
1

Analysis Dictionary Learning based
Classification: Structure for Robustness

Wen Tang, Ashkan Panahi, Hamid Krim, and Liyi Dai

Abstract—A discriminative structured analysis dictionary is proposed for the classification task. A structure of the union of subspaces
(UoS) is integrated into the conventional analysis dictionary learning to enhance the capability of discrimination. A simple classifier is
also simultaneously included into the formulated functional to ensure a more complete consistent classification. The solution of the
algorithm is efficiently obtained by the linearized alternating direction method of multipliers. Moreover, a distributed structured analysis
dictionary learning is also presented to address large scale datasets. It can group-(class-) independently train the structured analysis
dictionaries by different machines/cores/threads, and therefore avoid a high computational cost. A consensus structured analysis
dictionary and a global classifier are jointly learned in the distributed approach to safeguard the discriminative power and the efficiency
of classification. Experiments demonstrate that our method achieves a comparable or better performance than the state-of-the-art
algorithms in a variety of visual classification tasks. In addition, the training and testing computational complexity are also greatly
reduced.

Index Terms—Discriminate analysis dictionary learning, distributed analysis dictionary learning, structured mapping, supervised
learning.
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1 INTRODUCTION

S PARSE representation has had of great success in dealing
with various problems in image processing and com-

puter vision, such as image denoising and image restoration.
To obtain such sparse representations with an unknown
precise model, Dictionary Learning is one choice because
it results in a linear combination of sparse dictionary atoms.
There are two different types of dictionary learning meth-
ods: Synthesis Dictionary Learning (SDL) and Analysis Dic-
tionary Learning (ADL).

In recent years, SDL has been prevalently and widely
studied [1], [2], while ADL has received little attention.
SDL supposes that a signal lies in a sparse latent sub-
space and can be recovered by an associated dictionary.
The local structures of the signal are well preserved in the
optimal synthesis dictionary [3], [4], [5]. In contrast, ADL
assumes that a signal can be transformed into a latent sparse
subspace by its corresponding dictionary. In other words,
ADL is to produce a sparse representation by applying
the dictionary as a transform to a signal. The atoms in an
analysis dictionary can be interpreted as local filters, as
first mentioned in [6]. Sparse representations can be simply
obtained by an inner product operation, when the dictionary
is known. Such a fast coding supports ADL more favored
than SDL in applications. The contrast of SDL and ADL is
shown in Fig. 1.

The success of dictionary learning in image processing
problems has shaped much interest in task-driven dictio-
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Fig. 1. SDL reconstructs data X by the dictionary D with the sparse
representations A. ADL applies the dictionary Ω to data X and results
the sparse representations U . ‖ · ‖p can be either l1 norm or l0 norm. If
and only if D and Ω are square matrices, SDL and ADL are equivalent
to each other.

nary learning methods for inference applications, such as
image classification. The task of classification aims to assign
the correct label to an observed image, which requires a
much more discriminative capacity of either the dictionary
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or the sparse representation. Towards addressing this issue,
supervised learning is often invoked when using SDL so as
to maximize the distances between the sparse representa-
tions of each two distinct classes.

There are generally two strategies to address the su-
pervised learning approaches. The first strategy is to learn
multiple dictionaries or class-specific dictionaries for dif-
ferent classes [7], [8], [9], [10]. The advantage of learning
multiple dictionaries is that these dictionaries characterize
specific patterns and structures of each class and enhance
the distances between different classes. The minimum re-
construction errors of various dictionaries are subsequently
used to assign labels of new incoming images. In [8],
Ramirez et al. learned class-specific dictionaries with penalty
for the common atoms. Yang et al. [9] then learned class-
specific dictionaries and jointly applied a Fisher criterion
to associative sparse representations to thereby enhance the
distances between each class. A large-margin method was
proposed to increase the divergence of sparse representa-
tions for the class-specific dictionaries in [10]. However, as
the number of classes increases, it would be too complex
and time consuming to train class-specific dictionaries with
regularizing distances of each dictionary. Even though a
distributed cluster could reduce the time complexity of
training dictionaries, it is difficult for the distributed algo-
rithm to communicate with each independent cluster and to
compromise with other regularizations for the class-specific
dictionary learning.

Another strategy is to learn a shared dictionary for all
classes together with a universal classifier [11], [12]. Such
a joint dictionary learning enforces more discriminative
sparse representations. Compared with class-specific dictio-
nary learning, using this strategy is simpler to learn such
a dictionary and classifier, and easier to test the unknown
images. In [11], Mairal et al. integrated a linear classifier in a
sparse representation for a dictionary learning phase. Jiang
et al. then included a linear classifier and a label consistent
regularization term to enforce more consistent of sparse
representations in each class [12]. When any large data
sets are on hand, memory and computational limitations
emerge, and an online learning or distributed solutions are
required as a viable strategy.

Although the techniques mentioned above are all based
on SDL, ADL has gradually received more attention [13]. To
the best of our knowledge, few attempts have been carried
out on the task-driven ADL. Both of the analysis K-SVD
[14] and the Sparse Null Space (SNS) pursuit [15] have
only proposed a solution of learning an analysis dictionary.
In [16], Shekhar et al. learned an analysis dictionary and
then trained SVM for the digital and face recognitions.
Their results demonstrated that ADL is more stable than
SDL under noise and occlusion, and achieved a competitive
performance. Guo et al. [17] integrated local topological
structures and discriminative sparse labels into the ADL
and separately classified images by a k Nearest Neighbor
classifier.

Inspired by these past works, and taking advantage of
efficient coding by ADL, we propose a supervised ADL with
a shared dictionary and a universal classifier. In addition to
the classifier, a structured subspace regularization is also
included into an ADL model to obtain a more structured

discriminative and efficient approach to image classification.
We refer to this approach as Structured Analysis Dictionary
Learning (SADL). Since Sparse Subspace Clustering [18]
has shown that visual data in a class or category can be
well captured and localized by a low dimensional subspace,
and the sparse representation of the data within a class
similarly share a low dimensional subspace, a structured
representation is introduced to achieve a distinct repre-
sentation of each class. This achieves more coherence for
within-class sparse representations and more disparity for
between-class representations. When sorted by the order
of classes, these representations as shown later can be
viewed as a block-diagonal matrix. For robustness of the
sought sparse representations, we simultaneously learn a
one-against-all regression-based classifier. The resulting op-
timization functional is solved by a linearized alternative
direction method (ADM) [19]. This approach leads to a more
computationally efficient solution than that of analysis K-
SVD [14] and of SNS pursuit [15]. Additionally, a great
advantage of our algorithm is its extremely short on-line
encoding and classification time for an incoming observed
image. It is easy to understand that in contrast to the SDL
encoding procedure, ADL obtains a sparse representation
by a simple matrix multiplication of the learned dictionary
and testing data. Experiments demonstrate that our method
achieves an overall better performance than the synthesis
dictionary approach. A good accuracy is achieved in the
scene and object classification with a simple classifier, and
at a remarkably low computational complexity to seek the
best performances of facial recognition problems. More-
over, the experiments also shows that our approach has
a more stable performance than that of SDL. Even when
the dictionary size is reduced to result in memory demand
reduction, our performance is still outstanding. To address
large datasets, a distributed structured analysis dictionary
learning algorithm is also developed while preserving the
same properties as those of structured analysis dictionary
learning (SADL). Experiments also show that when the
dataset is sufficient, a distributed algorithm achieves as high
a performance as SADL.

The following represent our main contributions,

• Both a structured representation and a classification
error regularization term are introduced in to the
conventional ADL formulation to improve classifi-
cation results. A multiclass classifier and an analysis
dictionary are jointly learned.

• The optimal solution provided by the linearized
ADM is significantly faster than other existing tech-
niques for non-convex and non-smooth optimiza-
tion.

• An extremely short classification time is offered by
our algorithms, as it entails encoding by a mere
matrix multiplication for a simple classification pro-
cedure.

• A distributed structured analysis dictionary learning
algorithm is also presented.

