
Conquering the CNN Over-Parameterization Dilemma:
A Volterra Filtering Approach for Action Recognition

Siddharth Roheda, Hamid Krim
North Carolina State University at Raleigh, NC, USA

{sroheda, ahk}@ncsu.edu

Abstract

The importance of inference in Machine Learning (ML) has
led to an explosive number of different proposals in ML, and
particularly in Deep Learning. In an attempt to reduce the
complexity of Convolutional Neural Networks, we propose
a Volterra filter-inspired Network architecture. This architec-
ture introduces controlled non-linearities in the form of inter-
actions between the delayed input samples of data. We pro-
pose a cascaded implementation of Volterra Filtering so as
to significantly reduce the number of parameters required to
carry out the same classification task as that of a conventional
Neural Network. We demonstrate an efficient parallel imple-
mentation of this Volterra Neural Network (VNN), along with
its remarkable performance while retaining a relatively sim-
pler and potentially more tractable structure. Furthermore, we
show a rather sophisticated adaptation of this network to non-
linearly fuse the RGB (spatial) information and the Optical
Flow (temporal) information of a video sequence for action
recognition. The proposed approach is evaluated on UCF-101
and HMDB-51 datasets for action recognition, and is shown
to outperform state of the art CNN approaches.

1 Introduction
Human action recognition is an important research topic
in Computer Vision, and can be used towards surveillance,
video retrieval, and man-machine interaction to name a few.
The survey on Action Recognition approaches (Kong and
Fu 2018) provides a good progress overview. Video clas-
sification usually involves three stages (Wang et al. 2009;
Liu, Luo, and Shah 2009; Niebles, Chen, and Fei-Fei 2010;
Sivic and Zisserman 2003; Karpathy et al. 2014), namely,
visual feature extraction (local features like Histograms
of Oriented Gradients (HoG) (Dalal and Triggs 2005),
or global features like Hue, Saturation, etc.), feature fu-
sion/concatenation, and lastly classification. In (Yi, Krim,
and Norris 2011), an intrinsic stochastic modeling of hu-
man activity on a shape manifold is proposed and an ac-
curate analysis of the non-linear feature space of activity
models is provided. The emergence of Convolutional Neu-
ral Networks (CNNs) (LeCun et al. 1998), along with the

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

availability of large training datasets and computational re-
sources have come a long way to obtaining the various steps
by a single neural network. This approach has led to re-
markable progress in action recognition in video sequences,
as well as in other vision applications like object detec-
tion (Sermanet et al. 2013), scene labeling (Farabet et al.
2012), image generation (Goodfellow et al. 2014), image
translation (Isola et al. 2017), information distillation (Ro-
heda et al. 2018b; Hoffman, Gupta, and Darrell 2016), etc. In
the Action Recognition domain, datasets like the UCF-101
(Soomro, Zamir, and Shah 2012), Kinetics (Kay et al. 2017),
HMDB-51 (Kuehne et al. 2011), and Sports-1M (Karpa-
thy et al. 2014) have served as benchmarks for evaluating
various solution performances. In action recognition appli-
cations the proposed CNN solutions generally align along
two themes: 1. One Stream CNN (only use either spatial
or temporal information), 2. Two Stream CNN (integrate
both spatial and temporal information). Many implemen-
tations (Carreira and Zisserman 2017; Diba, Sharma, and
Van Gool 2017; Feichtenhofer, Pinz, and Zisserman 2016;
Simonyan and Zisserman 2014) have shown that integrat-
ing both streams leads to a significant boost in recogni-
tion performance. In Deep Temporal Linear Encoding (Diba,
Sharma, and Van Gool 2017), the authors propose to use 2D
CNNs (pre-trained on ImageNet (Deng et al. 2009)) to ex-
tract features from RGB frames (spatial information) and the
associated optical flow (temporal information). The video
is first divided into smaller segments for feature extraction
via 2D CNNs. The extracted features are subsequently com-
bined into a single feature map via a bilinear model. This
approach, when using both streams, is shown to achieve a
95.6 % accuracy on the UCF-101 dataset, while only achiev-
ing 86.3 % when only relying on the RGB stream. Carreira
et al. (Carreira and Zisserman 2017) adopt the GoogLeNet
architecture which was developed for image classification in
ImageNet (Deng et al. 2009), and use 3D convolutions (in-
stead of 2D ones) to classify videos. This implementation is
referred to as the Inflated 3D CNN (I3D), and is shown to
achieve a performance of 88.8 % on UCF-101 when trained
from scratch, while achieving a 98.0 % accuracy when a
larger dataset (Kinetics) was used for pre-training the en-
tire network (except for the classification layer). While these

approaches achieve near perfect classification, the models
are extremely heavy to train, and have a tremendous num-
ber of parameters (25M in I3D, 22.6M in Deep Tempo-
ral Linear Encoding). This in addition, makes the analy-
sis, including the necessary degree of non-linearity, diffi-
cult to understand, and the tractability elusive. In this paper
we explore the idea of introducing controlled non-linearities
through interactions between delayed samples of a time se-
ries. We will build on the formulations of the widely known
Volterra Series (Volterra 2005) to accomplish this task.
While prior attempts to introduce non-linearity based on
the Volterra Filter have been proposed (Kumar et al. 2011;
Zoumpourlis et al. 2017) , most have limited the develop-
ment up to a quadratic form on account of the explosive
number of parameters required to learn higher order com-
plexity structure. While quadratic non-linearity is sufficient
for some applications (eg. system identification), it is highly
inadequate to capture all the non-linear information present
in videos.

