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ABSTRACT

This paper proposes a new framework for scene classification based
on an analysis dictionary learning approach. Despite their tremen-
dous success in various image processing tasks, synthesis-based and
analysis-based sparse models fall short in classification tasks. It was
hypothesized that this is partly due to the linear dependence of the
dictionary atoms. In this work, we aim at improving classification
performances by compensating for such dependence. The proposed
methodology consists in grouping the atoms of the dictionary us-
ing clustering methods. This allows to sparsely model images from
various scene classes and use such a model for classification. Ex-
perimental evidence shows the benefit of such an approach. Finally,
we propose a supervised way to train the baseline representation for
each class-specific dictionary, and achieve multiple classification by
finding the minimum distance between the learned baseline repre-
sentation and the data’s sub-dictionary representation. Experiments
seem to indicate that such approach achieves scene-classification
performances that are comparable to the state of the art.

Index Terms— Analysis Dictionary Learning, Sparse signal
model, scene classification, optimization

1. INTRODUCTION

Understanding the content of an image remains one of the most chal-
lenging problems in vision. Over the years, high-level challenges
like scene-classification have encouraged the development and use
of countless techniques for image processing, computer vision and
machine learning [1, 2, 3]. Another major advance of the last decade
was the use of sparse and redundant signal representations [4]. The
Synthesis Dictionary Learning (SDL) framework and the Analysis
Dictionary Learning (ADL) framework are two examples of such
sparse modelization tools. But despite their tremendous success for
low-level image processing tasks [4, 5], the SDL and ADL frame-
work have only demonstrated limited performance in classification
tasks, especially in high-level ones.

The synthesis-based sparse model assumes that the signal of in-
terest x can be approximated by a sparse linear combination x ≈
Dα, meaning that it is approximated by a linear combination of a
few atoms from a given dictionary D. SDL methods [6, 7] aim at
simultaneously learning from example signals, a dictionary D and a
sparse representation α which approximate them well while promot-
ing sparsity. This is generally achieved by solving a minimization
problem with a target function such as

argmin
D,α

‖x−Dα‖22 + λ‖α‖1, (1)

where the second term favors sparse coefficients α.
An alternate viewpoint is the analysis-based sparse model in

which the signal x is multiplied by an analysis dictionary Ω and the
resulting vector Ωx is expected to be sparse. ADL methods [8, 9, 10]
aim at learning the analysis dictionary by solving minimization prob-
lems such as:

argmin
Ω,U

‖ΩX − U‖22 + λ‖U‖0. (2)

It has been observed that the linear dependence of the dictionary
atoms (respectively the columns of D and the rows of Ω) result in
poor performances in typical classification tasks of SDL and ADL-
based methods [11]. This also reduces the ability of classification.
Therefore, the present research aims at addressing such limitation
for the analysis-based model. Since dictionary can characterize the
features of the signal, and there are several general content features
for each scene category image, such as tree and house for suburban,
peak for mountain, we provide a practical way to reduce the linear
dependence between the atoms of the analysis dictionary by using
K-means to group atoms based on various visual feature transforms.
The signal is then represented by using the normalized histogram of
the clusters. By doing so we not only reduce the coherence in atoms,
but also keep the general content features. Our methodology is then
applied to the challenging task of scene-classification.

The remainder of this article is organized as follows: Section 2
discusses other attempts to improve distinctiveness of sparse model
based classification algorithms by reducing the linear dependence
of dictionary atoms. These attempts aim at reducing the linear
dependence of dictionary atoms. They mainly aiming focused on
synthesis-based sparse model. Section 3 describes the analysis-
based sparse model proposed by Bian et al. [9] as well as its present
use within the task of scene-classification. In Section 4, an experi-
mental section shows classification results on a scene-classification
dataset. This experimental section demonstrates that grouping the
atoms improves the performance of analysis-based classification.
The performances are comparable to the state-of-the-art in scene-
classification. Section 5 provides a final discussion.