The balance of this paper is organized as follows: we
state and formulate the problem of SADL and its distributed
form in Section 2. The resulting solutions to the optimization
problems along with the classification procedure are de-
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scribed in Sections 3 and 4. In Section 5, we analyze the con-
vergence and complexity of our methods. The experimental
comprehensively validation and results are then presented
in Section 6. Some comments and future works are finally
provided in Section 7.

2 STRUCTURED ANALYSIS DICTIONARY LEARN-
ING

2.1 Notation
Uppercase and lowercase letters respectively denote matrix
and vectors throughout the paper. The transpose and in-
verse of matrix are represented as the superscripts T and
−1, such as AT and A−1. The identity matrix and all-zero
matrix are respectively denoted as I and 0. (ai)j represents
the jth element in the ith column of matrix A.

2.2 Structured ADL Method
2.2.1 ADL Formulation
The conventional ADL problem [14] aims at obtaining a
representation frame Ω with a sparse coefficient set U based
on the data matrix X = [x1, . . . , xn] ∈ Rm×n.

arg min
Ω,U

1

2
‖U − ΩX‖22 + λ1‖U‖1

s.t. Ω ∈ Rr×m ⊂ W,
(1)

where U ∈ Rr×n and W is a large class of non-trivial
solutions.

2.2.2 Mitigating Inter-Class Feature Interference
The basic idea of our algorithm is to take advantage of the
stability to perturbations and of the fast encoding of ADL.
Since there is no reconstruction term in the conventional
ADL, and to secure an efficient classification, the representa-
tion U is used to obtain a classifier in a supervised learning
mode. To strengthen the discriminative power of ADL, it
is better to minimize the impacts of inter-class common
features. We therefore propose two additional constraints
on U by way of:

• Minimizing interference of intra-class common fea-
tures by a structural map of U .

• Minimizing the classification error.

2.2.2.1 Structural Mapping of U: The first constraint
is to particularly ensure that the representation of each
sample in the same class belong to a subspace defined by
a span of the associated coefficients. This imposes the dis-
tinction among the classes and improves the identification of
each class, and efficiently enhances the divergence between
classes. Specifically, we introduce a block-diagonal matrix
H ∈ Rs×n as shown below,

H =



h1
1 h1

2 h1
3 h2

4 h2
5 h3

6 h3
7

1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1


,

where s ≥ n is the length of the structured representation.
Each diagonal block in H represents a subspace of each
class to force each one class to remain distinct from another
with a consistent intra-class representation. Each column hji
is a structured representation for the corresponding data
point, which is pre-defined on the training labels. H is
not necessarily a uniformly block-diagonal matrix, and the
order of samples is not important, so long as the structured
representation corresponds to a given class. To mildly relax
the constraint, and integrate it into the ADL functional, we
write

H = QU + ε1, (2)

where Q ∈ Rs×r is a matrix to be learned with Ω and U , ε1

is the tolerance.
2.2.2.2 Minimal Classification Error: To maintain an

audit track on the desired representation, we include a
classification error to make the representation QU discrim-
inative and learn an optimal regularization. This is written
as

Y = W (QU) + ε2, (3)

where ε2 is the tolerance, W ∈ Rc×s is a linear transform,
and the label matrix Y ∈ Rc×n is defined as

Yij =

{
1 if image j belongs to class i
0 otherwise

,

and c is the number of classes.

2.2.3 Structured ADL Formulation
To account for all these constraints and to avoid overfitting
by l2 regularization arising Q and W , we can rewrite the
one, all ADL optimization problem as

arg min
Ω,U,Q,W,
ε1,ε2

1

2
‖U − ΩX‖2F + λ1‖U‖1

+
ρ1

2
‖ε1‖22 +

ρ2

2
‖ε2‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22

s.t. H = QU + ε1,

Y = W (QU) + ε2,

(4)

where ωTi is the row of Ω, and ρ1, ρ2, δ1, δ2 are the penalty
coefficients. Recall H is the structured representation, Q is
the structuring transformation, Y is the classifier label, W is
the linear classifier, and λ1 is a tuning parameter.

The formulated optimization functional in Eq.(4) pro-
vides an analysis dictionary driven by the latent structure
of the data yielding an improved discriminative sparse
representation among numerous classes.

2.2.4 Distributed Structured ADL Formulation
In order to handle large datasets, we propose a distributed
Structured ADL method. Since both the discriminative
structure and the efficient classification need to be pre-
served, we introduce a global analysis dictionary, a global
structuring transformation and a global classifier. In pursu-
ing a distributed ADL, we ensure that the global variables
share information with each distributed dictionary cluster,
thereby ensuring that the global analysis dictionary, the
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structured transform and the classifier respectively reach a
consensus,

‖Ω− Ωt‖2, ‖Q−Qt‖2, ‖W −Wt‖2,∀t = 1, . . . , N. (5)

Together with the consensus penalties, the distributed SADL
is formulated as

arg min
Ωt,Ut,
Qt,Wt,
Ω,Q,W,
ε1t ,ε2t

N∑
t=1

(
1

2
‖Ut − ΩtXt‖2F + λ1‖Ut‖1 +

ρ1t

2
‖ε1t‖22

+
ρ2t

2
‖ε2t‖22 +

ξ1t
2
‖Ω− Ωt‖22 +

δ1t
2
‖Qt‖22

+
ξ2t
2
‖Q−Qt‖22 +

δ2t
2
‖Wt‖22 +

ξ3t
2
‖W −Wt‖22)

s.t. Ht = QtUt + ε1t ,

Yt = Wt(QtUt) + ε2t ,

‖ωTi ‖22 = 1;∀i = 1, . . . , r,

‖ωTti‖
2
2 = 1;∀i = 1, . . . , r, ∀t = 1, . . . , N,

(6)

where t represents the tth independent cluster, Ωt, Ut, Qt
and Wt are respectively the local analysis dictionary, sparse
representation, structuring transformation and classifier of
the tth cluster, and Ω, Q, W are respectively the global
analysis dictionary, structuring transformation and classi-
fier. The global variables will be applied to the same efficient
classification scheme as the one of SADL.

3 ALGORITHMIC SOLUTION

3.1 SADL Algorithm

Due to the non-convexity of the objective functional in
Eq.(4), an augmented Lagrange formulation with dual vari-
ables Z(1), Z(2) and µ is adopted to seek an optimal solu-
tion. The augmented Lagrangian is then written as,

L(Ω, U,Q,W,Z(1), Z(2), µ) =
1

2
‖U − ΩX‖2F + λ1‖U‖1

+ 〈Z(1), H −QU − ε1〉+ 〈Z(2), Y −W (QU)− ε2〉

+
µ

2
‖H −QU − ε1‖22 +

µ

2
‖Y −W (QU)− ε2‖22

+
ρ1

2
‖ε1‖22 +

ρ2

2
‖ε2‖22 +

δ1
2
‖Q‖22 +

δ2
2
‖W‖22,

(7)

where λ1 > 0 is a tuning parameter. To iteratively seek the
optimal solution in Eq.(7), the analysis dictionary Ω and
two linear transformations Q and W are first randomly
initialized, when the sparse representation U is initialized
by U = 0, the zero matrix. The auxiliary variables ηQ, ηWQ,
and ηWU are introduced to guarantee the convergence of
the algorithm. The variable with superscripts which do not
include parenthesis is the temporal variable of intermediate
step in the calculation. Different variables are alternately
updated while fixing the others, resulting in the following
steps:
(1) Fix Ω, Q, W , and ε1, ε2 update U

Uk+1 = τ λ1
µηU

(Uk −
U1
k + U2

k + U3
k

µηU
), (8)

where τ(·) is the element-wise soft thresholding operator,
and U1

k , U2
k , and U3

k are as follows:

U1
k = −(ΩkX − Uk), (9)

U2
k = −QTk (Z

(1)
k + µ(H −QkUk − ε1k)), (10)

U3
k = −QTkWT

k (Z
(2)
k + µ(Y −WkQkUk − ε2k)). (11)

(2) Fix Ω, U W , and ε1, ε2 update Q

Qk+1 = Qk −
Q1
k +Q2

k

µηQ
, (12)

Q1
k = −(Z

(1)
k + µ(H −QkUk+1 − ε1k))UTk+1 + δ1Qk, (13)

Q2
k = −WT

k (Z
(2)
k + µ(Y −WkQkUk+1 − ε2k))UTk+1. (14)

(3) Fix Ω, U Q, and ε1, ε2 update W

Wk+1 = Wk −
W 1
k

µηW
(15)

W 1
k = −(Z

(2)
k + µ(Y −WkQk+1Uk+1 − ε2k))UTk+1Q

T
k+1 + δ2Wk.

