diagonal matrix of node degree of layer m,
and Km,n is a diagonal matrix reflecting the degree of each
node in the inter-layer connectivity between layer m and
layer n. This hence yields Eqn. (11), which the first elements
in the diagonal entries, form LL (Eqn. (6)), the other two
elements in the diagonal entries form Kα

I s (Eqn. (7)), and
the rest (off-diagonal entries), form Wα

I s (Eqn. (8)).
�

B. Open System Diffusion: Impact of External Effects

Much of the existing work in information diffusion mod-
els have a limited scope (of agents, documents, parame-
ters) when predicting the future state of the nodes. More
specifically, agent states may be varied by external sources
which are not captured in the network, or by some agent
actions which may even to some extent, conflict with the
model prediction. to address this additional auxiliary input,
we propose open system model as follows:

First, consider a single layer network (agent-layer) for
simplicity, we can then model the rate of change in the state
of node i as follows,

dxAi = D

N∑
j=1

W(i, j)(xAj − xAi)dt+ σi dB(t), (12)

where W(i, j) quantifies the connectivity between agent
i and j, and D is the diffusion constant reflecting the
infinitesimal amount of information passing from j to i
in a small interval of time, and B(t) is a T × T matrix,
whose columns are T -dimensional vectors with components
as independent standard Brownian motions of variances σi.
Inspired by the Ornstein-Uhlenbeck (O.U.) process [30],
Eqn. (12) describes the velocity of the topical-state of the
nodes as a Brownian motion in presence of friction. In other
words, to describe the uncertainty due to external effects, we
proceed to view the whole system as a massive Brownian
particle. The drift term (first term in right-hand side of Eqn.
(12)), however, moves the velocity from a martingale state
of σidB(t) towards a consensus (captured by the drift term).
In matrix form, Eqn. (12) may be written as,

dXA(t) = −DLXA(t)dt+ ΣAdB(t), (13)

1Layers 1-2 are the agent-layers, while layer 3 is the information-layer.
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(a) ||ΣA||F
||X0||F

= 0 (b) ||ΣA||F
||X0||F

= 0.24

(c) ||ΣA||F
||X0||F

= 0.42 (d) ||ΣA||F
||X0||F

= 0.67

Fig. 3: The effect of different magnitude of ΣA matrix on
the state of agents.

where ΣA is an N × T matrix, and each row shows the σi
vector in Eqn. (12) for agent i. Fig. (3) shows numeric of
examples of Eqn. (13) with N = 5 and T = 1. The ΣA

matrix adjusts the effect of the consensus and the Brownian
motion in Eqn. (13). In this figure, we have used the term
||ΣA||F
||X0||F (with X0 = XA(0)) to compare the effect of ΣA

magnitude matrix on the states of the agents. As the value
of ||ΣA||F
||X0||F increases the second term on the right-hand side

of Eqn. (13) will have more influence on determining the
state of the nodes and consequently, the state of the agents
will be changed by higher uncertainty.

To extend to an interconnected setting, we can state the
following statement: Given the states of nodes at time t0 we
can predict the states at time t1 , t1 > t0 as follows:

X̂(t1) = e−L(t1−t0)X(t0) +

∫ t1

t0

eL(s−t1+t0)ΣdB(s), (14)

where e−L(s−t1+t0) is a matrix exponential and itself is a
P×P matrix and Σ is P×T matrix. To this end, we rewrite
Eqn. (13) for interconnected networks as,

dX(t) = −LX(t)dt+ ΣdB(t). (15)

The first term on the right-hand side of Eqn. (15) describes
the network-level diffusion taking place among the nodes
(mean reverting term), while the second depicts the global
diffusion process, affecting nodes regardless of their inter-
actions.

There are multiple ways to calculate the term
∫ t1
t0
eLτ dτ ,

one may use the basic definition of a matrix exponential,
and calculate the numerical value of the integral, or instead
use the Jordan form as L = MJM−1 and eLτ =
MeJτM−1.

Our proposed learning procedure will evaluate the dif-
fusion constants in the supra-Laplacian matrix L as well
as the Σ matrix. To that end, we proceed to minimize the

Frobenius norm of the difference between X and it’s predict
X̂, resulting from,

arg min
Σ, D1,..

g = ||X(t1)− X̂(t1)||F . (16)

Solving this optimization problem helps us decompose the
predicted matrix into two main components on the right-
hand side of Eqn. (14), the first term representing the
interactions in the network, while the second quantifying
the uncertainty which results from auxiliary inputs into the
system.