2. RELATED WORK

Sparse models are notoriously unadapted to classification tasks [5,
12]. Linear dependence betweens atoms is thought to be the reason
for such a low performance. For synthesis-based sparse modeling,
various modifications of the minimization problem have been pro-
posed either to penalize coherent atoms in the dictionary D or to
make the sparse representation α more discriminative.
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Ramirez et al. [11] add a constraint in the minimization prob-
lem that penalizes coherent dictionary atoms. Such simple modifi-
cation allows them to achieve good performance in classic classifi-
cation tasks on various datasets (speech, digit, texture). Mairal et al.
jointly learn the dictionary and a classifier. This was again achieved
by simply embedding the classification logistical regression func-
tion in the minimization problem during the learning process. This
led to improved classification performance. Similarly, Zhang et al.
[13] proposed to learn a linear classifier jointly with the dictionary.
Such an approach led to more discriminative sparse coefficients that
were used for face recognition. Kong and Wang [14] simultaneously
learned a set of dictionaries specific to each class and by adding
a constraint on the scalar product of pairs of atoms, were able to
identify common dictionary atoms shared by various classes, and
separate them for improved classification performance, which also
worked well for scene classification and object recognition.

Inspired by these methods, our approach is an attempt in the
ADL framework to avoid atoms linear dependence that are detri-
mental to scene classification.

3. OUR APPROACH

We first provide a brief overview of our image scene classification
method. Training the classifier consists in performing the following
steps for each scene class:

Step 1: The algorithm proposed by Bian et al. [9] is used to train
one analysis dictionary for each class.
Step 2: The atoms of each class-specific dictionary are clustered
using the K-means clustering method with various visual feature
transforms. We calculate the group indicator of each atom (i.e., the
index of the cluster the atom is in). (see Fig. 2).
Step 3: The group indicator of each atom is used to calculate the
normalized histograms of groups to represent an image, which is
also a mid-level feature for a scene image (see Fig. 2). Here we call
it sub-dictionary representation (See Fig. 3).
Step 4: Learn the mid-level (sub-dictionary) representation from
the labeled image and set this as a baseline for this class.

Once those training steps are performed for each class, classi-
fying an unlabeled image consists in computing its mid-level rep-
resentation in each class and comparing them to the class baseline.
The output of the classifier is the class for which the distance to the
baseline is the smallest one. In what follows, we detail the different
steps of the approach.

3.1. Class-specific Analysis Dictionary

Let Xc = [x1, . . . , xn] denote scene-specific data matrix, i.e., the
matrix formed of patches extracted from images in the scene class
c, each xi is a column vector, xi ∈ R

d. A class-specific analysis
dictionary Ωc = [ωT

1 , . . . , ω
T
n ]

T , with m = d and where ωi denotes
the i-th atom is computed for each class along with the correspond-
ing sparse coefficients Uc = [u1, . . . , un] ∈ R

m×n. This consists
in minimizing the following target function:

{Uc,Ωc} = argmin
Uc,Ωc

‖ΩcXc − Uc‖22 + λ‖Uc‖1. (3)

Such minimization is performed in practice using the the analysis
dictionary learning algorithm proposed by Bian et al. [9] that we
describe in what follows.

Analysis dictionary learning algorithm

In the following description, let X ∈ R
d×l denote the data matrix, Ω

denote the analysis dictionary and U denote the sparse coefficients
of X relative to the analysis dictionary Ω, i.e., ΩX = U .

The algorithm proposed in [9] departs from methods based on
the co-sparse analysis model [15, 16, 8] and relates instead with the
sparse null space problem [17]. It consists of the three following
steps: Step 1: Build a matrix A such that XAT = 0. Step 2: Build
the matrix U ∈ R

m×n of sparse representations so that its rows are
sparse and form a basis of null(A). Step 3: Estimate the dictionary
Ω ∈ R

m×d from X and the sparse representation U .

