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Abstract—We develop a Belief Propagation algorithm for
community detection problem in multiplex networks, which more
accurately represents many real-world systems. Previous works
have established that real world multiplex networks exhibit
redundant structures/communities, and that community detection
performance improves by aggregating (fusing) redundant layers
which are generated from the same Stochastic Block Model
(SBM). We introduce a probability model for generic multiplex
networks, aiming to fuse community structure across layers,
without assuming or seeking the same SBM generative model
for different layers. Numerical experiment shows that our model
finds out consistent communities between layers and yields
a significant detectability improvement over the single layer
architecture. Our model also achieves a comparable performance
to a reference model where we assume consistent communities in
prior. Finally we compare our method with multilayer modularity
optimization in heterogeneous networks, and show that our
method detects correct community labels more reliably.

Index Terms—Community detection, Multiplex network, Fu-
sion, Belief propagation, SBM

I. INTRODUCTION

Multiplex networks have been studied and applied to model
many real world complex systems [1]–[6]. With different
connectivities in different layers, multiplex networks allow
for richer structure and dynamics compared to single layer
networks. Community detection in multiplex networks has
been receiving increasing attention in the recent literature [7]–
[15]. Due to the variety of multiplex structures, these studies
address different assumptions and circumstances. Community
detection is essential in a wide range of applications, such as
temporal brain networks [16], social networks [17], [18], etc.

In the content of community detection, multiplex networks
have advantages in representing community structures over
single layer networks. For example, when a node belongs
to multiple communities, it is easier to retain the community
structure using different layers rather than overlapping them
in a single layer [18]. Multiplex networks can also model
time-varying communities, by encoding community structure
at a certain time point in each layer [16]. Domenico et al.
[5] found that many real world multiplex networks exhibit
redundant layers and introduced an information theoretic mea-
sure to identify them. A natural idea is to take advantages
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of redundant communities across layers, by treating them as
multiple realizations of the same community and fusing them
to increase its ”signal-to-noise ratio”. Taylor et al. [11] studied
a special case where different layers have exactly the same
community structure, i.e. the layers are generated from the
same stochastic block model (SBM). They showed that by
simply aggergating edges from different layers into one layer,
the community detectability is increased. Stanley et al. [12]
considered multilayer networks generated by multiple SBMs
and each SBM corresponds to a set of redundant layers. The
authors first estimate SBM parameters for each layer and
cluster similar ones. However, this model still requires com-
munity structures in a layer being completely consistent with
another layer. A more generic model allows for heterogeneous
community structures in different layers. In this paper, we
introduce a generative model with the mere constraint that
a community label refers to a constant set of nodes. Without
seeking layers with consistent SBM, or assuming consistent
community structures as prior knowledge, our model finds out
when a community appears in different layers and fuse them,
hence improving community detectability.

Decelle et al. recently developed a Belief Propagation
algorithm to solve community detection from a single layer
in an asymptotically optimal way [19], [20], by viewing the
community detection as a Bayesian inference problem of
SBM parameters. Since no other algorithm will have a better
performance, the detection accuracy of their method indicates
the inherent detectability of a community structure. Our mul-
tiplex model aims to enhance the detectability of repeated
communities in multiple layers. We develop a Bayesian model
for our generic multiplex networks and solve it by extending
Belief Propagation equations in [19]. Thus the performance
of our algorithm indicates the community detectability given
a set of mild constraints (refer to Well Partitioning Property
in Sec. III). As a comparison, we designed a reference
model with stronger constraints that all layers have consistent
community structure. Our main contribution is in showing
that despite the community consistency constraint between
layers, one can still achieve a similar community detection
performance improvement over single layer. This is realized
by merely exploiting some natural properties of real-world
communities, specifically, consistent node membership of a
certain community. An additional advantage of our method



over layer aggregation [11], [12], is that it does not require
layers to be generated from the same SBM. For heterogeneous
multiplex networks, where community structure of an entire
layer does not completely match another layer, our method is
still straightforward to apply. Our method is able to identify
and fuse the part of a multiplex network corresponding to
consistent communities, thus improving detectability.