Contributions: In this paper, we propose a Volterra Filter
(Volterra 2005) based architecture where the non-linearities
are introduced via the system response functions and hence
by controlled interactions between delayed frames of the
video. The overall model is updated on the basis of a cross-
entropy loss of the labels resulting from a linear classifier
of the generated features. An efficiently cascaded imple-
mentation of a Volterra Filter is used in order to explore
higher order terms while avoiding over-parameterization.
The Volterra filter principle is also exploited to combine the
RGB and the Optical Flow streams for action recognition,
hence yielding a performance driven non-linear fusion of the
two streams. We further show that the number of parame-
ters required to realize such a model is significantly lower in
comparison to a conventional CNN, hence leading to faster
training and significant reduction of the required resources
to learn, store, or implement such a model.

2 Background and Related Work
2.1 Volterra Series
The physical notion of a system is that of a black box with
an input/output relationship yt/xt. If a non-linear system is
time invariant, the relation between the output and input can
be expressed in the following form (Volterra 2005; Schetzen
1980),

yt =

L−1∑
τ1=0

W 1
τ1xt−τ1 +

L−1∑
τ1,τ2=0

W 2
τ1,τ2xt−τ1xt−τ2

+ ...+

L−1∑
τ1,τ2,...,τK=0

WK
τ1,τ2,...,τKxt−τ1xt−τ2 ...xt−τK ,

(1)

where L is the number of terms in the filter memory (also
referred to as the filter length), W k are the weights for the
kth order term, and W k

τ1,τ2,...,τk
= 0, for any τj < 0,

j = 1, 2, ..., k, ∀k = 1, 2, ...,K due to causality. This
functional form is due to the mathematician Vito Volterra
(Volterra 2005), and is widely referred to as the Volterra

Figure 1: Adaptive Volterra Filter

Series. The calculation of the kernels is a computationally
complex problem, and a Kth order filter of length L, entails
solving LK equations. The corresponding adaptive weights
are a result of a target energy functional whose minimization
iteratively adapts the filter taps as shown in Figure 1.

It is worth observing from Equation 1 that the linear term
is actually similar to a convolutional layer in CNNs. Non-
linearities in CNNs are introduced only via activation func-
tions, and not in the convolutional layer, while in Equation
1 we will introduce non-linearities via higher order convolu-
tions.

2.2 Nested Volterra Filter
In (Osowski and Quang 1994), a nested reformulation of
Equation 1 was used in order to construct a feedforward im-
plementation of the Volterra Filter,

yt =

L−1∑
τ1=0

xt−τ1

[
W 1

τ1 +

L−1∑
τ2=0

xt−τ2

[
W 2

τ1,τ2

+

L−1∑
τ3=0

xt−τ3 [W
3
τ1,τ2,τ3 + ...]

]]
.

(2)

Each factor contained in the brackets can be interpreted as
the output of a linear Finite Impulse Response (FIR) filter,
thus allowing a layered representation of the Filter. A nested
filter implementation with L = 2 and K = 2 is shown in
Figure 2. The length of the filter is increased by adding mod-
ules in parallel, while the order is increased by additional
layers. Much like any multi-layer network, the weights of
the synthesized filter are updated layer after layer accord-
ing to a backpropogation scheme. The nested structure of
the Volterra Filter, yields much faster learning in compari-
son to that based on Equation 1. It, however, does not reduce
the number of parameters to be learned, leading to potential
over-parameterization when learning higher order filter ap-
proximations. Such a structure was used for a system iden-
tification problem in (Osowski and Quang 1994). The mean
square error between the desired signal (dt) and the output
of the filter (yt) was used as the cost functional to be mini-
mized,

Et =
1

2
(dt − yt)2, (3)

Figure 2: Nested Volterra Filter

and the weights for the kth layer are updated per the follow-
ing equations,

W k
τ1,τ2,...,τk

(t+ 1) = W k
τ1,τ2,...,τk

(t)− η ∂Et
∂W k

τ1,τ2,...,τk

,

(4)
∂Et

∂W k
τ1,τ2,...,τk

= xt−τkxt−τk−1
...xt−τ1(yt − dt). (5)

