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Abstract—We present a new sampling-based method for
planning optimal, collision-free, curvature-constrained paths
for nonholonomic robots to visit multiple goals in any order.
Rather than sampling configurations as in standard sampling-
based planners, we construct a roadmap by sampling circles
of constant curvature and then generating feasible transitions
between the sampled circles. We provide a closed-form formula
for connecting the sampled circles in 2D and generalize the
approach to 3D workspaces. We then formulate the multi-
goal planning problem as finding a minimum directed Steiner
tree over the roadmap. Since optimally solving the multi-goal
planning problem requires exponential time, we propose greedy
heuristics to efficiently compute a path that visits multiple goals.
We apply the planner in the context of medical needle steering
where the needle tip must reach multiple goals in soft tissue,
a common requirement for clinical procedures such as biop-
sies, drug delivery, and brachytherapy cancer treatment. We
demonstrate that our multi-goal planner significantly decreases
tissue that must be cut when compared to sequential execution
of single-goal plans.

I. INTRODUCTION

We consider a variant of nonholonomic motion planning in

which a robot, with motion subject to curvature constraints,

must visit a set of goals. The robot can visit these goals

in any order but must visit each goal at least once. This

problem arises in a variety of applications, such as a wheeled

personal assistant robot that must pick up multiple objects

from the floor, a mobile robot that must inspect a set of sites,

and a medical robot that must perform a biopsy at multiple

locations within a suspected tumor. It is also often important

to consider the optimality of computed motion plans in terms

of application-specific metrics such as minimizing distance

traveled by the robot, time taken to complete the task, or

tissue damage in a medical procedure.

The optimal multi-goal plan depends on the properties

of the nonholonomic robot and the objective function that

defines costs to be minimized. We consider distinct costs

for forward motion and for retracing a previously traversed

segment. If retracing a previously traversed segment is not

permitted (i.e. has infinite cost), then the optimal solution

takes the form of a curve in space. If retracing a path is

permitted, then the optimal solution takes the form of a

tree where the nonholonomic robot can move forward and

backward along segments of the tree. The algorithms we

propose uses a general cost metric that encompasses both of

these cases. We also allow the use of cost maps to associate

cost with every spatial location. As shown in Fig. 1, the plans
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Fig. 1. Multi-goal plans from point pS to goals pGk
computed using

our circle sampling approach. The objective is to minimize the length of
the path and costs associated with closeness to obstacles (grayscale values)
while assuming that retracing previously traversed locations does not incur
any cost (as is the case with steerable needles). (a) Plan found by computing
paths from pS to each goal independently. (b) Optimal plan found by solving
a directed Steiner tree problem (32% better than independent paths). (c) Plan
found by disallowing path retrace (18% better than independent paths).

produced by our multi-goal planner result in substantially

less cost than sequentially executing independent plans from

the start location to each goal.

We focus on the application to medical steerable needles, a

recently developed class of bevel-tip flexible needles that can

be steered along curved paths to reach previously inaccessi-

ble goal locations [25], [1]. The need to reach multiple goal

locations in soft tissue is a common requirement for clinical

needle-based procedures such as biopsies, drug deliveries

and brachytherapy cancer treatment. A naı̈ve solution would

be to sequentially execute many ab initio single goal plans,

which causes unnecessary trauma to the tissue. This can be

avoided by deploying a steerable needle to one of the goals,

partially retracting to a specified location within tissue, and

then steering the needle along a different path to reach a new

goal. This can be repeated until all the clinical goal locations

are reached. This model of needle insertion is equivalent to

the case in Fig. 1. It is reasonable to assume from a clinical

perspective that tissue is only cut when the needle is inserted

and not while it is being retracted. The planning objective in

this case is to limit tissue damage by minimizing the total

extent of tissue cut by the needle-tip (i.e. minimizing forward

movement distance) during the procedure.

Computing an optimal curvature-constrained path that

visits multiple goals is challenging because it combines

the problem of nonholonomic motion planning with the

problem of determining the order in which the goals should

be visited. Solving these problems to optimality with com-

pleteness guarantees requires computation time that grows

exponentially with the complexity of the environment and

the number of goals. The general problem of nonholonomic

motion planning with obstacles is known to be PSPACE hard



[13], while the goal ordering problem is equivalent to the

directed Steiner tree problem which is NP-complete [3].

We make two key contributions. First, we introduce a

new subpath-based sampling approach to compute curvature-

constrained paths that generalizes to both 2D and 3D en-

vironments. Instead of sampling points in the configuration

space and attempting to connect them, our method constructs

a roadmap by randomly sampling circles of bounded curva-

ture and generating feasible transitions between these circles.