II. PROBLEM STATEMENT

A multiplex network W = (V,E(1), E(2), ..., E(L)) is
composed of a set of nodes V = {v1, v2, ..., vN} and a
set of edges E(·) for each of the L layers. The goal is to
identify a set of communities C = {C1, C2, ..., Cq}, in which
Ci ⊆ V is a set of densely connected nodes, i.e. community,
in at least one layer. Each layer has a non-exclusive subset
of C and different layers may have common communities.
Common communities are to be fused to improve community
detectability. For simplicity, we assume each layer can be
described by an ordinary SBM, which means communities
in the same layer do not overlap (have common nodes).
This nevertheless allows for different communities in different
layers to overlap.

III. MULTIPLEX SBM AND WPP

Stochastic Block Model (SBM) has been a popular gen-
erative model for community structures in networks [21]. A
community corresponds to a dense block on the diagonal in
the adjacency matrix. SBM generates a network from a set
of parameters: the number of communities q, the size of each
community {na}, the affinity matrix {pab} and community
assignments ti ∈ {1, ..., q}. To generate a network layer, nodes
are connected by a probability of {pab}, where a and b stand
for the community labels of the nodes. Community detection
can be understood as an inference problem of SBM parameters
given the network.

We introduce a multiplex SBM which generates the mul-
tiplex network described in the problem statement. In our
model, SBM in each layer works the same way as in a single
layer network, but they are associated with each other by
constraints and potential common communities. We describe
the constraint by a Well Partitioning Property (WPP). This
property requires that a community Ca refers to the same
set of nodes if it exists in multiple layers, and it does not
allow overlapping community in any layer. If we denote the
set of adjcancy matrices as {W (l)} and the set of community
label vectors on nodes in all layers as {t(l)}, we propose the
generative probability model of a multiplex network with some
community structure given a set of parameters, as follows,

P ({W (l)}, {t(l)}|p, q, {na})

=
1

Z

∏
(i,j),(l,l′)

fcheck(ti(l), tj(l), ti(l
′), tj(l

′))

×
L∏

l=1

 ∏
(i,j)∈E(l)

pti(l),tj(l)
∏

(i,j)/∈E(l)

(1− pti(l),tj(l))
∏
i

nti(l)

 .

(1)

Here Z is a normalization constant, and the second row on
the right hand side shows the multiplication of single-layer
SBM formulation [19] in all L layers, while the fcheck func-
tional sets the local constraint of community labels between
any two layers l and l′. By checking over every pair of nodes,
it ensures WPP is satisfied globally. In particular, fcheck = 1
implies that the labels satisfy the following condition and
fcheck = 0 otherwise.

Assume

{
ti(l) = α

tj(l) = β
,

If α = β, then


ti(l

′) = tj(l
′) = α

or

{
ti(l

′) 6= α

tj(l
′) 6= α

,

If α 6= β, then

{
ti(l

′) 6= β

tj(l
′) 6= α

.

This set of conditions avoid all possible situations that
community labels of copies of two nodes in two layers violate
WPP locally. Here we give a simple example to explain why
WPP enables the model to find out consistent communities
across layers and thus improve detection performance.

Assuming there are q communities in a two layer network
and only one of them is present in both layers (we refer to
them as two identical clusters), the task is to assign q different
labels to q+1 clusters. The ideal result is that the two clusters
representing the same community are assigned the same label.
However, if we assign them different labels, there will not be
enough labels for the rest of the clusters. That will result in
two different clusters being identified as the same community,
which violates WPP and cause fcheck function to have 0 value
for some nodes. Hence, only by assigning the two identical
clusters the same community label, can we obtain a non-zero
probability in Eq. (1).