2.3 Bilinear Convolution Neural Networks
There has been work on introducing 2nd order non-
linearities in the network by using a bi-linear operation on
the features extracted by convolutional networks. Bilinear-
CNNs (B-CNNs) were introduced in (Lin, RoyChowdhury,
and Maji 2015) and were used for image classification. In B-
CNNs, a bilinear mapping is applied to the final features ex-
tracted by linear convolutions leading to 2nd order features
which are not localized. As a result a feature extracted from
the lower right corner of a frame in the B-CNN case, may
interact with a feature from the upper right corner, and these
two are not necessarily related (hence introducing erroneous
additional characteristics), and this is in contrast to our pro-
posed approach which highly controls such effects. Compact
Bilinear Pooling was introduced in (Gao et al. 2016) where
a bilinear approach to reduce feature dimensions was intro-
duced. This was again performed after all the features had
been extracted via linear convolutions and was limited to
quadratic non-linearities. In our work we will explore non-
linearities of much higher orders and also account for conti-
nuity of information between video frames for a given time
period with the immediately preceding period. This effec-
tively achieves a Recurrent Network-like property which ac-
counts for a temporal relationship.

3 Problem Statement
Let a set of actions A = {a1, ..., aI}, be of interest fol-
lowing a observed sequence of frames XT×H×W , where
T is the total number of frames, and H and W are the
height and width of a frame. At time t, the features Ft =

g(X[t−L+1:t]), will be used for classification of the se-
quence of frames X[t−L+1:t] and mapped into one of the
actions in A, where L is the number of frames in the mem-
ory of the system/process. A linear classifier with weights
W cl = {wcl

i }i=1,...,I , and biases bcl = {bcli }i=1,...,I will
then be central to determining the classification scores for
each action, followed by a soft-max function (ρ(.)) to con-
vert the scores into a probability measure. The probability
that the sequence of frames are associated to the ith action
class is hence the result of,

Pt(ai) = ρ(wclT

i .Ft + bcli) =
exp(wclT

i .Ft + bcli)∑I
m=1 exp(w

clT
m .Ft + bclm)

.

(6)

4 Proposed Solution
4.1 Volterra Filter based Classification
In our approach we propose a Volterra Filter structure to ap-
proximate a function g(.). Given that video data is of interest
here, a spatio-temporal Volterra Filter must be applied. As a
result, this 3D version of the Volterra Filter discussed in Sec-
tion 2 is used to extract the features,

F[t
s1
s2

] = g

X[
t−L+1:t

s1−p1:s1+p1
s2−p2:s2+p2

]
 =

∑
τ1,σ11,σ21

W 1[τ1
σ11
σ21

]x[t−τ1
s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21
τ2,σ12,σ22

W 2[τ1
σ11
σ21

][τ2
σ12
σ22

]x[t−τ1
s1−σ11
s2−σ21

]x[t−τ2
s1−σ12
s2−σ22

] + ... (7)

where, τj ∈ [0, L − 1], σ1j ∈ [−p1, p1], and σ2j ∈
[−p2, p2]. Following this formulation, and as discussed in
Section 3, the linear classifier is used to determine the prob-
ability of each action in A. Updating the filter parameters
is pursued by minimizing some measure of discrepancy rel-
ative to the ground truth and the probability determined by
the model. Our adopted measure herein is the cross-entropy
loss computed as,

E =
∑
t,I

−dti logPt(ai), (8)

where, t ∈ {1, L + 1, 2L + 1, ..., T}, i ∈ {1, 2, ..., I}, and
dti is the ground truth label for X[t−L+1:t] belonging to the
ith action class. In addition to minimizing the error, we also
include a weight decay in order to ensure generalizability of
the model by penalizing large weights. So, the overall cost
functional which serves as a target metric is written as,

min
g

∑
t,I

−dti log ρ(wclT

i .g(X[t−L+1:t]) + bcli)

+
λ

2

[
K∑
k=1

∥∥W k
∥∥2
2
+
∥∥W cl

∥∥2
2

]
,

(9)

where ρ is the soft-max function, and K is the order of the
filter.

Figure 3: Block diagram for an Overlapping Volterra Neural Network

4.2 Non-Linearity Enhancement: Cascaded
Volterra Filters

A major challenge in learning the afore-mentioned architec-
ture arises when higher order non-linearities are sought. The
number of required parameters for a Kth order filter is,

K∑
k=1

(L.[2p1 + 1].[2p2 + 1])k. (10)

This complexity increases exponentially when the order is
increased, thus making a higher order (> 3) Volterra Filter
implementation impractical. To alleviate this limitation, we
use a cascade of 2nd order Volterra Filters, wherein, the sec-
ond order filter is repeatedly applied until the desired order
is attained. AKth order filter is realized by applying the 2nd

order filter Z times, where, K = 22(Z−1). If the length of
the first filter in the cascade isL1, the input video X[t−L+1:t]

can be viewed as a concatenation of a set of shorter videos,

X[tL:t] =

[
X[tL:tL+L1] X[tL+L1:tL+2L1]

...X[tL+(M1−1)L1:tL+M1L1]

]
,

(11)

whereM1 = L
L1

, and tL = t−L+1. Now, a 2nd order filter
g1(.) applied on each of the sub-videos leads to the features,

F 1
t[1:M1]

=

[
g1(X[tL:tL+L1]) g1(X[tL+L1:tL+2L1])

...g1(X[tL+(M1−1)L1:tL+M1L1])

]
.