C. Diffusion Network Estimation (Learning the Supra-
Laplacian Matrix)

The supra-Laplacian matrix L which we use in Eqn. (15)
for state prediction, is a result of the network connectivity
(refer to Eqn. (11)). In practice, hidden connections are
pervasive, introducing uncertainty in the prediction, which
are causing the information diffusion to require more than
the predefined, explicit connections from the network. To
that end, consider observations of X(t) over t ∈ [0, t1],
denote x(t) := vec(X(t)), the vectorization of X(t) to obtain
a vector differential system in order to learn the supra-
Laplacian matrix L of Eqn. (15):

ẋ(t) = Λx(t) + w(t) , 0 ≤ t ≤ t1,

and we have Λ = IT ⊗ (−L), the Kronecker product of T -
by-T identity matrix with (−L) and w(t) is the vectorization
of w(t) = ΣdB(t)

dt .
We consider the simple cost function J = 1

2ε
T ε, where

ε = x − x̂, and hence for the estimation Λ̂ we have
˙̂
Λ = γ(x− x̂)xT (derivative of J with respect to x̄), where
the estimation x̂(t + 1) = eΛ̂x(t), and γ > 0 is chosen
appropriately as the scaling gain. In optimization iterations,
the estimated value of Λ̂ at ith iteration is as follows:

Λ̂i = Λ̂i−1 +
˙̂
Λi−1.

We use Λ̂0 = IT⊗(−L), the graph Laplacian of the explicit
following-follower network (as initialization). The learned
Λ my however, not be exactly structured as IT ⊗ (−L),
due to dependence of topics in the state space, as well as
the nonlinearity and non-homogeneity of the diffusion. The
resulting error ε shall be considered for the estimation of
the noise in the Kalman-Bucy filter as discussed next.

D. A Refined Prediction: Kalman-Bucy Filtering

In prediction applications, the actual states of some of
the nodes are sometimes known, and we want to predict
those of all remaining nodes. An example of this may
be seen in social networks, where state of the hub nodes,
such as famous people or users with less restrictive privacy
policies are known to the public, and one is interested in
predicting the state of other less accessible users. Having
partial knowledge of the states of a fraction of the nodes
in the network, changes the state prediction problem to a
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Kalman predictor problem, and helps to refine the predicted
states using a Kalman filter. We propose a Kalman-Bucy
filter as the optimal linear predictor for our system, and we
write the observation equation as y(t) = (IT⊗H)x(t)+v(t),
with H as a diagonal indicator matrix with 1 in all the
observed entries, and 0 in all other entries. Λ having been
learned (see above Section), Kalamn-Bucy equations maybe
written as:

ẋ(t) = Λ̂x(t) + w(t),

y(t) = Hx(t) + v(t),

where H = IT ⊗H and the noises w(t) and v(t) are zero-
mean white (temporally) processes, i.e, E(w(t)w(s)

T
) =

Qtδ(t−s), E(v(t)v(s)
T

) = Rtδ(t−s), E(w(t)v(s)
T

) = 0.
By considering small time intervals on discretization of the
linear continues time system (δt = 1), one can write the
state equation as x̄(t+1) = F̂x̄(t)+ w̄(t), where F̂ = I+Λ̂:

x(t+ δt) ' x(t) + δt ẋ(t),

x(t+ δt) ' x(t) + δt (Λ̂x(t) + w(t)),

x(t+ δt) ' (I + δt Λ̂)x(t) + δt w(t).

Discretizing the Kalman-Bucy equations, gives us following
discrete time equations:

x̄(t+ 1) = F̂x̄(t) + w̄(t), (17)
y(t) = Hx(t) + v(t). (18)

Having Eqns. (17 and 18) as the state and observation
equations respectively, we can predict and refine the pre-
dicted states of the nodes using Algorithm (1):

Algorithm 1
Learning phase:

1: x(t)← vec(X(t))
2: Λ̂← IT ⊗ (−L) . Initial state.
3: repeat:
4: x̂(t+ 1)← eΛ̂x(t)

5:
˙̂
Λ← γ(x− x̂)xT

6: Λ̂← Λ̂ +
˙̂
Λ

7: until ||x− x̂||2 < η. . Convergence criteria.
Kalman filter prediction on test data:

1: Re,t ← Rt + HΠt|t−1HT . Updating.
2: ˆ̄xt|t ← ˆ̄xt|t−1 + Πt|t−1HTR−1e,t [ȳt −Hˆ̄xt|t−1]

3: Πt|t ← Πt|t−1 −Πt|t−1HTR−1e,tHΠt|t−1
4: F̂← I + Λ̂
5: ˆ̄xt+1|t ← F̂ˆ̄xt|t . Predicting.