In practice, the matrix A is constructed so that its rows are the
right-singular vectors of X relative to null singular values. This re-
sults in a (n − r) × n full-rank matrix A, where r denotes the rank
of the data matrix X .

Then the rows of U are computed sequentially. Once the (i− 1)
first rows (u1, u2, . . . , ui−1) have been computed, computing ui

consists in picking the sparsest vector among the solutions of the fol-
lowing n convex optimization problems: For each index j = 1 . . . n

minimize ‖u‖1
subject to

(
Pspan{u1,...,ui−1}⊥(u)

)
j
> 0

Au = 0,

(4)

where (.)j denotes the j-th component of a vector. In each opti-
mization problem, the �1 norm promotes sparsity while the two con-
strains assure that the rows of U are linearly independent and in the
null space of A. As a direct consequence, each of the n convex op-
timization problems is feasible as long as the number of atoms m is
not larger than the dimension d 1 .

Finally, the dictionary matrix Ω ∈ R
m×d is estimated directly

from U and X , namely, as the product of U with the Moore-Penrose
pseudo-inverse of X 2 . The interested reader is referred to [9] for
more details.

3.2. Sub-dictionary Space

Visually, the atoms linear dependence manifests itself with similar
shapes and layouts. This implies that applying feature transforms to
similar atoms will lead to almost identical representations. Thus, we
map each atom into a feature space, where similar atoms will form
a cluster. We use a feature transform F that associates to each atom
ωi ∈ R

d a feature vector F (ωi) ∈ R
p.

The resulting feature vectors form clusters that are then easily
separated into k groups G = [g1|g2| . . . |gK ] using the K-means
clustering algorithm. Formally

ωi ∈ gk, with k = argmin
k′

d(F (ωi), C(gk′)), (5)

with i = 1, . . . ,m, k = 1, . . . ,K and where C(gk) denotes
the center of the cluster gk (i.e., the average position of all fea-
tures within that cluster) and d(·, ·) denotes the Euclidean distance.
The results of the clustering is a set of K group indicator vectors
bk ∈ {0, 1}m for k = 1 . . .K.

bki = 1ωi∈gk (6)

1Elad et al. [15] point out that, in the determined case (m = n and X
invertible) the ADL problem has an equivalent SDL formulation.

2Note that in general, the product of the resulting Ω with the data matrix
X is an approximation of the sparse matrix U .
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with i = 1, . . . ,m and where 1ωi∈gk denotes an indicator function
that equals 1 if the feature vector of atom ωi falls inside the cluster
gk and 0 otherwise.

3.3. Sub-dictionary Representation

Using the trained class-specific dictionaries and atoms grouping dur-
ing the previous steps, we are able to associate to any new data signal
with one sub-dictionary representation (namely a vector in R

K ) spe-
cific to each class.

Given a set of n data vector in R
m, we compute for each scene

class the sparse coefficients Uc = [u1, . . . , un] ∈ R
m×n. In the

ADL framework, this is achieved directly by multiplying the class-
specific dictionary Ωc by the data matrix. For the sparse represen-
tation ui (i.e., corresponding to the i-th data vector), the j-th coeffi-
cient (ui)j = ωjxi is the response of atom ωj to data xi. And after
clustering, the binary vector bk, group indicator , stands for whether
ωi is in group k. Thus, for each patch xj , we can get the group
frequency vector vj for its sparse coefficient uj as follows:

vj = [‖b1 ◦ uj‖0, ‖b2 ◦ uj‖0, . . . , ‖bK ◦ uj‖0]T (7)

where j = 1, . . . , n, and the ◦ is the Schur product (element wise
product) and where ‖.‖0 returns the number of non-zero elements of
a vector.

For a specific class, the sub-dictionary representation vector of
the data x is therefore

W =
1

Z

n∑
j=1

vj ; ‖W‖1 = 1, (8)

where Z is a normalization term to get a normalized histogram of
the groups.