(12)

A second filter g2(.) of length L2 is then applied to the out-
put of the first filter,

F 2
t[1:M2]

=

[
g2(F

1
t[1:L2]

) g2(F
1
t[L2+1:2L2]

)

...g2(F
1
t[(M2−1)L2+1:(M2L2)]

)

]
,

(13)

where, M2 = M1

L2
. Note that the features in the second

layer are generated by taking quadratic interactions between
those generated by the first layer, hence, leading to 4th order
terms.

Finally, for a cascade of Z filters, the final set of features
is obtained as,

FZt[1:MZ]
=

[
gZ(F

Z−1
t[1:LZ]

) gZ(F
Z−1
t[LZ+1:2LZ]

)

...gZ(F
Z−1
t[(MZ−1)LZ+1:(MZLZ)]

)

]
,

(14)

where, MZ = MZ−1

LZ
.

Note that these filters can also be implemented in an over-
lapping fashion leading to the following features for the zth
layer, z ∈ {1, ...,Z},

F z
t[1:Mz]

=

[
gz(F

z−1
t[1:Lz]

) gz(F
z−1
t[2:Lz+1]

)

...gz(F
z−1
t[(Mz−1)−Lz+1:Mz−1]

)

]
,

(15)

where Mz = Mz−1 − Lz + 1. The implementation of an
Overlapping Volterra Neural Network (O-VNN) to find the
corresponding feature maps for an input video is shown in
Figure 3.

Proposition 1. The complexity of a Kth order cascaded
Volterra filter will consist of,

Z∑
z=1

[
(Lz.[2p1z + 1].[2p2z + 1])

+ (Lz.[2p1z + 1].[2p2z + 1])2
]

(16)

parameters.

Proof. For a 2nd order filter (K = 2), the number of pa-

rameters required is
[
(L.[2p1 + 1].[2p2 + 1]) + (L.[2p1 +

1].[2p2 + 1])2
]

(from equation 10). When such a filter is re-

peatedly applied Z times, it will lead to
∑Z
z=1

[
(Lz.[2p1z +

1].[2p2z +1])+(Lz.[2p1z +1].[2p2z +1])2
]

parameters with

order K = 22(Z−1).

Furthermore, if a multi-channel input/output is consid-
ered, the number of parameters is,

Z∑
z=1

(nz−1ch .nzch)

[
(Lz.[2p1z + 1].[2p2z + 1])

+ (Lz.[2p1z + 1].[2p2z + 1])2
]
, (17)

where nzch is the number of channels in the output of the zth
layer.

4.3 System Stability
The discussed system can be shown to be stable when the
input is bounded, i.e. the system is Bounded Input Bounded
Output (BIBO) stable.
Proposition 2. An O-VNN with Z layers is BIBO stable if
∀z ∈ {1, ...,Z},

∑
τ1,σ11,σ21

∣∣∣∣∣∣W z1[τ1
σ11
σ21

]
∣∣∣∣∣∣+

∑
τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[τ1
σ11
σ21

][τ2
σ12
σ22

]
∣∣∣∣∣∣ <∞. (18)

Proof. Consider the zth layer in the Cascaded implementa-
tion of the Volterra Filter,

F z
[1:Mz]

=

[
gz(F

z−1
t[1:Lz]

) gz(F
z−1
t[2:Lz+1]

)

...gz(F
z−1
t[(Mz−1)−Lz+1:(Mz−1)]

)

]
,

(19)

where, Mz =
Mz−1

Lz . Then for mz ∈ {1, ...,Mz},∣∣∣∣∣∣F z[mz
s1
s2

]
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣gz
F z−1[

mz−1−Lz+1:mz
s1−p1:s1+p1
s2−p2:s2:p2

]

∣∣∣∣∣∣∣ (20)

=

∣∣∣∣∣ ∑
τ1,σ11,σ21

W z1[τ1
σ11
σ21

]fz−1[
(Lz+mz−1)−τ1

s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21
τ2,σ12,σ22

W z2[τ1
σ11
σ21

][τ2
σ12
σ22

]fz−1[
(Lz+mz−1)−τ1

s1−σ11
s2−σ21

]fz−1[
(Lz+mz−1)−τ2

s1−σ12
s2−σ22

]
∣∣∣∣∣

(21)