6: Πt+1|t = F̂Πt|tF̂
T

+ Qt

The ”learning phase” of the Algorithm (1) is estimating
the supra-Laplacian matrix Λ̂ (see above Section). The
second phase of the algorithm, is refining the estimated
state of the nodes. Note that Rt is the covariance of the
observational error, and ˆ̄xt2|t1 denotes the linear prediction

of x̄ at time t2 given observations up to and including time
t1. The filter equation of a Kalman-Bucy filter [14], lines
1-3 of the algorithm, is given by:

˙̂x = Λ̂x̂ + Gt(y(t)−Hx̂(t)), (19)

Gt = ΠtHTR−1t , (20)

while the Gt is the Kalman gain, and the state covariance
Πt satisfies the Riccati equation:

Π̇t = Λ̂Πt + ΠtΛ̂
T

+ Qt −GtRtGT
t . (21)

For simplicity, we further assumed that the errors in the state
prediction and observation are Gaussian processes.

The designed algorithm shows the discrete time, state
update of the Kalman predictor. The estimated states of
the available nodes, Hx̂(t), are compared with the state
of the available nodes, y(t), as measurements observed
over time, to evaluate the extent of statistical noise and
other inaccuracies in predicting phase. The Kalman gain
Gt, is tuned to assign accurate gain on the measurement
(state of the available nodes) or follow the prediction model
(estimating the state of the unknown nodes) more closely.
More simply, the algorithm recursively learns from the error
appeared in the estimation of the states of the available
nodes and– by taking into account of the covariance of the
measured error– refines the estimation of the states of the
less accessible nodes.

E. Inter-layer Connectivity: Structural Robustness of an
Interconnected Network

In an interconnected network setting, the inter-layer links
play a crucial role in speed of diffusion between layers.
Strong inter-layer links will cause a faster information
diffusion among the layers and while, weak inter-layer
connections will yield a set of independent layers [27]. In
this section we use perturbation theory [23] to study the
effect of weak inter-layer linkage on the connectivity of
the over-all interconnected network. The second smallest
eigenvalue of a Laplacian matrix (algebraic connectivity)
helps us to uncover how close is the interconnected network
is to break into multiple connected components [3, 17, 27].
To this end, we claim following proposition,

Proposition 2. If an interconnected network has connected
intra-layer networks but weak inter-layer links, the second
smallest eigenvalue of the supra-Laplacian matrix of that
network is equal to,

εuTnLIun, (22)

where un is an eigenvector of the intra-layer supra-
Laplacian matrix LL.

Proof. Similarly to Eqn. (5), write the supra-Laplacian ma-
trix as a supra-Laplacian matrix of the intra-layer connectiv-
ity LL, and a supra-Laplacian matrix of a weak inter-layer
εLI :

L = LL + εLI , (23)
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where ε is a small positive number.
Denote v and λ by respectively an eigenvector and the

associated eigenvalue of the supra-Laplacian matrix L, we
have Lv = λv. Similarly for the intra-layer supra-Laplacian,
i.e, LLun = λnun, where {un} is an orthonormal set of
vectors such that: uTnum = δnm.