3.4. Multiple Supervised Classification

We have proposed a method for representing an image into a sub-
dictionary representation. Our strategy to deal with multiclass clas-
sification is to train the class-specific dictionary for each class by
labeled data first. So, we can get a set of dictionaries {Ω1, . . . ,ΩC},
C is the number of classes. For each Ωc, we can form its sub-
dictionary space and obtain its sub-dictionary representation for
data. Hence, for each data X , its new sub-dictionary representations
are {W1(X), . . . ,WC(X)}. Then, the second step is to train the
class-specific sub-dictionary representation for each dictionary by
the training data. Here we name baseline the trained class-specific
sub-dictionary representation and denote it by

{
W b

1 , . . . ,W
b
C

}
.

Finally, we compare the distance (as defined in [18, 9]) of each
class-specific baseline to the sub-dictionary representation of the
signal Y to be classified. The data Y is then assigned to the class
with the minimal distance. Formally

class(Y ) = argmin
c′≤C

d(W b
c′ ,Wc′(Y )),

where d(·, ·) denotes the Manhattan distance in R
p.

4. EXPERIMENTS

Dataset Our method is evaluated on the 15 scene dataset provided
by Lazebnik [2]. This dataset contains a total of 4485 images di-
vided into 15 scene categories (see Fig. 1). For each category, there
are between 200 and 400 images of size 300× 250 pixels. Here, for

each category, we randomly sampled 200 images as the dataset. 80
images are used to train a class-specific analysis dictionary. Another
40 images are used to learn the baseline of the sub-dictionary repre-
sentation for each category. The rest of the images are used as test
images.

suburb
coast forest highway insidecity

mountain opencountry street tallbuilding
office

bedroom
industries

kitchen livingroom store

Fig. 1. 15 categories in the dataset.

Experimental Setup: For each image, we extract patches of size
100 × 100. Patches are extracted every 70 pixels, resulting in over-
lapping patches. An analysis dictionary of 60 atoms is learned for
each category. Each of the 60 atoms (vectors in R

10000 is reshaped
into a 100 × 100 images so as to be able to extract local features).
Large patches like these allow to capture middle level image fea-
tures that are useful for classification. Note that it departs from
the more conventional approach of using over-complete dictionaries
(m > d) and results from the theoretical and computational limi-
tations of the algorithm algorithm proposed by Bian et al [9]. Fur-
thermore, the present task (scene classification) doesn’t necessarily
require over-complete dictionary, because clustering is ultimately to
perform a low dimensional representation. For each reshaped atom,
we densely compute SIFT (Scale-invariant Feature Transform) [1]
features. This consists in computing a SIFT feature vector from a
16 × 16 window every 8 pixels. For each reshaped atom, we also
compute a set of LBP (Local Binary Pattern) [19] features with 8
neighbors of radius 1. For the HoG (Histogram of Oriented Gradi-
ents) [20] features, we set the cell size as 8 × 8 and the block size
as 2 × 2. An implementation of GIST (Spectral Envelope) [21] de-
scriptors is also considered. Finally, we consider the concatenation
of the four features. Such descriptor is denoted All.

Fig. 2 shows the example of our sub-dictionary space, after us-
ing K-means clustering on the features. The atoms in different color
box are different groups. Note the coherence between the atoms. For
each group, it contains the semantic meanings to understand the con-
tent of scene image. For example, the red group represents the tree
leaves, while the green one represents the branch of the tree. The
blue group stands for the house and its roof. The yellow group is the
fence part of a house. And the purple one is the house windows.

Then, we order these “object” groups. Here, for instance, red
group is group 1, blue group is group 2, yellow group is group 3,
green group is group 4 and purple group is group 5. According to
the group indicators, we could construct our sub-dictionary repre-
sentation, i.e. mid-level representation, which is shown in Fig. 3.
For a suburb image, we can understand it as high probability in tree-
leaves, tree-branches and house pulsing a few house-windows and
house-fences by our sub-dictionary representation in Fig. 3. The
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Fig. 2. Example of class-specific dictionary analysis dictionary. The
atoms are clustered into sub-dictionaries by using K-means algo-
rithm based on the visual features. Each cluster (or group) is here
assigned a different color.