≤
∑

τ1,σ11,σ21

∣∣∣∣∣∣W z1[τ1
σ11
σ21

]
∣∣∣∣∣∣
∣∣∣∣∣∣∣fz−1[

(Lz+mz−1)−τ1
s1−σ11
s2−σ21

]
∣∣∣∣∣∣∣

+
∑

τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[τ1
σ11
σ21

][τ2
σ12
σ22

]
∣∣∣∣∣∣
∣∣∣∣∣∣∣fz−1[

(Lz+mz−1)−τ1
s1−σ11
s2−σ21

]
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣fz−1[

(Lz+mz−1)−τ2
s1−σ12
s2−σ22

]
∣∣∣∣∣∣∣

(22)

≤ A
∑

τ1,σ11,σ21

∣∣∣∣∣∣W z1[τ1
σ11
σ21

]
∣∣∣∣∣∣+A2

∑
τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[τ1
σ11
σ21

][τ2
σ12
σ22

]
∣∣∣∣∣∣ . (23)

Note that Equation 23 states that a bounded input yields

∑
τ1,σ11,σ21

∣∣∣∣∣∣∣fz−1[
(Lz+mz−1)−τ1

s1−σ11
s2−σ21

]
∣∣∣∣∣∣∣ ≤ A, for some A < ∞.

Hence, the sufficient condition for the system to be BIBO
stable is,∑
τ1,σ11,σ21

∣∣∣∣∣∣W z1[τ1
σ11
σ21

]
∣∣∣∣∣∣+

∑
τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[τ1
σ11
σ21

][τ2
σ12
σ22

]
∣∣∣∣∣∣ <∞. (24)

If the input data (i.e. video frames) is bounded, so is the
output of each layer provided that Equation 24 is satisfied
∀z ∈ {1, ..., Z}, making the entire system BIBO stable.

4.4 Synthesis and Implementation of Volterra
Kernels

As noted earlier, the linear kernel (1st order) of the Volterra
filter is similar to the convolutional layer in the conventional
CNNs. As a result, it can be easily implemented using the
3D convolution function in Tensorflow (Abadi et al. 2016).
The second order kernel may be approximated as a product
of two 3-dimensional matrices (i.e. a seperable operator),

W 2
L×P1×P2×L×P1×P2

=

Q∑
q=1

W 2
aqL×P1×P2×1

W 2
bq1×L×P1×P2

,

(25)
where, P1 = 2p1 + 1, and P2 = 2p2 + 1. Taking account of
Equation 7 yields,

g

X[
t−L+1:t

s1−p1:s1+p1
s2−p2:s2+p2

]
 =

∑
τ1,σ11,σ21

W 1[τ1
σ11
σ21

]x[t−τ1
s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21
τ2,σ12,σ22

Q∑
q=1

W 2
aq[τ1

σ11
σ21

]W 2
bq[τ2
σ12
σ22

]x[t−τ1
s1−σ11
s2−σ21

]x[t−τ2
s1−σ12
s2−σ22

]
(26)

=
∑

τ1,σ11,σ21

W 1[τ1
σ11
σ21

]x[t−τ1
s1−σ11
s2−σ21

]

+

Q∑
q=1

∑
τ1,σ11,σ21
τ2,σ12,σ22

(
W 2

aq[τ1
σ11
σ21

]x[t−τ1
s1−σ11
s2−σ21

])(W 2
bq[τ2
σ12
σ22

]x[t−τ2
s1−σ12
s2−σ22

]).
(27)

A larger Q will provide a better approximation of the 2nd

order kernel. The advantage of this class of approximation
is two-fold. Firstly, the number of parameters can be further
reduced, if for the zth layer, (Lz.[2p1z + 1].[2p2z + 1])2 >
2Q(Lz.[2p1z + 1].[2p2z + 1]). The trade-off between per-
formance and available computational resources must be ac-
counted for when opting for such an approximation. Addi-
tionally, this makes it easier to implement the higher order
kernels in Tensorflow (Abadi et al. 2016) by using the built
in convolutional operator.

The approximate quadratic layers in the Cascaded
Volterra Filter (see Figure 3) yield the following number of
parameters,

Z∑
z=1

[
(Lz.[2p1z + 1].[2p2z + 1])

+ 2Q(Lz.[2p1z + 1].[2p2z + 1])

]
. (28)

We will evaluate and compare both approaches when im-
plementing the second order kernel (i.e. approximation and
exact method) in Section 5.

4.5 Two-Stream Volterra Networks
Most previous studies in action recognition in videos have
noted the importance of using both the spatial and the tem-
poral information for an improved recognition accuracy. As
a result, we also propose the use of Volterra filtering in com-
bining the two information streams, exploring a potential
non-linear relationship between them. In Section 5 we will
see that this actually boosts the performance, thereby indi-
cating some non-linear relation between the two information
streams. Independent Cascaded Volterra Filters are first used
in order to extract features from each modality,

FZ
RGB

[1:MZ]
= gRGBZ (...gRGB2 (gRGB1 (XRGB

[t−L+1:t]))) (29)

FZ
OF

[1:MZ]
= gOFZ (...gOF2 (gOF1 (XOF

[t−L+1:t]))). (30)