Since Laplacian matrices are symmetric and diagonaliz-
able, an eigenvector of the supra-Laplacian matrix maybe
written as a linear combination of the eigenvectors of the
intra-layer supra-Laplacian (v =

∑
m cmum). We therefore,

have:
L
∑
m

cmum = λ
∑
m

cmum. (24)

By right multiplying both hand-sides of the Eqn. (24) by uTn
and replacing the L with Eqn. (23) we will readily have:

cnλn + ε
∑
m

cmuTnLIum = λcn. (25)

Since we know that v = un+o(ε), the eigenvector v should
be mainly in the same direction of one of the eigenvector’s
of the LL matrix with small perturbation. Therefore we can
assume cm = o(ε) and cn = o(1). In Eqn. (25), if we ignore
the terms which have both ε and cm multipliers we will get:

λ = λn + εuTnLIun. (26)

Since LL is the Laplacian matrix of M independent intra-
layers, it will have at least M unconnected components and
M zero eigenvalues [27]. From Eqn. (26), we therefore
can infer that if an interconnected network has connected
intra-layer networks but weak inter-layer links, the second
smallest eigenvalue of the supra-Laplacian matrix of that
network is equal to εuTnLIun.

In section V we demonstrate through an experiment the
effect of weak inter-layer connectivity of our state predic-
tions model.

V. EXPERIMENTS

To evaluate and substantiate the theoretical
interconnected-network model proposed above section,
we conduct discrete-time simulations of our system in both
”closed and open” system conditions.

A. Data Sets

Our experiments have been carried out using the following
data sets,
• Network of professors and publications (N ∼ 100):

We assume a three-layer network, with two agent-layers
for the professors (the first and the second layers)
and one information-layer for publications (the third
layer). In this data-set the agents are 79 professors at
North Carolina State University, and the documents are
1000 abstracts of academic papers published by these
professors 1990 to 2014. The agents in the first and the

second agent-layers are the same individuals with one-
to-one connections between the agents. The first agent-
layer is based on the number of papers two professors
have co-authored in the same venue. W(1)

i,j is the
cumulative sum of papers published by professor i and
j in the same venue. The second agent-layer reflects
research group co-membership of two professors (with
8 different research groups considered).

W(2)
i,j =

{
1 If professor i and j are in the same group,
0 Otherwise.

(27)
The third layer (the information-layer) is based on the
topical similarity of the produced documents, and is
quantified by the inverse distance between the topical
vectors (T = 10) of the documents. An ε-neighborhood
criterion has been applied to break the weaker links,

W(3)
i,j =

{
1

||x(3)i −x(3)j ||2
If larger than ε,

0 Otherwise.
(28)

T = 10 dimensional topic vectors of documents have
been produced by performing the LDA topic modeling
algorithm [1] on the raw text documents.

• Network of Twitter users and Hashtags (N = 1000):
A two-layer network of Twitter users, (first layer) with
(N = 1000) users and the similarity network between
eight different popular Hashtags used by the Twitter
users in June 2009. The Hashtags are as follows: #jobs,
#spymaster, #neda, #140mafia, #tcot, #musicmonday,
#Iranelection, #iremember. The agent-layer network is
a directed graph, based on who is following whom on
Twitter. The information-layer network is the similarity
network between the Hashtags, where two Hashtags are
considered similar if both have been mentioned in the
same Tweet. We have used the Jaccard index [20] to
build the network between the Hashtags, and the ε-
neighborhood criterion has been applied to break the
weaker links.

W(2)
m,n =

{
|Tweets which have both m and n|
|Tweets which have m or n| If greater than ε.

0 Otherwise.
(29)

• Network of Twitter users and Hashtags (N = 5000):
An exactly similar setting as the previously mentioned
data set, with N = 5000 users.

B. Analysis of Results
Fig. (4) shows the results of our experiment on this data

set (the network of professors and publications). The x-axis
represents time, (and more specifically the consecutive years
from Year 2000 until Year 2014). In our experiment, our
goal is to predict the topical state of all the agents in each
year by having the topical state of the agents in the previous
year. More formally, we seek X̂

(1)
(t) given X̂

(1)
(t− 1).

Error measure(t) =
||X̂

(1)
(t)− X(1)(t)||F
||X(1)(t)||F

, (30)
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Fig. 4: Experiment for College Professor Network with 1000
publication documents.

where X(1)(t) is the ground truth matrix. The data over
years 1990-1999 are used to learn the diffusion constants,
which those from years 2000-2014 for testing. The graph
in blue is the prediction errors by just considering a single-
layer co-authorship network of agents/professors. The graph
in red reflects the prediction error by considering a three-
layer interconnected network of the heterogeneous nodes (as
described in Section V-A). The graph in black shows the
resulting changes in the topical states of the agents. This
is hence a measure to reflect the difference in the yearly
topical states of the agents, as in,

||X(1)(t)− X(1)(t− 1)||F
||X(1)(t)||F

. (31)

Eqn. (31) is an upper bound of our prediction error, and any
reasonable prediction method should have a smaller error
than the the one in Eqn. (31). We may indeed just assume
no change in the agent states has occured to achieve the
error in Eqn. (31).