(16)
(4) Fix U , Q W , and ε1, ε2 update Ω

Ω∗k+1 = arg min
Ω

1

2
‖Uk+1 − ΩX‖2F . (17)

The analytical solution of Eq.(17) can be regularized as

Ωk+1 = Uk+1X
T (XXT + λ4I)−1, (18)

where λ4 is also a tuning parameter. It will be chosen by a
usual way.
(5) Fix U , Ω, Q W , and ε2 update ε1

ε1k+1
=

1

ρ1 − 1
(Z

(1)
k + µ(H −Qk+1UK+1)). (19)

(6) Fix U , Ω, Q W , and ε1 update ε2

ε2k+1
=

1

ρ2 − 1
(Z

(2)
k + µ(Y −Wk+1Qk+1UK+1)). (20)

And then, the dual variable Z(1), Z(2) and µ are updated as

Z
(1)
k+1 = Z

(1)
k + µ(H −Qk+1Uk+1), (21)

Z
(2)
k+1 = Z

(2)
k + µ(Y −Wk+1Qk+1Uk+1). (22)

In contrast to previous ADL techniques, which train
a dictionary by iterating a single row of the dictionary,
i.e., one atom, to avoid a trivial solution, we proceed to
update a set of rows in a single step at each iteration. A
fast convergence rate of the algorithm is also guaranteed
by linearized ADM [19] and with a closed form solution
for the dictionary Ω given in Eq.(18). The proposed SADL
algorithm is summarized in Algorithm 1.
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Algorithm 1 Structured Analysis Dictionary Learning
Input: Training data X = [x1, . . . , xn], diagonal block ma-

trix H , classes labels Y , penalty coefficients ρ1, ρ2, δ1, δ2,
parameter λ1, λ4 and maximum iteration T ;

Output: Analysis dictionary Ω, sparse representation U ,
and linear transformations Q and W ;

1: Initialize Ω,Q, andW as random matrices, and initialize
U as a zero matrix;

2: while not converged and k < T do
3: k=k+1;
4: Update Uk by (8);
5: Update Qk by (12);
6: Update Wk by (15);
7: Update Ωk by (18);
8: Update ε1k by (19);
9: Update ε2k by (20);

10: Update Z(1)
k by (21);

11: Update Z(2)
k by (22);

12: end while

3.2 Distributed SADL Algorithm

The distributed SADL is similarly expressed in the aug-
mented Lagrangian functional as

Ld(Ωt, Ut, Qt,Wt,Ω, Q,W,Z
(1), Z(2), µk) =

N∑
t=1

(
1

2
‖Ut − ΩtXt‖2F + λ1‖Ut‖1 +

δ1t
2
‖Qt‖22 +

δ2t
2
‖Wt‖22

+
ξ1t
2
‖Ω− Ωt‖22 +

ξ2t
2
‖Q−Qt‖22 +

ξ3t
2
‖W −Wt‖22

+
ρ1t

2
‖ε1t‖22 +

ρ2t

2
‖ε2t‖22

+ 〈Z(1)
t , HtQtUt − ε1t〉+ 〈Z(2)

t , Yt −Wt(QtUt)− ε2t〉

+
µk
2
‖Ht −QtUt − ε1t‖22 +

µk
2
‖Yt −Wt(QtUt)− ε2t‖22).

(23)

To minimize such an objective functional, each variable is
alternatively updated while fixing others. The distributed
SADL algorithm is presented in Algorithm 2.

4 CLASSIFICATION PROCEDURE

Both SADL and Distributed SADL have the same classifi-
cation procedure because the global analysis dictionary Ω,
transforming matrix Q and classifier W are obtained from
the algorithms. With the analysis dictionary Ω in hand, an
observed image x can be quickly sparsely encoded as Ωx.
This is in stark contrast to SDL for which a sparse repre-
sentation is obtained by solving a non-smooth optimization
as: arg minα ‖x−Dα‖22 + ‖α‖1, and highlights the marked
improvement ADL provides. Our proposed SADL, which
naturally enjoys the same encoding properties as ADL,
efficiently yields a structured sparse representation Q(Ωx)
of the signal x as well. Figure 2 shows an example of the
structured representations obtained from Scene 15 dataset.
As shown, the result reflects the desired block diagonal

structure. The ultimate desired classification goal of x is
accomplished by W (QΩx). Figure 3 depicts W (QΩx) for
the example in Figure 2 where the horizontal axis is image

Algorithm 2 Distributed SADL
Input: Training data X = [x1, . . . , xn], diagonal block

matrix H , classes labels L, penalty coefficients
δ1t , δ2t , ξ1t , ξ2t , ξ3t , parameter λ1, λ4 and maximum it-
eration T ;

Output: Analysis dictionary Ω, linear transformations Q
and W ;

1: Initialize Ωt, Qt, Wt, Ω, Q, and W as random matrices,
initialize Ut as a zero matrix, and set Xt as a random
subset of X with

⋃N
t=1Xt = X ;

2: while not converged and k < T do
3: k = k + 1;
4: for t=1:N do %Here for loop can be parallelized or

distributed in different clusters.
5: Uk+1

t = τ λ1
µ(ηQ+ηWQ)

(
Ukt −

5ULd(Ωkt ,U
k
t ,Q

k
t ,W

k
t ,Ω

k,Qk,Wk,Y
(1)k

t ,Y
(2)k

t )
µ(ηQ+ηWQ)

)
;

6: Qk+1
t = Qkt −

5QLd(Ωkt ,U
k+1
t ,Qkt ,W

k
t ,Ω

k,Qk,Wk,Y
(1)k

t ,Y
(2)k

t )
µ(ηQ+ηWU ) ;

7: W k+1
t = W k

t −
5WLd(Ωkt ,U

k+1
t ,Qk+1

t ,Wk
t ,Ω

k,Qk,Wk,Y
(1)k

t ,Y
(2)k

t )
µηQU

;

8: Ωk+1
t = (Uk+1

t XT
t + ξ1tΩ

k)(XtX
T
t + ξ1tI)−1;

9: Normalize Ωk+1
t by ωTti =

ωTti
‖ωTti‖2

,∀i;

10: Y
(1)
k+1 = Y

(1)
k + µ(H −Qk+1Uk+1);

11: Y
(2)
k+1 = Y

(2)
k + µ(L−Wk+1Qk+1Uk+1);

12: µk+1 = min{ρµ, µmax};
13: ξ1k+1

= min{ρξ1k , ξ1max};
14: ξ2k+1

= min{ρξ2k , ξ2max};
15: ξ3k+1

= min{ρξ3k , ξ3max};
16: end for
17: Ωk+1 = 1

N

∑
t Ωk+1

t ;

18: Normalize Ωk+1 by ωTi =
ωTi
‖ωTi ‖2

,∀i;
19: Qk+1 = 1

N

∑
tQ

k+1
t ;

20: W k+1 = 1
N

∑
tW

k+1
t ;

21: end while

Structured Representation
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Fig. 2. Q(Ωx) on Scene 15 Dataset

index, and the vertical axis reflects the class labels, which
are computed according to,

y = max
j

(WQΩx)j , (24)

shown as the brightest ones in Figure 3.
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Possible Class Label
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Fig. 3. WQ(Ωx) on Scene 15 Dataset

5 CONVERGENCE

Since we have used linearized ADM method to solve our
nonconvex objective functional, ηU , ηQ, ηW are introduced
as the auxiliary variables. We additionally have the follow-
ing

Theorem 1. Suppose that µ ≥
√

2{ρ1, ρ2}. There exist posi-
tive values η0

U , η
0
Q, η

0
W , R only depending on the initialization

such that for ηU > η0
U , ηQ > η0

Q, ηW > η0
W the sequence

{Θk = (Ωk, Uk, Qk,Wk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )}∞k=1 converges

to the following set of bounded feasible stationary points of the
Lagrangian 1:

S = {Θ = (Ω, U,Q,W, ε(1), ε(2), Z(1), Z(2)) |

‖Θ‖ < R,−∇Ls ∈ λ∂‖U‖1, H = QU+ε(1), Y = QUW+ε(2)}

where Ls is the smooth part of L, i.e.