Upon gleaning features from the two streams, an additional
Volterra Filter is solely used for combining the generated
feature maps from both modalities,

F
(RGB+OF)
t =

∑
τ1,σ11,σ21,u1

W 1[τ1
σ11
σ21
u1

]fZu1[
MZ−τ1
s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21,u1
τ2,σ12,σ22,u2

W 2[τ1
σ11
σ21

][τ2
σ12
σ22

]fZu1[
MZ−τ1
s1−σ11
s2−σ21

]fZu2[
MZ−τ2
s1−σ12
s2−σ22

], (31)

where τj ∈ [0, LZ+1], σ1j ∈ [−p1, p1], σ2j ∈ [−p2, p2],
and uj ∈ [RGB,OF]. Figure 6-(c) shows the block diagram
for fusing the two information streams.

5 Experiments and Results
We proceed to evaluate the performance of this approach on
two action recognition datasets, namely, UCF-101 (Soomro,
Zamir, and Shah 2012) and HMDB-51 (Kuehne et al. 2011),
and the comparison of the results with recent state of the art
implementations is given in Tables 1 and 2. Table 1 shows
the comparison with techniques that only exploit the RGB
stream, while Table 2 shows the comparison when both in-
formation streams are used. Note that our comparable per-
formance to the state of the art is achieved with a signifi-
cantly lower number of parameters (see Table 4). Further-
more, a significant boost in performance is achieved by al-
lowing non-linear interaction between the two information
streams. The Optical Flow is computed using the TV-L1 al-
gorithm (Zach, Pock, and Bischof 2007). Note that we train
the network from scratch on both datasets, and do not use a
larger dataset for pre-training, in contrast to some of the pre-
vious implementations. The implementations that take ad-
vantage of a different dataset for pre-training are indicated
by a ‘Y’ in the pre-training column, while those that do not,
are indicated by ‘N’. When training from scratch the pro-
posed solution is able to achieve best performance for both
scenarios: one stream networks (RGB frames only) and two-
stream networks (RGB frames & Optical Flow). To fuse the
two information streams (spatial and temporal), we evaluate
the following techniques:

1. Decision Level Fusion (Figure 6-(a)): The decision prob-
abilities PRGBt (ai) and POFt (ai) are independently com-
puted and are combined to determine the fused proba-
bility P ft (ai) using (a) Weighted Averaging: P ft (ai) =
βRGBPRGBt (ai)+β

OFPOFt (ai), where βRGB+βOF =
1, which control the importance/contribution of the RGB
and Optical Flow streams towards making a final deci-
sion, or (b) Event Driven Fusion (Roheda et al. 2018a;
2019): P ft (ai) = γPMAX MI

t (aRGBi , aOFi) + (1 −
γ)PMIN MI

t (aRGBi , aOFi), where γ is a pseudo measure
of correlation between the two information streams,
PMAX MI
t (.) is the joint distribution with maximal mutual

information, and PMIN MI
t (.) is the joint distribution with

minimal mutual information.
2. Feature Level Fusion: Features are extracted from each

stream independently, and are subsequently merged be-
fore making a decision. For this level of fusion we con-
sider a simple Feature Concatenation (see Figure 6-(b)),
and Two-Stream Volterra Filtering (see Section 4.5, Fig-
ure 6-(c)).

Figure 4: (a): Input Video, (b): Features extracted by only
RGB stream, (c): Features extracted by Two-Stream Volterra
Filtering

Figure 5: (a): Input Video, (b): Features extracted by only
RGB stream, (c): Features extracted by Two-Stream Volterra
Filtering

The techniques are summarized in Figure 6. In our imple-
mentation we use an O-VNN with 8 layers on both the RGB
stream and the optical stream. Each layer uses Lz = 2 and

(a) (b) (c)

Figure 6: (a): Decision Level Fusion, (b): Feature Concatenation, (c): Two-Stream Volterra Filtering

Method Pre-Training
Avg

Accuracy
UCF-101

Avg
Accuracy
HMDB-51

Slow Fusion (Karpathy et al. 2014) Y (Sports-1M) 64.1 % -
Deep Temporal Linear Encoding Networks (Diba,

Sharma, and Van Gool 2017) Y (Sports-1M) 86.3 % 60.3 %

Inflated 3D CNN (Carreira and Zisserman 2017) Y (ImageNet + Kinetics) 95.1 % 74.3 %
Soomro et al, 2012 N 43.9 % -

Single Frame CNN (Karpathy et al. 2014;
Krizhevsky, Sutskever, and Hinton 2012) N 36.9 % -

Slow Fusion (Karpathy et al.; Baccouche et al.; Ji et al.) N 41.3 % -
3D-ConvNet (Carreira and Zisserman 2017;

Tran et al. 2015) N 51.6 % 24.3 %

Volterra Filter N 38.19 % 18.76 %
O-VNN (exact) N 58.73 % 29.33 %
O-VNN (Q=7) N 53.77 % 25.76 %