1) Prediction using single layer network vs. heteroge-
neous network: As may be seen in Fig. (4), the prediction
method based on a three-layer network achieves a lower
error than the prediction based on a single-layer network.
Note, the single-layer network does not help in predicting
the topical states of the agents. The reason is that there are
only 79 agents in this experiment and the co-authorship net-
work between the agents is not particularly suited to predict
the future state of the agents. The three-layer network, on the
other hand, considers the similarity between the documents
present in the network, and accounts for more elaborate
diffusion paths, thus enhancing the prediction phase. The
average prediction improvement by the three-layer network
over that of a single-layer network is 8 percent.

Figure 5 displays the results of our experiment on the
second data set. The time (x-axis) reflects intervals of
consecutive six-hour periods. In this experiment, recall, our
goal is to predict the topical state of all agents at each
time point when given the topical state of the agents at
previous time points. The error metric is similar to that in
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Fig. 5: Experiment for a Twitter network with 1000 agents
and 8 Hashtags.
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Fig. 6: Experiment over Twitter network with 5000 agents
and 8 Hashtags.

Eqn. (30). The graph in blue reflects the prediction error
by just considering a single-layer Twitter follower/following
network between users. The graph in red displays the
prediction error using a two-layer interconnected network
of heterogeneous nodes (as described in Section V-A). The
graph in black represents the changes in the topical states
of users (Eqn. (31)). Finally, the graph in green shows the
prediction error by first estimating the Laplacian matrix
using the learning dataset and subsequently using it for the
prediction phase. As may be seen in the figure, the prediction
based on the two-layer network displays improvement over
the prediction based on the single-layer network. We have
used the data from time point 1 until time point 9 for
learning the diffusion constants, and have used the data
from Time-Point 10 to 64 for testing. The average prediction
improvement using a two-layer network over a single-layer
is 6 percent, while the prediction improvement using a
single layer network over successive differences of data is
3 percent. We expect the improvement to further increase
as the amount of data increases. Predicting the Laplacian
matrix helps us on decreasing the prediction error. The
average prediction improvement by this model over the
single-layer method is about 10 percent. As in Fig. (4), the
better prediction performance of the two-layer network is
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due to the topical similarities of the documents. This may
be attributed to the fact that this additional layer helps us
discover certain topical interest of the users using similar
Hashtags. For example, a Twitter user who has used a
Hashtag #Iranelection, is probably going to use a Hashtag
#neda (someone who died during the protests, after Iran’s
presidential election in 2009) later. The lower prediction
error by estimating the Laplacian matrix shows that the
actual information diffusion structure can be different from
the fixed connectivity imposed from the network.

Fig. (6) is the result of an experiment with similar
conditions to that of Fig. (5), if not for the number of agents
being 5000. As may be seen in the figure, the increased
number of agents improves the prediction error of the two-
layer network relative to the error upper bound. This effect is
mainly due to two factors, (i) The increase in the number of
agents in the network improve the information diffusion and
the mixing. (ii) The increased network size provides a better
estimate of the diffusion constants. The average prediction
improvement achieved by the two-layer network is about
13 percent. The prediction by first estimating the Laplacian
matrix, has about 15 percent improvement over the single
layer prediction method.

In Fig. (7), we have used the term ||Σ||F
||X0||F (with X0 =

X(0)) to show the role of network size (number of nodes),
on the extent to which the external sources affect the nodes.
As the value of ||Σ||F||X0||F term increases the second term on
RHS of Eqn. (13) will have a higher weight in determining
the state of the nodes and consequently, the states of the
agents will change by higher variance. The figure suggests
that as the network size increases the external influence of
input decreases. This result can be attributed to expanding
the system borders into external areas. In other word, as we
increase the network size, we are including a larger number
of factors which in turn, decreases the impact of auxiliary
input.
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Fig. 7: Experiment over the Twitter network with different
sizes.
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Fig. 8: Experiment over Twitter network with 300 agents.
Predicting the state of the agents using a fixed Laplacian
matrix, using an estimated Laplacian matrix, and Prediction
using Kalman filter with 10 percent, 15 percent, 20 percent,
and 25 percent of observation of state of all the agents in
Figs. (a), (b), (c) and (d) respectively.