L = Ls + λ1‖U‖1.

According to the Theorem 1, if we initialize ηU , ηQ, ηW
large enough, Algorithm 1 not only converges, but also
generates the variable sequences with a final convergence to
the stationary points. The proof of Theorem 1 can be found
in the Appendix.

6 EXPERIMENTS AND RESULTS

We now evaluate our proposed SADL method on five pop-
ular visual classification datasets which have been widely
used in previous works and with known performance
benchmarks. They include Extended YaleB [20] face dataset,
AR [21] face dataset, Caltech101 [22] object categorization
dataset, Caltech256 [23] objective dataset, and Scene15 [24]
scene image dataset.

In our experiments, we provide a comparative evalua-
tion of three state of the art techniques and our proposed
technique, including a classification accuracy as well as

1. The norm ‖Θ‖ is any norm which is continuous with respect to
the two norm of the components, for example their some of two norms.
Also, the function ‖U‖1 is treated as a (convex) function of Θ, which is
constant with respect to other components than U .

training and testing times. All our experiments and com-
peting algorithms are implemented in Matlab 2015b on
the server with 2.30GHz Intel(R) Xeon(R) CPU. For a fair
comparison, we measure the performance of each algorithm
by repeating the experiment over 10 realizations. We eval-
uate the performances of all algorithms by using the same
dictionary size. The testing time is defined as the average
processing time to classify a single image. In our tables, the
accuracy in parentheses with the associated citation is that
was reported in the original paper. The difference in the
accuracy of our approach and of the original one might be
caused by different segmentations of the training and testing
samples.

6.1 Parameter Settings
In our proposed SADL method, λ1, λ4 and maximum iter-
ation T are tuning parameters. λ1 controls the contribution
of the sparsity, and the parameter λ4 controls the learned
analysis dictionary, while T is the maximum iteration num-
ber. We found that the result of setting ε1 = 0 and ε2 = 0
is almost the same as ones of setting penalty coefficients ρ1

and ρ2 to be 1010, we let ε1 = 0 and ε2 = 0 in our exper-
iment implementation. We choose for all the experiments
λ1, λ4 and T by 10-fold cross validation on each dataset.
In addition, we also optimally tuned the parameters of all
competing methods to ensure their best performance.

6.2 State-of-the-art Methods
We compare our proposed SADL and Distributed SADL
(DSADL) with these competing techniques: The first one is
a baseline, which uses the ADL method to learn a sparse
representation and subsequently trains a Support Vector
Machine (SVM) to classify images based on such sparse rep-
resentations (ADL+SVM) [16]. A penalty term is included
to avoid similar atoms and minimize false positives. The
second one is the classical Sparse Representation based
Classification (SRC) [7]. For this method, we do not need
to train a dictionary. Instead, we use the training images as
the atoms in the dictionary. In the testing phase, we obtain
the sparse coefficients based on such a dictionary. The third
technique that we consider in this work is a state-of-the-
art dictionary learning method, called Label Consistent K-
SVD (LC-KSVD) [12], which forces each category labels to
be consistent with classification. We select the LC-KSVD2
in [12] for comparison, because it has a better classification
performance.

6.3 Extended YaleB

Fig. 4. Extended YaleB Dataset Examples
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The Extended YaleB face dataset contains in total 2414
frontal face images of 38 persons under various illumination
and expression conditions, as illustrated in Figure 4. Each
person has about 64 images, each cropped to 168 × 192
pixels. We project each face image onto a n-dimensional
random face feature vector. The projection is performed
by a randomly generated matrix with a zero mean normal
distribution whose rows are l2 normalized. This procedure
is similar to the one in [12]. In our experiment, n is 504,
i.e., each Extended YaleB face image is reduced to a 504-
dimensional feature vector. Then, we randomly choose half
of the images for training, and the rest for testing. The
dictionary size is set to 570 atoms, λ1 = 0.001, λ4 = 0.5
and T = 780.

TABLE 1
Classification Results on Extended YaleB Dataset

Methods Classification Training Testing
Accuracy(%) Time(s) Time(s)

ADL+SVM [16] 82.91% 91.78 1.13×10−3

SRC [7] 80.5% No Need 3.74×10−1

LC-KSVD [12] 94.56% (95% [12]) 234.67 1.63×10−2

SADL 94.91% 51.29 2.72×10−6

The classification results, training and testing times
are summarized in Table 1. Our proposed SADL method
achieves the highest classification accuracy. Although the
performance of our algorithm is superior by only a small
factor, it is substantially more efficient than the others in
terms of numerical complexity.

For a more thorough evaluation, we compare SADL with
LC-KSVD for different dictionary sizes, and display the
classification accuracy and training time in Figure 5 and
6. We ran our experiments for dictionary sizes by 32, 128,
224, 320, 416, 512, 608, 704, 800, 896, 992, and 1216 (all
training size). SADL exhibits a more stable accuracy per-
formance than that of LC-KSVD. In particular, the accuracy
of LC-KSVD significantly decreases, when the dictionary
size approaches the all training sample size. In addition,
our method apparently has a much higher classification
accuracy than LC-KSVD, when the dictionary size is small.
The significant decrease in accuracy may be caused by the
trivial solution of dictionary D in SDL. Moreover, in the
training phase, the SADL method is also much faster than
the LC-KSVD.

6.4 AR Face

The AR Face dateset has 2600 color images of 50 females
and 50 males with more facial variations than the Extended
YaleB database, such as different illumination conditions,
expressions and facial disguises. Each person has about 26
images of size 165 × 120. Figure 7 shows some sample
images of faces with sunglasses or scarves. The features of
the AR face image are extracted in the same way as those of
the Extended YaleB face image are, but we project it to a 540
dimensional feature vector similarly to the setting in [12]. 20
images of each person are randomly selected as a training
set and the other 6 images for testing. The dictionary size of
the AR dataset is set to 500 atoms, λ1 = 0.001, λ4 = 0.5 and
T = 1040.
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Fig. 5. Classification Accuracy versus Dictionary Size
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Fig. 6. Training Time versus Dictionary Size

The classification results as well as the training and
testing times are summarized in Table 2. Our proposed
SADL achieves higher classification accuracy than others.
Our method is about 10000 times faster than SRC and LC-
KSVD for the testing phase.

Fig. 7. AR Dataset Examples
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TABLE 2
Classification Results on AR Dataset

Methods Classification Training Testing
Accuracy(%) Time(s) Time(s)

ADL+SVM [16] 90.40% 218.54 9.10×10−3

SRC [7] 66.50% No Need 5.25×10−2

LC-KSVD [12] 87.78% (93.7% [12]) 244.52 1.42×10−2

SADL 95.08% 89.13 3.67×10−6

Fig. 8. Caltech101 Dataset Examples

6.5 Caltech101

The Caltech101 dataset has 101 different categories of dif-
ferent objects and one non-object category. Most categories
have around 50 images. Figure 8 gives some examples from
the Caltech101 dataset. We extract dense Scale-invariant
Feature Transform(SIFT) descriptors for each image from
16 × 16 patches and with a 6 pixels step. Then, we apply
a spatial pyramid method [24] to the dense SIFT features
with three segmentation sizes 1 × 1, 2 × 2, and 4 × 4 to
capture the objects’ features at different scales. At the same
time, a 1024 size codebook is trained by k-means clustering
for spatial pyramid features. Spatial pyramid features of
each subregion are then concatenated together as a vector to
represent one image. Due to the sparse nature of the spatial
pyramid features, we use PCA to reduce each feature to
3000 dimensions. In our experiment, 30 images per class
are randomly chosen as training data, and other images are
used as testing data. All the steps and settings follow [12].
The dictionary size is set to 510, λ1 = 0.001, λ4 = 4.6 and
T = 990.