The resulting roadmap is used to solve multi-goal queries by

computing a directed Steiner tree over the roadmap, which

is a minimum-cost tree rooted at the start configuration that

visits all the goals. Second, we introduce greedy heuristics

that reduce the exponential complexity of multi-goal plan-

ning and quickly compute approximate plans that work well

in practice. The computational complexity of the heuristics

is O(NG |E|+NG |V | log |V |), where NG is the number of

goals and V and E are the set of vertices and edges in the
roadmap, respectively.

We apply our method to compute curvature-constrained

paths in environments with obstacles. We present results in

2D as well as preliminary results in 3D. We demonstrate

that the proposed greedy heuristics converge to within 5%

of the optimal solution and offer significant improvements

as compared to the naı̈ve approach of sequentially executing

multiple single-goal plans.

II. RELATED WORK

Nonholonomic motion planning is a well-studied area in

robotics and related fields [4], [13]. Prior work has analyzed

optimal paths for curvature-constrained mobile robots using

a discrete set of canonical trajectories [6], [22], [9]. These

approaches have been extended to compute optimal paths

in workspaces with obstacles using graph search algorithms

on grid-based cost maps [15], [20]. These methods do not

scale well to higher dimensions and only ensure optimality

up to the chosen grid resolution. Other approaches compute

optimal paths using variational methods to solve a two-point

boundary value problem [12], [2]. Variational methods are

computationally expensive and may suffer from numerical

issues.

Sampling-based motion planning has become increasingly

popular in recent years [13]. Extensions to the probabilistic

roadmap planner (PRM) [11] and rapidly-exploring random

trees (RRT) algorithm [14] have been proposed to consider

nonholonomic robots with differential constraints. Instead of

sampling points in the configuration space and connecting

them like in PRMs or RRTs, our method samples feasible

subpaths in the configuration space by sampling circles

of bounded curvature and generating feasible transitions

between these circles. Our method is applicable to a wide

variety of robots with steering mechanisms and generalizes

to both 2D and 3D workspaces.

We focus on the application of steering flexible, bevel-tip

needles through tissue for clinical procedures such as biop-

sies and drug injections. These needles naturally follow paths

of constant curvature [25], which can also be varied using

duty-cycling [16]. Single-query motion planning for steerable

needles has been extensively studied for 2D workspaces [1]

and 3D workspaces [10], [7], [18], [19]. These methods do

not address optimal, multi-goal planning.

Often, a steerable needle has to reach multiple goals within

a region of interest such as a tumor. Multi-goal motion plan-

ning also arises in other domains such as wheeled personal

assistant robots picking up multiple objects off the floor

and industrial robots performing coordinate measurements

[24], site inspections [5], drilling [8] and spot-welding [23].

Once an appropriate roadmap is obtained, the multi-goal

planning problem is equivalent to the minimum directed

Steiner tree problem. Saha et al. [23] use an approximate

solution provided by Chekuri et al. [3] to solve the multi-goal

planning problem for a holonomic robot arm used for spot-

welding. Recently, Elinas [8] used genetic algorithms (GA)

in combination with a PRM planner to compute an approxi-

mate Hamiltonian tour for a car-like nonholonomic blasthole

drill for mining operations. In contrast, our approach allows

the robot to retrace configurations in the roadmap, as is the

case with needle steering applications. Our approach is easier

to implement and computationally efficient as compared to

the variational solver [12] used by Elinas [8] to construct

edges in the roadmap.

III. PROBLEM DEFINITION

We consider a nonholonomic robot modeled as a simple

car with a minimum turning radius r (equivalent to maximum
curvature κ = 1/r). This model is applicable to bevel-tip
steerable needles being controlled in an imaging plane [1].

We model the environment as a 2D domain with polygonal

obstacles. The robot’s configuration q is defined by its
position (x, y) and its orientation θ on the plane. The robot
is constrained to begin at a position pS at any orientation.

As the robot moves, it traces a path γ(t) : [0, T ] → R
2

parameterized by arc-length t ∈ [0, T ]. The curvature of the
path is bounded in magnitude by constant κ. As the robot
moves along γ(t), it accumulates costs f(γ(t)), where the
positive cost function f : R

2 → R∪{∞} is defined over the
2D environment. The cost metric is application specific and

can represent quantities such as distance traveled, clearance

from workspace obstacles, time taken to complete the task,

or extent of tissue damage. If the robot retraces a point γ(t)
in the domain, then it incurs cost g : R

2 → R ∪ {∞} in
subsequent instances, which may or may not be equal to f
depending on the application. The total cost J for a path γ
is hence:

J(γ) =

∫ T

0

{

f(γ(t)) if ∀t′ < t, γ(t) 6= γ(t′)
g(γ(t)) otherwise

}

dt

(1)

The path begins at pS , so γ(0) = pS . Depending on the

application, we may require that γ(T ) terminate at pS . The

objective is to compute a path γ that visits a set of NG goal

points pG1
, pG2

, . . . , pGNG
and minimizes J .