2) Kalman Prediction Filtering: Fig. (8) displays the
results of an experiment in a small single layer dataset with
300 Twitter agents available. In this experiment, our goal
is to predict the topical state of all agents at each time
point, when given the topical state of agents at previous
time points.

The black graphs in Fig. (8) show the resulting variation
in the topical states of the agents overtime. This graph is
an upper bound of our prediction error, and any reasonable
prediction method should have a smaller error than this
graph. We The graphs in red reflect the prediction error by
just considering a fixed Laplacian matrix constructed from
a Twitter follower/following network between agents. The
graphs in green display the prediction error by first learning
the Laplacian matrix from the learning data set, and then
using the estimated Laplacian matrix in the prediction. We
have used the data from time-point 1 until time-point 10
for learning the diffusion structure (the Laplacian matrix),
and have used the data from time-point 11 to 64 for testing.
Finally, the graphs in purple represent the prediction error
with a Kalman predictor, knowing a fraction of the states of
agents a priori.

Figs. (8a), (8b), (8c) and (8d) are the same experiments
with different observation sizes of 10 percent, 15 percent,
20 percent and 25 percent of state of all the agents in the
network respectively. As may be seen in the figures, the
prediction error based on the estimated Laplacian matrix
yields a lower error than fully trusting the connectivity
structure in the network. This as expected, is due to static
connectivity network (usually demonstrates the physical or
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Fig. 9: Comparing the estimated value of the second smallest
eigenvalue with the actual second smallest eigenvalue of the
interconnected network.

online relation among the agents), falling short on effecting
the actual underlying diffusion structure on the network.
Having a prior partial knowledge of the agents enabled us
to use a Kalman predictor to further refine our prediction.
As we increase the size of the observation set, in Figs. (8b),
(8c) and (8d) we get a smaller error in the prediction. This
effect is due to the Kalman gain which refines the state of
the system by the estimation error of the agent’s states.

3) Algebraic connectivity of an interconnected network:
Fig. (9) compares the actual second smallest eigenvalue
(so called fiddler’s constant) of Laplacian matrix of an
interconneted network with the estimated value using Eqn.
(26). The x-axis shows different values of the ε, and the
y-axis shows the second smallest eigenvalues of the supra-
Laplacian matrix associated. As may be seen from the
figure the estimated values closely match the actual values.
Fig. (10) shows an experiment on the second dataset with
different values of ε, and the effect of weak inter-layer
connectivity on the state prediction error. As seen in Fig.
(10), for small values of ε, the interconnected network is
a single layer network and the prediction error is close to
the single layer prediction error. However, as we increase the
value of the ε, the inter-layer connectivity is getting stronger,
and the prediction error decreases to the prediction error of
a multi-layer network.

Based on Figs. (9, 10), one can use the Eqn. (26) to
understand the strength of inter-layer connectivity in an
interconnected network, and compute the algebraic con-
nectivity. The algebraic connectivity in this case, helps us
understand if the inter-layer connectivity is sequentially
connecting all the intra-layers.

VI. CONCLUSION

In this work, we address the dynamics of an inter-
connected network by modeling changes in the topical
states of agents using diffusion processes in the network.
The intuition behind this model lies in the information
diffusing on account of the possible interactions of the
agents, which in turn may change their topical states over
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Fig. 10: The effect of weak inter-layer connectivity on the
state prediction error.

time. To further generalize this idea, we propose to follow
the different interactions of the agents in separate layers.
We also consider the similarity of the data flowing in the
network as another network layer that may help explain
information diffusion in the interconnected network. To this
end, we proposed a diffusion equation for the three-layer
interconnected network. Moreover, we consider the external
effect on each node by assuming that the whole system is a
massive Brownian particle. In this model, the changes in the
state of each node is a function of its interactions with other
nodes and with the external effect modeled as Brownian
motions. We test our method by experimenting on three
real-world data sets. The results show that, the prediction
for an interconnected network achieves a lower error. This
is due to explicitly accounting for the data of the network as
it also evolves among the agents. Also, we also showed that
increasing the size of the network yields an improvement in
the error.
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