TABLE 3
Classification Results on Caltech101 Dataset

Methods Classification Training Testing
Accuracy(%) Time(s) Time(s)

ADL+SVM [16] 54.93% 447.80 7.75×10−3

SRC [7] 67.70% No Need 4.34×10−1

LC-KSVD [12] 71.79% 487.61 1.35×10−2

SADL 72.36% 773.66 8.10×10−6

DSADL 73.49% - 8.10×10−6

ADL+SVM [16] 66.75% 1943.47 1.33×10−2

SRC [7] 70.70% No Need 4.34×10−1

LC-KSVD [12] 73.67(73.6 [12])% 2144.90 2.49×10−3

SADL 74.17% 1406.68 4.76×10−5

The classification results, training and testing times are
summarized in Table 3. The dictionary size in the above part

of the table is 510, and the one in the below part is 3060
(all training samples). Our proposed SADL still achieves
the highest performance of the lot. SADL has again a short
encoding time, which is around 10000 times faster than LC-
KSVD. For the second part of the Table 3, the dictionary size
is increased to 3060 (i.e., all the training sample size), and
λ1 = 0.001, λ4 = 1.5, T = 1110, our SADL again achieves
the highest accuracy with the fastest training and testing
time.
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Fig. 9. Distributed SADL on Catech101: N is the number of clusters
used. N = 1 is centralized. Training set is divided into N groups.

Let the penalty coefficients of the communication cost
ξ1t = ξ2t = ξ3t = 0.1,∀t, and other parameters are the
same as SADL settings. Distributed SADL also achieves the
highest accuracy with the same testing time as SADL, which
is also shown in the above Table (3). Figure (9) shows that
when the number of groups is increased, the accuracy is
actually lower at first because of the smaller training sample
size of each independent variable. But after the affects
of the communication between global variables and local
independent variables are enhanced, the performance rises
up very quickly to a high generalized accuracy. Distributed
SADL is demonstrated that it can also obtain a very stable
and excellent performance even when the number of groups
is large.

6.6 Caltech256

The Caltech256 is a relative lager objective dataset, which in-
cludes 256 object categories and one clutter. There are totally
30608 images with various object location, pose, and size.
Figure 10 shows the examples of Caltech 256, whose each
category has at least 80 images. The features of Caltech256
images are extracted by using the output features of the last
layer before fully connected layer of ResNet-50 [25] with
the weights trained by ImageNet. The dimension of each
feature is 2046 × 1. We randomly sample 15 images from
each category for training, and test on the rest of them. To
train the Distributed SADL, the dictionary size is set to 3855,
dataset is divided into 3 subsets (i.e., t = 3 in Algorithm 2),
λ1 = 0.001, λ4 = 0.5, ξ1t = ξ2t = ξ3t = 3 × 10−5,∀t and
T = 4495.

The Caltech256 are applied by our Distributed SADL,
ADL+SVM and LC-KSVD with same dictionary size. Our
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Fig. 10. Caltech256 Dataset Examples

TABLE 4
Classification Results on Caltech256 Dataset

Methods Classification Training Testing
(training samples) Accuracy(%) Time(s) Time(s)
ADL+SVM(15) [16] 66.66% 3501.44 7.67×10−2

LC-KSVD(15) [12] 73.37% 3118.76 3.00×10−3

CNN Features(15) [26] 65.70% [26] - -
DSADL(15) 74.38% - 4.46×10−5

ResFeats-50(30) [27] 75.40% [27]

Distributed SADL also achieves the best performance with
a extreme fast testing time, even though the dimension of
feautres are increased. For more reference, we also com-
pare our method with two network methods [26], [27].
In [26], Zeiler et al. constructed a convnet pertrained by
ImageNet, and then learned a convolutional network for
Caltech256 based on it. As trained the same training size
as our settings, our performance is 10% higher than the
CNN result. ResFeats-50 [27] is a most recent convolutional
network method. This method is trained by 30 samples
of each category with 50 layers. Though ResFeats-50 with
double training samples than ours, our result is still very
comparable.

6.7 Scene15

Fig. 11. Scene15 Dataset Examples

Scene15 dataset contains a total of 15 categories of dif-
ferent scenes, and each category has around 200 images.

The examples are listed in Figure 11. Proceeding as for
the Caltech 101 dataset, we compute the spatial pyramid
features for scene images. A four-level spatial pyramid (i.e.,
each image is girded into 1 × 1, 2 × 2, 4 × 4 and 8 × 8)
and a codebook of size 200 are used here. The final features
are also obtained by applying PCA to reduce the dimension
of spatial pyramid features to 3000. We randomly pick 100
image per class as training data, and use the rest of images
as testing data. The settings and steps follow [12]. The
dictionary size is set to 450, λ1 = 0.001, λ4 = 0.001 and
T = 220.

TABLE 5
Classification Results on Scene15 Dataset

Methods Classification Training Testing
Accuracy(%) Time(s) Time(s)

ADL+SVM [16] 49.35% 110.47 1.14×10−4

SRC [7] 91.80% No Need 4.06×10−1

LC-KSVD [12] 98.83% (92.7% [12]) 270.93 1.26×10−2

SADL 98.16% 121.02 9.23×10−6

The classification results, training and testing time are
summarized in Table 5. Our performance is slightly lower
than LC-KSVD, but is still higher than SRC, ADL+SVM and
the LC-KSVD reported accuracy. However, the testing phase
is superior to the others. Note that, the testing time is 10
thousand times faster than LC-KSVD.

7 CONCLUSION

We proposed an image classification method referred to as
structured analysis dictionary learning (SADL). To obtain
SADL, we constrain a structured subspace (cluster) model in
the enhanced ADL method, where each class is represented
by a structured subspace. The enhancement of ADL is real-
ized by constraining the learning by a classification fidelity
term on the sparse coefficients. Our formulated optimiza-
tion problem was efficiently solved by the linearized ADM
method, in spite of its non-convexity due to bilinearity. Tak-
ing advantage of analysis dictionary, our method achieves a
significantly faster testing time. Furthermore, a Distributed
SADL (DSADL) was also developed to address the scalabil-
ity problem. Both discriminative structure and fast testing
phase are well preserved in the DSADL. Even though the
algorithm was run by many multi-clusters, the performance
was still stable and comparable to the centralized SADL.

Our experiments demonstrate that our approach has at
least a comparable, and often a better performance than
state-of-the-art techniques on five well known datasets and
achieves superior training and testing times by orders of
magnitude.

A possible future direction for improving our method
could be to leverage the discriminative nature of the synthe-
sis dictionary and the efficiency of the analysis dictionary
together. This can achieve a more discriminative power and
high efficiency.
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APPENDIX A
PROOF OF OPTIMIZATION TRANSFORM

As mentioned in Section 2 of the paper, the primal problem
of our work is

arg min
Ω,U,Q,W,
ε1,ε2

1

2
‖U − ΩX‖2F + λ1‖U‖1

+
ρ1

2
‖ε1‖22 +

ρ2

2
‖ε2‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22

s.t. H = QU + ε1,

L = WQU + ε2,

‖ωTi ‖22 = 1;∀i = 1, . . . , r,

(25)

Then, the augmented Lagrangian dual optimization of Eq.
(25) is expressed as:

max
Z(1),Z(2),
γ1,γ2

min
Ω,U,Q,W,
ε1,ε2

L(Ω, U,Q,W, ε1, ε2, Z
(1), Z(2), γ1, γ2),

where

L(Ω, U,Q,W, ε1, ε2, Z
(1), Z(2), γ1, γ2) =

1

2
‖U − ΩX‖2F + λ1‖U‖1 +

ρ1

2
‖ε1‖22 +

ρ2

2
‖ε2‖22

+ 〈Z(1), H −QU − ε1〉+ 〈Z(2), L−WQU − ε2〉

+
γ1

2
‖H −QU − ε1‖22 +

γ2

2
‖L−WQU − ε2‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22.