Table 1: Performance Evaluation for one stream networks (RGB only): The proposed algorithm achieves best performance
when trained from scratch

Method Pre-Training
Avg

Accuracy
UCF-101

Avg
Accuracy
HMDB-51

Two-Stream CNNs (Simonyan and Zisserman
2014) Y (ILSVRC-2012) 88.0 % 72.7 %

Deep Temporal Linear Encoding Networks (Diba,
Sharma, and Van Gool 2017) Y (BN-Inception + ImageNet) 95.6 % 71.1 %

Two Stream Inflated 3D CNN (Carreira and
Zisserman 2017) Y (ImageNet + Kinetics) 98.0 % 80.9 %

Two-Stream O-VNN (Q=15) Y (Kinetics) 98.49 % 82.63 %
Two Stream Inflated 3D CNN (Carreira and

Zisserman 2017) N 88.8 % 62.2 %

Weighted Averaging: O-VNN (exact) N 85.79 % 59.13 %
Weighted Averaging: O-VNN (Q=7) N 81.53 % 55.67 %
Event Driven Fusion: O-VNN (exact) N 85.21 % 60.36 %
Event Driven Fusion: O-VNN (Q=7) N 80.37 % 57.89 %

Feature Concatenation: O-VNN (exact) N 82.31 % 55.88 %
Feature Concatenation: O-VNN (Q=7) N 78.79 % 51.08 %

Two-Stream O-VNN (exact) N 90.28 % 65.61 %
Two-Stream O-VNN (Q=7) N 86.16 % 62.45 %

Table 2: Performance Evaluation for two stream networks (RGB & Optical Flow): The proposed algorithm achieves best
performance on both datasets.

p1z , p2z ∈ {0, 1, 2}. The outputs of the two filters are fed
into the fusion layer which combines the two streams. The
fusion layer uses LFuse = 2 and p1Fuse , p2Fuse ∈ {0, 1, 2}. It is
clear from Table 2 that performing fusion using Volterra Fil-
ters significantly boosts the performance of the system. This
shows that there does exist a non-linear relationship between
the two modalities. This can also be confirmed from the fact
that we can see significant values in the weights for the fu-
sion layer (see Table 3). Figures 4 and 5 show one of the

u = RGB u = OF u = Fusion
1
2‖W

u‖22 352.15 241.2 341.3

Table 3: Norm of W u, where u ∈ [RGB,OF, Fusion].

Figure 7: Epochs vs Loss for various number of multipliers
for a Cascaded Volterra Filter

feature maps for an archery video and a fencing video. From
Figures 4, 5-(b),(c) it can be seen that when only the RGB
stream is used, a lot of the background area has high values,
while on the other hand, when both streams are jointly used,
the system is able to concentrate on more relevant features.
In 4-(c), the system is seen to concentrate on the bow and
arrow which are central to recognizing the action, while in
5-(c) the system is seen to concentrate on the pose of the hu-
man which is central to identifying a fencing action. Figure
7 shows the Epochs vs Loss graph for a Cascaded Volterra
Filter when a different number of multipliers (Q) are used
to approximate the 2nd order kernel. The green plot shows
the loss when the exact kernel is learned, and it can be seen
that the performance comes closer to the exact kernel as Q
is increased.

6 Conclusion
We proposed a novel network architecture for recognition
of actions in videos, where the non-linearities were intro-
duced by the Volterra Series Formulation. We propose a Cas-
caded Volterra Filter which leads to a significant reduction

Method Number of
Parameters

Processing
Speed

(secs/video)
Deep Temporal Linear Encoding 22.6M -

Inflated 3D CNN 25M 3.52
O-VNN (exact) 4.6M 0.73
O-VNN (Q=7) 3.7M 0.61

Two-Stream O-VNN (exact) 10.1M 1.88
Two-Stream O-VNN (Q=7) 8.2M 1.54
Two-Stream O-VNN (Q=1) 2.5M 0.34

Table 4: Comparison of number of parameters required and
processing speed with the state of the art. A video with 60
frames is evaluated

in parameters while exploring the same complexity of non-
linearities in the data. Such a Cascaded Volterra Filter was
also shown to be a BIBO stable system. In addition, we also
proposed the use of the Volterra Filter to fuse the spatial and
temporal streams, hence leading to a non-linear fusion of the
two streams. The network architecture inspired by Volterra
Filters achieves performance accuracies which are compara-
ble to the state of the art approaches while using a fraction
of the number of parameters used by them. This makes such
an architecture very attractive from a training point of view,
with an added advantage of reduced storage space to save
the model.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: A system for large-scale machine learn-
ing. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), 265–283.
Baccouche, M.; Mamalet, F.; Wolf, C.; Garcia, C.; and
Baskurt, A. 2011. Sequential deep learning for human action
recognition. In International workshop on human behavior
understanding, 29–39. Springer.
Carreira, J., and Zisserman, A. 2017. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 6299–6308.
Dalal, N., and Triggs, B. 2005. Histograms of oriented gra-
dients for human detection.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Diba, A.; Sharma, V.; and Van Gool, L. 2017. Deep temporal
linear encoding networks. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, 2329–
2338.
Farabet, C.; Couprie, C.; Najman, L.; and LeCun, Y. 2012.
Learning hierarchical features for scene labeling. IEEE
transactions on pattern analysis and machine intelligence
35(8):1915–1929.