IV. BELIEF PROPAGATION ALGORITHM

Belief Propagation is known as an asymptotically optimal
algorithm to solve the community detection problem for net-
works described by stochastic block models [19], [20]. The
nature of a Belief Propagation algorithm allows for parallel
or distributed implementation of efficient inference for large
networks. We use a factor graph [22] to represent the network
model and the WPP condition in Eq. (1). A factor graph is
composed of factor nodes representing different terms in Eq.
(1) (such as fcheck and pab) and variable nodes (such as an
actual node in a layer in the multiplex network). A factor
node connects to the variables appearing in the argument
of its corresponding term in Eq. (1). The resulting factor
graph allows us to utilize the well-known Belief Propagation
algorithm to perform node-community inference. Within each
layer, the factor graph structure is the same as the one for
single layer explained in [19], where factor nodes define
pairwise interaction between nodes about establishing their



connectivity by an edge in the network. However between
different layers, there are factor nodes associated with the
constraint function fcheck between copies of two nodes in
two layers, amounting to one factor node connecting to four
different variable nodes. In this case, we explicitly write the
messages between those variable nodes and factor nodes. Then
using the sum-product rule [22], we can write update equations
for the messages as follows:

Intra-layer message:

mi→a
ti (l) =

1

Zi→a(l)
nti(l)e

−hti(l)

∏
d∈Nintra(i(l))\a

∑
td

ctdti(l)m
d→i(l)
td


×

∏
c∈Ninter(i)

 ∑
tj(l),ti(l′),tj(l′)

fcheck(ti(l), ti(l
′), tj(l), tj(l

′))

∏
k∈Ninter(c)\i

mk→c
tk

 .

(2)
Inter-layer message:

mi→c
ti(l) =

1

Zi→c(l)
nti(l)e

−hti(l)
∏

d∈Nintra(i)

∑
td

ctdtim
d→i
td

×
∏

c∗∈Ninter(i)\c

 ∑
tj(l),ti(l′),tj(l′)

fcheck∗(ti(l), ti(l
′), tj(l), tj(l

′))

∏
k∈Ninter(c∗)\i

mk→c∗
tk

 ,

(3)
where Nintra(i) represents intra-layer neighbors of node i,
and Ninter(i), represents those of the inter-layer ones (the
constraint-checking factors). l and l′ are indices of layers con-
nected by the constraint-checking factor c. cab = Npab where
N is the number of nodes, and hti = 1

N

∑
k

∑
tk
ctktib

k
tk

is
an external field to approximate influences from unconnected
nodes [19].

The belief biti(l) of a node in layer l is its marginal dis-
tribution of community labels. Each node belief is calculated
by:

biti(l) =
1

Zi(l)
nti(l)e

−hti(l)
∏

d∈Nintra(i(l))

∑
td

ctdti(l)m
d→i(l)
td


×

∏
c∈Ninter(i(l))

 ∑
tj(l),ti(l′),tj(l′)

fcheck(ti(l), ti(l
′), tj(l), tj(l

′))

∏
k∈Ninter(c)\i(l)

mk→c
tk

 .

(4)
In our implementation, the algorithm randomly initializes

all messages and applies message update equations iteratively.
In each epoch, we make sure each message is updated once,

and the order of updates is arbitrary. After sufficient number
of iterations, if communities are detectable, the messages will
converge to a fixed point. We subsequently calculate the belief
of each node, which are in turn used to pick a community
label.

V. NUMERICAL EXPERIMENT

As an evaluation, we compare the performance of our model
on a two layer network with the original model [19] on a
single layer network. We also design a reference model with
a stronger prior that the two layers have the same community
structures. Similar to layer aggregation method [11], the ref-
erence model assumes that nodes in two layers have highly
correlated community labels. Specifically, we modified our
probability model in Eq. (1) so that inter-layer interaction
becomes a pairwise probability function f(ti(l), ti(l′)) instead
of fcheck. f(ti(l), ti(l′)) = 0.9 if ti(l) = ti(l

′), and 0.1
otherwise. We also derived Belief Propagation equations for
the reference model. As the messages converge, the model
encourages consistent labels for the same node between two
layers.

We use a standard benchmark to test the performance of the
algorithm, i.e the community detectability. In order to compare
with single layer performance and a reference algorithm, we
test our algorithm on a double-layer network, where each
layer is generated from the same SBM, and we use the same
SBM to generate one layer to test single layer performance. A
test two-community network is generated as a single layer,
where intra-community connectivity pab = pin if a = b,
and inter-community connectivity pab = pout if a 6= b. Each
community has 100 nodes. The ratio ε = pout/pin controls the
quality of the generated community structure and is between
0 to 1. As ε increases, there is more association between
two communities, and it is harder to distinguish them. A
phase transition has been previously detected at a certain ε,
where community detection accuracy drops significantly and
communities become impossible to detect afterwards by any
algorithm [19], [20]. We can characterize the detectability by
the phase transition point.