(26)

By minimizing the ε1 and ε2, we obtain

∂L

∂ε1
= ρ1ε1 − Z(1) − γ1(H −QU − ε1) = 0,

ε1 =
1

γ1 + ρ1
Z(1) +

γ1

γ1 + ρ1
(H −QU). (27)

Similarly,

ε2 =
1

γ2 + ρ2
Z(2) +

γ2

γ2 + ρ2
(L−WQU). (28)

Substituting Eqs. (27) and (28) into Eq. (35), we obtain

L(Ω, U,Q,W,Z(1), Z(2), γ1, γ2) =

1

2
‖U − ΩX‖2F + λ1‖U‖1+

ρ1

2
‖ 1

γ1 + ρ1
Z(1) +

γ1

γ1 + ρ1
(H −QU)‖22+

ρ2

2
‖ 1

γ2 + ρ2
Z(2) +

γ2

γ2 + ρ2
(L−WQU)‖22+

〈Z(1), H −QU − (
1

γ1 + ρ1
Z(1) +

γ1

γ1 + ρ1
(H −QU))〉+

〈Z(2), L−WQU − (
1

γ2 + ρ2
Z(2) +

γ2

γ2 + ρ2
(L−WQU))〉

+
γ1

2
‖H −QU − 1

γ1 + ρ1
Z(1) − γ1

γ1 + ρ1
(H −QU)‖22

+
γ2

2
‖L−WQU − 1

γ2 + ρ2
Z(2) − γ2

γ2 + ρ2
(L−WQU)‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22.

(29)

After careful manipulations of Eq. (29), we have

L(Ω, U,Q,W,Z(1), Z(2), γ1, γ2) =

1

2
‖U − ΩX‖2F + λ1‖U‖1 +

δ1
2
‖Q‖22 +

δ2
2
‖W‖22

+
ρ1

γ1 + ρ1
〈Z(1), H −QU〉

+
ρ2

γ2 + ρ2
〈Z(2), L−WQU〉

+
γ1ρ1

2(γ1 + ρ1)
‖H −QU‖22 +

γ2ρ2

2(γ2 + ρ2)
‖L−WQU‖22

− 1

2(γ1 + ρ1)
‖Z(1)‖22 −

1

2(γ2 + ρ2)
‖Z(2)‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22.

(30)

The last two terms in Eq. (30) are not crucial in the opti-
mization algorithm, and can be removed to obtain the La-
grangian equation in Eq. (5) in the paper. To see this, notice
that updating the dual variables in augmented Lagrangian
is by Z(1) = Z(1) + α5Z(1) L and Z(2) = Z(2) + α5Z(2) L,
where α is the learning step. This can be written as:

Z(1) ←Z(1) − α

γ1 + ρ1
Z(1) +

αρ1

γ1 + ρ1
(H −QU),

Z(1) ←
(

1− α

γ1 + ρ1

)
Z(1) +

αρ1

γ1 + ρ1
(H −QU).

As γ1, ρ1 and α are all constants, when ρ1 is big enough,
1

γ1+ρ1
can be extremely small, and

(
1− α

γ1+ρ1

)
approxi-

mates to 1. So that, by omitting the scalar
(

1− α
γ1+ρ1

)
and

replacing the scalar αρ1

γ1+ρ1
by the learning rate µ, we estimate

the updating of our dual variable Z(1) by

Z(1) ← Z(1) + µ(H −QU). (31)

Similarly, the updating of our dual variable Z(2) is estimated
by

Z(2) ← Z(2) + µ(L−WQU). (32)

We observe that removing the last two terms in Eq.
(29) leads to similar iterations, so that we can write
L(Ω, U,Q,W,Z(1), Z(2), γ1, γ2) in Eq. (30) as:

L(Ω, U,Q,W,Z(1), Z(2), γ1, γ2) =

1

2
‖U − ΩX‖2F + λ1‖U‖1 +

δ1
2
‖Q‖22 +

δ2
2
‖W‖22

+
ρ1

γ1 + ρ1
〈Z(1), H −QU〉

+
ρ2

γ2 + ρ2
〈Z(2), L−WQU〉

+
γ1ρ1

2(γ1 + ρ1)
‖H −QU‖22 +

γ2ρ2

2(γ2 + ρ2)
‖L−WQU‖22

(33)

Let λ2 = ρ1

γ1+ρ1
, λ3 = ρ2

γ2+ρ2
and µ = γ1ρ1

γ1+ρ1
= γ2ρ2

γ2+ρ2
, we

have the new augmented Lagrangian as follows:

L(Ω, U,Q,W,Z(1), Z(2), µ) =

1

2
‖U − ΩX‖2F + λ1‖U‖1 + λ2〈Z(1), H −QU〉

+ λ3〈Z(2), L−WQU〉+
µ

2
‖H −QU‖22

+
µ

2
‖L−WQU‖22 +

δ1
2
‖Q‖22 +

δ2
2
‖W‖22,

(34)
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which is the Eq. (5) in Section 3 of the paper.

APPENDIX B
Take the Lagrangian function

L(Ω, U,Q,W, ε(1), ε(2), Z(1), Z(2)) =

1

2
‖U − ΩX‖2F + λ1‖U‖1 +

ρ1

2
‖ε1‖22 +

ρ2

2
‖ε2‖22

+ 〈Z(1), H −QU − ε1〉+ 〈Z(2), Y −WQU − ε2〉

+
µ

2
‖H −QU − ε1‖22 +

µ

2
‖Y −WQU − ε2‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22.

(35)

Our algorithm can be written as the one in Alg. 3. Let us

Algorithm 3 ADMM for Structured Analysis Dictionary
Learning
At each iteration k + 1, compute:

Uk+1 = τ λ1
µηU

(
Uk − 1

µηU
5U Ls(Uk, Qk,Wk,Ωk, ε

(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

)
, (36)

Qk+1 = Qk − 1
µηQ
5Q L(Uk+1, Qk,Wk,Ωk, ε

(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ), (37)

Wk+1 = Wk − 1
µηW

5W L(Uk+1, Qk+1,Wk,Ωk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ), (38)

Ωk+1 = arg minΩ L(Uk+1, Qk+1,Wk+1,Ω, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ), (39)

ε
(1)
k+1 = arg minε(1) L(Uk+1, Qk+1,Wk+1,Ωk+1, ε

(1), ε
(2)
k , Z

(1)
k , Z

(2)
k ), (40)

ε
(2)
k+1 = arg minε(2) L(Uk+1, Qk+1,Wk+1,Ωk+1, ε

(1)
k+1, ε

(2), Z
(1)
k , Z

(2)
k ), (41)

Z
(1)
k+1 = Z

(1)
k + µ(H −Qk+1Uk+1 − ε(1)

k+1), (42)

Z
(2)
k+1 = Z

(2)
k + µ(Y −Wk+1Qk+1Uk+1 − ε(2)

k+1), (43)

proceed by introducing two simple lemmas:

Lemma 2. Consider a differentiable function f with an
L−Lipschitz continuous derivative and another arbitrary convex
function g. For any arbitrary point x define

x+ = proxτg(x− τ∇f(x)),

where τ > 0 is a step size and

proxτg(y) = arg min
x

1

2
‖x− y‖2 + τg(x).

Then, we have

F (x+)− F (x) ≤
(
L

2
− 1

τ

)
‖x− x+‖2,

where F (x) = f(x) + g(x).