Feichtenhofer, C.; Pinz, A.; and Zisserman, A. 2016. Convo-
lutional two-stream network fusion for video action recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 1933–1941.
Gao, Y.; Beijbom, O.; Zhang, N.; and Darrell, T. 2016. Com-
pact bilinear pooling. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 317–326.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Hoffman, J.; Gupta, S.; and Darrell, T. 2016. Learning with
side information through modality hallucination. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 826–834.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125–1134.
Ji, S.; Xu, W.; Yang, M.; and Yu, K. 2012. 3d convolu-
tional neural networks for human action recognition. IEEE
transactions on pattern analysis and machine intelligence
35(1):221–231.
Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Suk-
thankar, R.; and Fei-Fei, L. 2014. Large-scale video clas-
sification with convolutional neural networks. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern
Recognition, 1725–1732.
Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.;
Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev,
P.; et al. 2017. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950.
Kong, Y., and Fu, Y. 2018. Human action recognition and
prediction: A survey. arXiv preprint arXiv:1806.11230.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; and Serre,
T. 2011. Hmdb: a large video database for human motion
recognition. In 2011 International Conference on Computer
Vision, 2556–2563. IEEE.
Kumar, R.; Banerjee, A.; Vemuri, B. C.; and Pfister, H. 2011.
Trainable convolution filters and their application to face
recognition. IEEE transactions on pattern analysis and ma-
chine intelligence 34(7):1423–1436.
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; et al. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Lin, T.-Y.; RoyChowdhury, A.; and Maji, S. 2015. Bilin-
ear cnns for fine-grained visual recognition. arXiv preprint
arXiv:1504.07889.
Liu, J.; Luo, J.; and Shah, M. 2009. Recognizing realistic
actions from videos in the wild. Citeseer.
Niebles, J. C.; Chen, C.-W.; and Fei-Fei, L. 2010. Mod-
eling temporal structure of decomposable motion segments

for activity classification. In European conference on com-
puter vision, 392–405. Springer.
Osowski, S., and Quang, T. V. 1994. Multilayer neural net-
work structure as volterra filter. In Proceedings of IEEE In-
ternational Symposium on Circuits and Systems-ISCAS’94,
volume 6, 253–256. IEEE.
Roheda, S.; Krim, H.; Luo, Z.-Q.; and Wu, T. 2018a. De-
cision level fusion: An event driven approach. In 2018
26th European Signal Processing Conference (EUSIPCO),
2598–2602. IEEE.
Roheda, S.; Riggan, B. S.; Krim, H.; and Dai, L. 2018b.
Cross-modality distillation: A case for conditional gener-
ative adversarial networks. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2926–2930. IEEE.
Roheda, S.; Krim, H.; Luo, Z.-Q.; and Wu, T. 2019. Event
driven fusion. arXiv preprint arXiv:1904.11520.
Schetzen, M. 1980. The volterra and wiener theories of
nonlinear systems.
Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.;
and LeCun, Y. 2013. Overfeat: Integrated recognition, lo-
calization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229.
Simonyan, K., and Zisserman, A. 2014. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, 568–576.
Sivic, J., and Zisserman, A. 2003. Video google: A text re-
trieval approach to object matching in videos. In null, 1470.
IEEE.
Soomro, K.; Zamir, A. R.; and Shah, M. 2012. Ucf101:
A dataset of 101 human actions classes from videos in the
wild. arXiv preprint arXiv:1212.0402.
Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri,
M. 2015. Learning spatiotemporal features with 3d convo-
lutional networks. In Proceedings of the IEEE international
conference on computer vision, 4489–4497.
Volterra, V. 2005. Theory of functionals and of integral and
integro-differential equations. Courier Corporation.
Wang, H.; Ullah, M. M.; Klaser, A.; Laptev, I.; and Schmid,
C. 2009. Evaluation of local spatio-temporal features for
action recognition.
Yi, S.; Krim, H.; and Norris, L. K. 2011. Human activity
modeling as brownian motion on shape manifold. In Inter-
national Conference on Scale Space and Variational Meth-
ods in Computer Vision, 628–639. Springer.
Zach, C.; Pock, T.; and Bischof, H. 2007. A duality based
approach for realtime tv-l 1 optical flow. In Joint pattern
recognition symposium, 214–223. Springer.
Zoumpourlis, G.; Doumanoglou, A.; Vretos, N.; and Daras,
P. 2017. Non-linear convolution filters for cnn-based learn-
ing. In Proceedings of the IEEE International Conference
on Computer Vision, 4761–4769.