Fig. 3. Example of Sub-dictionary Representation.

roof, fence and windows of a house never appear in the nature and in-
door scene images. Thus, these sub-dictionary representation could
keep the features to characterize the content of an image.

Method Accuracy (%)
KSPM [2] 81.10

ScSPM [22] 80.28

Object Bank [23] 80.90

DL-COPAR [14] 85.37
Bian et al. [9] 37.78

Our approach (SIFT) 71.67 ± 8.39

Our approach (LBP) 70.00 ± 3.85

Our approach (HoG) 68.33 ± 12.62

Our approach (GIST) 66.67 ± 14.78

Our approach (All) 80.00 ± 10.88

Table 1. Classification results on 15 Scene dataset.

We experimentally compared our approach with the state-of-the-
art. These methods mainly focused on finding an appropriate code-
book to represent the image. The comparison results are shown in

Table 1. Lazebnik et.al. proposed KSPM [2] that use the K-means
clustering algorithm is used to learn a codebook and introduced in
spatial pyramid matching to achieve an accuracy of 81.10% on the
15 scene classification dataset. SsSPM [22] uses sparse coding,
max pooling and linear SVM classifier based on the SPM for im-
age classification to achieve a 80.28% classification accuracy. Ob-
ject bank [23] proposed to obtain a scale-invariant response map by
training generic object detectors, and then collected them together
as a codebook reaching an accuracy of 80.9%. DL-COPAR simulta-
neously learned a set of synthesis dictionaries specific to each class
with common dictionary atoms shared by various classes. By sepa-
rating the common atoms to others, the method improves classifica-
tion performance and is the current state of the art for scene classifi-
cation with 85.9% accuracy.

We tested our approach with a variety of image features. We
tested separately SIFT, LBP, HoG and GIST with our approach.
The accuracy achieved using these features are respectively 71.67±
8.39, 70.00 ± 3.85, 68.33 ± 12.62, 66.67 ± 14.78 (see Table 1).
Note that using LBP and HoG results in an increase classification
accuracy and a lower variance than when using SIFT and GIST.
Concatenating the four features (feature All) results in an accuracy
of 80% with a variance of +/−10%. Such high variance is the result
of K-means clustering algorithm and its random initialization which
limits the robustness and stability of the proposed approach.

Since the algorithm proposed by Bian et al. achieved good per-
formance for texture classification, it was incorporated in this com-
parison. As expected, it achieves poor performance for scene classi-
fication with an accuracy of only 37.78%.

Category k Category k

CALsuburb 12 MITcoast 3

MITforest 4 MIThighway 9

MITinsidecity 7 MITmountain 13

MITopencountry 2 MITstreet 29

MITtallbuilding 8 PARoffice 4

bedroom 10 industries 21

kitchen 8 livingroom 3

store 17 Average 10

Table 2. The maximum dimension of discriminative sub-dictionary
representation.

In our approach, the dimension of the final representation of an
image is very low. From the Table 2, we can find the average dimen-
sion for each category to be around 10. Thus, our approach not only
gives a meaningful representation, but also reduces the dimension
for high dimensional data.

5. CONCLUSION

In this paper, we use the K-means clustering and feature transforms
to find the subspace of atoms. We subsequently use the these sub-
dictionary groups to represent the original data. Finally, we achieve
the multiple classification by finding the minimum distance between
the learned baseline representation and the data’s sub-dictionary rep-
resentation. Our experiments on the scene classification demon-
strates that the method proposed by Bian et al. achieves poor per-
formances for the task of scene classification. The experiments also
demonstrates that grouping the atoms improves performances. As
future work, we will work at grouping the linearly dependent atoms
within an ADL optimization formulation directly to improve dis-
criminativity.
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