Proof. Notice that by the definition of the proximal operator
prox, there exists a subgradient ξ ∈ ∂g(x+) such that

x+ = x− − τξ

where x− = x− τ∇f(x). Then, we have

g(x) ≥ g(x+) + 〈x− x0, ξ〉

On the other hand,

f(x) ≥ f(x+) + 〈x− x+,∇f(x)〉 − L

2
‖x− x+‖2

Adding the two inequalities yields

F (x) ≥ F (x+) + 〈x− x+,∇f(x) + ξ〉 − L

2
‖x− x+‖2

Now noticing that τ(∇f(x) + ξ) = x − x+ completes the
proof.

Lemma 3. Take a differentiable function f and a convex function
g and suppose that a point x satisfies

proxτg(x− τ∇f(x)) = x

Then, x is a stationary point of F = f+g, i.e.−∇f(x) ∈ ∂g(x).

Proof. From the definition of the proximal operator there
exists a vector ξ ∈ ∂g(x) such that x = x−τ∇f(x)−τξ. We
conclude that −∇f(x) = ξ, which completes the proof.

Next, we make a simple but crucial observation about
our algorithm:

Lemma 4. For Algorithm 3 the following holds in every iteration
k:

Z
(1)
k+1 = ρ1ε

(1)
k+1,

Z
(2)
k+1 = ρ2ε

(2)
k+1,

and as a result,

‖Z(1)
k+1 − Z

(1)
k ‖ = ρ1‖ε(1)

k+1 − ε
(1)
k ‖, (44)

‖Z(2)
k+1 − Z

(2)
k ‖ = ρ2‖ε(2)

k+1 − ε
(2)
k ‖. (45)

Proof. From the ε(1) update rule (40),we have the following
optimality condition

ρ1ε
(1)
k+1 − Z

(1)
k − µ(H −Qk+1Uk+1 − ε(1)

k+1) = 0. (46)

Combined with dual variable Z
(1)
k+1 update rule (42), we

obtain
Z

(1)
k+1 = ρ1ε

(1)
k+1. (47)

The result for Z(2)
k+1 is similarly obtained.

We takeLk = L(Ωk, Uk, Qk,Wk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k , µk)

for k = 0, 1, 2, . . . and notice that the change in Lk can be
controlled by the following result:

Lemma 5.

Lk+1 − Lk
≤
(αk,U

2 − µηU
)
‖Uk+1 − Uk‖2 +

(αk,Q
2 − µηQ

)
‖Qk+1 −Qk‖2

+
(αk,W

2 − µηW
)
‖Wk+1 −Wk‖2 − mΩ

2 ‖Ωk+1 − Ωk‖2

+
(
ρ2

1

µ −
m
ε(1)

2

)
‖ε(1)
k+1 − ε

(1)
k ‖2 +

(
ρ2

2

µ −
m
ε(2)

2

)
‖ε(2)
k+1 − ε

(2)
k ‖2,

(48)

where
αk,U = 1 + µ‖QTkQk +QTkW

T
k WkQk‖∗

αk,Q = δ1 + µ‖WT
k Wk‖∗‖Uk+1U

T
k+1‖∗

αk,W = δ2 + µ‖Qk+1Uk+1U
T
k+1Q

T
k+1‖∗

mΩ = σmin(XXT )

mε(1) = ρ1 + µ, mε(2) = ρ2 + µ,

Proof. Respectively denote by
∆Lk,U ,∆Lk,Q,∆Lk,W ,∆Lk,Ω,∆Lk,ε(i) ,∆Lk,Y (i) for
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i = 1, 2, the change in L corresponding to the update of
U,Q,W,Ω, ε(i) and Y (i) in Eq. (2-9). Notice that

Lk+1 − Lk = ∆Lk,U + ∆Lk,Q + ∆Lk,W + ∆Lk,Ω

+∆Lk,ε(1) + ∆Lk,ε(2) + ∆Lk,Z(1) + ∆Lk,Z(2)

Notice that by taking f(U) =

Ls(Ωk, U,Qk,Wk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ), g(U) = λ1‖U‖1

and τ = 1/µηU , and recalling Lemma 2, we have

∆Lk,U ≤
(αk,U

2
− µηU

)
‖Uk+1 − Uk‖2 (49)

where we use the fact that f(U) is quadratic, hence
possessing αk,U−Lipschitz derivatives with αk,U being the
largest singular value of the Hessian. Similarly, by taking
f(Q) = L(Ωk, Uk+1, Q,Wk, ε

(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ), g(Q) =

0, τ = 1/µηQ and f(W ) =

L(Ωk, Uk+1, Qk+1,W, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ), g(W ) = 0, τ =

1/µηU and utilizing Lemma 2, we respectively obtain

∆Lk,Q ≤
(αk,Q

2
− µηQ

)
‖Qk+1 −Qk‖2 (50)

∆Lk,W ≤
(αk,W

2
− µηW

)
‖Wk+1 −Wk‖2 (51)

Next, notice that the function f(Ω) =

L(Ω, Uk+1, Qk+1,Wk+1, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k ) is quadratic

and mΩ−strongly convex, where mΩ is the smallest
singular value of Hessian. Hence,

∆Lk,Ω = f(Ωk)−min
Ω
f(Ω) ≤ −mΩ

2
‖Ωk+1 − Ωk‖2 (52)

Similarly, taking f(ε(1)) =

L(Ωk+1, Uk+1, Qk+1,Wk+1, ε
(1), ε

(2)
k , Z

(1)
k , Z

(2)
k ) and

f(ε(2)) = L(Ωk+1, Uk+1, Qk+1,Wk+1, ε
(1)
k+1, ε

(2), Z
(1)
k , Z

(2)
k ),

yield

∆Lk,ε(i) ≤ −
mε(i)

2

∥∥∥ε(i)
k+1 − ε

(i)
k

∥∥∥2
, i = 1, 2 (53)

Finally, notice that

∆Lk,Z(1) =
〈
Z

(1)
k+1 − Z

(1)
k , H −Qk+1Uk+1 − ε(1)

k+1

〉
=

〈
Z

(1)
k+1 − Z

(1)
k ,

1

µ

(
Z

(1)
k+1 − Z

(1)
k

)〉
=

1

µ

∥∥∥Z(1)
k+1 − Z

(1)
k

∥∥∥2

=
ρ2

1

µ

∥∥∥ε(1)
k+1 − ε

(1)
k

∥∥∥2

Similarly, we obtain

∆Lk,Z(2) =
ρ2

2

µ

∥∥∥ε(2)
k+1 − ε

(2)
k

∥∥∥2
(54)

Summing the inequalities in Eq. (49), Eq. (50), Eq. (51),
Eq. (52), Eq. (53),Eq. (5) and Eq. (54) completes the proof.

Now, we have the following theorem:

Theorem 6. Suppose that µ ≥
√

2{ρ1, ρ2}. There exist positive
values η0

U , η
0
Q, η

0
W only depending on the initial values such that

for ηU > η0
U , ηQ > η0

Q, ηW > η0
W the sequence {Lk}∞k=1 is

positive and decreasing, hence convergent.

Proof. First define

Lk,e(Ω, U,Q,W ) = L(Ω, U,Q,W, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

observe that according to Lemma 4, for k = 1, 2, . . . we have
that

Lk,e =
1

2
‖U − ΩX‖2F + λ1‖U‖1

+ρ1〈ε(1)
k , H −QU − ε(1)

k 〉+ µ
2 ‖H −QU − ε

(1)
k ‖22 + ρ1

2 ‖ε
(1)
k ‖22

+ρ2〈ε(2)
k , Y −WQU − ε(2)

k 〉+ µ
2 ‖Y −WQU − ε(2)

k ‖22 + ρ2

2 ‖ε
(2)
k ‖22

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22.

=
1

2
‖U − ΩX‖2F + λ1‖U‖1

+
µ

2

∥∥∥∥H −QU − (1− ρ1

µ

)
ε

(1)
k

∥∥∥∥2

2

+
ρ1

2

(
1− ρ1

µ

)
‖ε(1)
k ‖

2
2

+
µ

2

∥∥∥∥Y −WQU −
(

1− ρ2

µ

)
ε

(2)
k

∥∥∥∥2

2

+
ρ2

2

(
1− ρ2

µ

)
‖ε(2)
k ‖

2
2

+
δ1
2
‖Q‖22 +

δ2
2
‖W‖22.