The result is shown in Fig. 1. Using a double-layer setup,
our algorithm, as well as the reference one, achieves sig-
nificantly better detectability of the communities than single
layer. That means some undetectable communities in single
layers become detectable when considering both layers. Note
that our proposed model does not a-priorily assume that the
two layers are from the same SBM. Yet it still uncover
which communities are consistent while they are not detectable
individually. Thus our method has a comparable performance
as the reference model.

For a more general multiplex network case, we compare our
algorithm with a similar approach, GenLouvain [23], which is
popular for multiplex network community detection and is also
capable of identifying consistent communities across layers.
GenLouvain applies a multilayer modularity maximization
heuristics and has two main parameters, resolution parameter
γ and interlayer coupling ω. When ω is set to 0, each layer



Fig. 1. Detectability transition curves of single layer network, multiplex
network using our model, and a reference model. The reference model
assumes two layers are from the same SBM and they have correlated
community labels. Y axis shows overlap between detected community labels
and the ground truth, given by normalized agreement [19]. The results are
averaged over 20 experiments.

undergoes a community detection independently. When ω > 0,
same nodes in different layers may be assigned the same com-
munity labels. Since we assume no prior knowledge of con-
sistent communities across layers, we set a uniform interlayer
coupling parameter for all the nodes, which means all nodes
have equal chance to have consistent community labels across
layers. In contrast, our proposed algorithm similarly starts
with homogeneous (random) interlayer coupling (messages).
As messages update, our model effectively learns different
weights for the interlayer coupling (messages), according to
WPP constraints. Finally, for each node, our model will infer
the probability of having consistent community labels across
layers, in other words, strong couplings between consistent
communities and weak couplings between inconsistent ones.

In a different experiment, we design a partially consistent
two-layer network. The first layer has two communities (both
comprised of 100 nodes) and the second one has three (100, 50
and 50 nodes), while one consistent community (100 nodes)
exists in both layers. Therefore there are in total 4 different
communities. The ideal output is that nodes in the consistent
communities are assigned to the same community across lay-
ers, and the other inconsistent communities are also correctly
detected themselves. If most (>50%) nodes are assigned labels
in this ideal way, we consider the assignment correct. As
a result, our model is able to converge to the correct point
39 times out of 100 trials with different initializations, while
GenLouvain only achieves this 3 times. Note that GenLouvain
may detect communities correctly in each layer if γ is chosen
appropriately and interlayer coupling ω = 0, but then the
consistent communities will not be identified. On the contrary,
if ω > 0, GenLouvain has the problem of incorrectly assigning
different communities the same label. The essential issue is
that nodes should not have the same and constant interlayer
coupling. This result demonstrates the problem we aim to solve

here and the advantage of our model.

VI. CONCLUSION

In this paper we introduced a principled generative model
for community structure in generic multiplex networks, with
the constraint that a community label is associated with a
consistent set of nodes if it appears in different layers. To keep
the problem tractable, we also assume a node belongs to one
community in each layer. Given the correct number of com-
munities, the model is able to identify consistent communities
across layers, and improve the community detectability. We
derived message passing expressions using Belief Propagation
to solve the probability model. Numerical experiments show
our model achieves similar detectability improvement as a
reference model which includes the prior knowledge that the
layers are from the same SBM. This means that we need less
information than knowing SBM consistency to yield the same
performance. In contrast to previous studies which infer SBM
parameters independently in each layer and then identify layer
with the same SBM, our model unifies community detection
within each layer and consistent community identification
across layers into a single generative model. Moreover, rather
than seeking layers with exactly the same SBM, our model
allows two layers to have only part of their communities
consistent and still remain identifiable. Finally, we applied
our model to heterogeneous multiplex networks and compared
with a popular method GenLouvain. The results indicate our
model more reliably detects correct community labels. This
work provides a novel idea for information fusion given mild
prior knowledge. Since our algorithm detects block structures
on adjacency matrices, the potential application and further
study can be generalized to other fusion problems in the
presence of multiple matrices.
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