(55)

Hence, for µ > max{ρ1, ρ2}, we Lk,e ≥ 0. In particular,
we obtain that Lk = Lk,e(Ωk, Uk, Qk,Wk) ≥ 0. Now, we
use complete (strong) indiction to show that Lk+1 ≥ Lk
for k = 1, 2, . . .. Suppose that this holds for k = 1, 2, . . . , t.
We conclude that Lt ≤ L1. Now, notice that from (55) and
the fact that Lt = Lt,e(Ωt, Ut, Qt,Wt) we obtain for µ >
max{ρ1, ρ2} that

‖Qt‖2 ≤
2L1

δ1
, ‖Wt‖2 ≤

2L1

δ2

which leads to the following:

αt,U ≤ 1+µ
(
‖Qt‖2 + ‖Qt‖2‖Wt‖2

)
≤ 1+

2L1µ

δ1

(
1 +

2L1

δ2

)
Now, from (49), we observe that by selecting ηU >[
2 + 2L1µ

δ1

(
1 + L1

δ2

)]
/2µ we have that

∆Lt,U ≤ −
1

2
‖Ut+1 − Ut‖2 (56)

which subsequently yields,

Lt,e(Ωt, Ut+1, Qt,Wt) ≤ Lt ≤ L1

Then according to (55) for µ > max{ρ1, ρ2}, we have that

‖Ut+1‖1 ≤
L1

λ1

We conclude that

αt,Q ≤ δ1 + µ‖Wt‖2‖Ut+1‖21 ≤ δ1 + µ
2L2

1

λ1δ2

Now, by taking ηU >
[
1 + δ1 +

2µL2
1

λ1δ2

]
/2µ in (50) we have

that
∆Lt,Q ≤ −

1

2
‖Qt+1 −Qt‖2 (57)

This also results in

Lt,e(Ωt, Ut+1, Qt+1,Wt) ≤ Lt,e(Ωt, Ut+1, Qt,Wt) ≤ Lt ≤ L1

which using (55) for µ > max{ρ1, ρ2} leads to

‖Qt+1‖2 ≤
2L1

δ1
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and hence

αt,W ≤ δ2 + µ‖Qt+1‖2‖Ut+1‖21 ≤ δ2 +
2µL2

1

δ1λ1

Now, we can also chose ηW ≥
[
1 + δ2 +

2µL2
1

λ1δ1

]
/2µ we

conclude from (51) that

∆Lt,W ≤ −
1

2
‖Wt+1 −Wt‖2 . (58)

Finally, by choosing µ >
√

2 max{ρ1, ρ2}, we obtain
from Lemma 5 that

Lt+1 − Lt ≤ − 1
2‖Ut+1 − Ut‖22 − 1

2‖Qt+1 −Qt‖22 − 1
2‖Wt+1 −Wt‖22

−mΩ

2 ‖Ωt+1 − Ωt‖22 −
ρ1

2 ‖ε
(1)
t+1 − ε

(1)
t ‖22 −

ρ2

2 ‖ε
(2)
t+1 − ε

(2)
t ‖22 (59)

We conclude that Lt+1 ≤ Lt which completes the proof.

We finally obtain the following corollary which clarifies
the statement and gives the proof of our main result in
Theorem 1:

Corollary 1. Suppose that µ ≥
√

2{ρ1, ρ2}. There exist
positive values η0

U , η
0
Q, η

0
W , R only depending on the ini-

tialization such that for ηU > η0
U , ηQ > η0

Q, ηW > η0
W the

sequence {Θk = (Ωk, Uk, Qk,Wk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )}∞k=1

satisfies the following:

1) The parameters for k = 0, 1, 2, ... are bounded by R,
i.e

‖Θk‖ = max
{
‖Ωk‖, ‖Uk‖, ‖Qk‖, ‖Wk‖, ‖ε(1)

k ‖, ‖ε
(2)
k ‖, ‖Z

(1)
k ‖, ‖Z

(2)
k ‖

}
< R.

Hence, the are confined in a compact set.
2) Any convergence subsequence of {Θk} converges to

a point Θ∗ ∈ S.
3) dist(Θk, S) converges to zero, where

dist(Θ, S) = min
Θ′∈S

‖Θ′ −Θ‖

Proof. Part a is simply obtained by noticing (55) and the
fact that Lk,e(Ωk, Uk, Qk,Wk) = Lk ≤ L1, since {Lk} is
decreasing. For part b, note that since the sequence {Lk}
is convergent, we have limk→∞ Lk+1 − Lk = 0, which
according to (59) yields

limk→∞ ‖Uk+1 − Uk‖22 = limk→∞ ‖Qk+1 −Qk‖22 = limk→∞ ‖Wk+1 −Wk‖22
= limk→∞ ‖Ωk+1 − Ωk‖22 = ‖ε(i)

k+1 − ε
(i)
k ‖22 = 0

for i = 1, 2. Also from Lemma 4 we have that

lim
k→∞

‖Z(i)
k+1 − Z

(i)
k ‖

2
2 = 0

We conclude that

limk→∞

∥∥∥∥τ λ1
µηU

(
Uk − 1

µηU
∇ULs(Uk, Qk,Wk,Ωk, ε

(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

)
− Uk

∥∥∥∥2

2

= 0

lim
k→∞

∥∥∥∇QL(Uk+1, Qk,Wk,Ωk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

∥∥∥2

2
= 0

lim
k→∞

∥∥∥∇WL(Uk+1, Qk+1,Wk,Ωk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

∥∥∥2

2
= 0

lim
k→∞

∥∥∥H −Qk+1Uk+1 − ε(1)
k+1

∥∥∥2

2
= 0

lim
k→∞

∥∥∥Y −Wk+1Qk+1Uk+1 − ε(2)
k+1

∥∥∥2

2
= 0

Moreover, note that the Lagrangian L is LΩ−second order
Lipschitz with respect to Ω (fixing the rest) with LΩ =
‖XXT ‖∗. We obtain that∥∥∥∇ΩL(Uk+1, Qk+1,Wk+1,Ωk, ε

(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

∥∥∥2

2

≤ L2
Ω‖Ωk+1 − Ωk‖22

which yields

limk→∞

∥∥∥∇ΩL(Uk+1, Qk+1,Wk+1,Ωk, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

∥∥∥2

2
= 0

Similarly, we obtain

limk→∞

∥∥∥∇ε(1)L(Uk+1, Qk+1,Wk+1,Ωk+1, ε
(1)
k , ε

(2)
k , Z

(1)
k , Z

(2)
k )

∥∥∥2

2
= 0

limk→∞

∥∥∥∇ε(2)L(Uk+1, Qk+1,Wk+1,Ωk+1, ε
(1)
k+1, ε

(2)
k , Z

(1)
k , Z

(2)
k )

∥∥∥2

2
= 0

Now, take a subsequence of {Θk} converging to a point
Θ∗ = (Ω∗, U∗, Q∗,W∗, ε

(1)
∗ , ε

(2)
∗ , Z

(1)
∗ , Z

(2)
∗ ). Since the argu-

ment of the above limits are continuous we obtain

τ λ1
µηU

(
U∗ −

1

µηU
∇ULs(Θ∗)

)
− U∗ = 0

∇QL(Θ∗) = 0, ∇WL(Θ∗) = 0, ∇ε(i)L(Θ∗) = 0

∇Z(1)L(Θ∗) = H −Q∗U∗ − ε(1)
∗ = 0,

∇Z(2)L(Θ∗) = Y −W∗Q∗U∗ − ε(2)
∗

According to Lemma 3, we conclude that Θ∗ ∈ S. For part
c, suppose that the claim is not true. Then, according to
part a there exists a convergent subsequence of {Θk} which
is ε−distant from S. Then, the convergence point is also
ε−distant from S which contradicts part b and completes
the proof.
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