We note that the flexibility in defining f and g on a
problem-specific basis allows us to consider a wide variety

of applications. If our objective is to find the shortest path
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Fig. 2. Constructing a roadmap. (a) A set of sampled subpaths. (b)
Bridges and subpath segments joining them to form a roadmap. (c) Graphical
representation of the roadmap.

while avoiding obstacles, then we define the cost functions f
and g to have value 1 in the feasible space of the environment
and ∞ at regions occupied by the obstacles. Setting g = 0
corresponds to ignoring the cost of retracing a path. This

setting is particularly relevant to quantifying tissue damage

during needle steering since retraction of the needle does

not damage new tissue. This type of problem is illustrated

in Fig. 1 (b). Another variant of this problem corresponds to

setting g = ∞, which prohibits retracing previously traversed
subpaths. An example of such a plan is illustrated in Fig. 1

(c).

In keeping with the application of needle steering, for

simplicity of presentation we will assume throughout the rest

of the paper that forward motion incurs cost (f(x) = 1)
while retracing a path incurs no cost (g(x) = 0). However,
our formulation can be easily modified to account for any of

the previously mentioned conditions. Under our assumptions,

a needle can be deployed to one of the goals, retracted to a

specified location, and then deployed again along a different

path to reach a new goal. The process can be repeated

until all goals are reached. The total cost of the plan is the

total length that the needle was deployed (without counting

retractions).

In section IV, we consider the special case of NG = 1.
In section V, we generalize to any NG. We present results

in a 2D environment in section VI. We then extend our

formulation to the case of 3D environments and present

results in 3D in section VII.

IV. SINGLE GOAL PLANNING

A. General Framework

Sampling-based methods for path planning traditionally

take the approach of sampling the robot’s configuration space

and finding control sequences or local plans that connect

the sampled configurations. Instead of sampling points in

the configuration space, our approach is to sample feasible

subpaths and connect them.

We begin by sampling subpaths that satisfy the nonholo-

nomic constraints on the robot’s motion. Due to the curvature

constraint in our problem, we choose to sample circles of

radius 1/κ. Paths constructed with segments of constant
curvature can be used to approximate arbitrary paths with

bounded curvature. We then create a roadmap using a local

planner that connects subpaths together. Given subpaths z(i)

and z(j), we denote the bridge between i and j, z(ij), as

their connecting path. We note that our selection of circles

as subpaths is one of many options. Selecting subpaths with

0 time duration would correspond to single points in the
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Fig. 3. Finding the shortest path between points pS and pG by using the
roadmap from Fig. 2. (a) Circles passing through the start and goal locations
are added, and arc bridges connecting these new circles are found. (b) The
graph model with the new vertices and edges. (c) The shortest path in the
graph corresponds to a path in the physical space that satisfies the curvature
constraints.

configuration space and the constructed roadmap becomes

a traditional PRM. We show that by selecting full circles

as our subpaths, it is easier to find connections between the

subpaths and that a small number of subpaths will be needed

to yield a highly connected roadmap.

In this section, we discuss how to construct a roadmap

and demonstrate how to find an optimal path γ connecting
a start point pS to a goal point pG.

B. Constructing a Roadmap using Sampled Circles

We begin by sampling the centers of circles with radii

1/κ. Any random or pseudo-random sampling could be used;
our implementation uses a Halton sequence [13] in order to

obtain a disperse and uniform sampling of the 2D domain.

We assume that the robot’s motion through a circle C is in
the clockwise direction, as shown in Fig. 2 (a).

After sampling the circles, we must create bridges between

the circles. Given circles Ci and Cj we can find a circle

Cij tangential to them as long as the distance between their

centers is less than 4/κ. Note that in most cases there exist
two such connecting circles and we always choose the one

with the shortest length as the bridge z(ij). The subpaths

are now segments of the original sampled circles, and the

bridges are segments of the connecting circles, as shown in

Fig. 2 (b).

It is clear that given this construction, the paths in the

roadmap will satisfy the model constraints from Section III.

Note that the bridges define counter-clockwise paths that

are only capable of connecting clockwise subpaths. If we

consider counter-clockwise subpaths, these would not be

able to connect to their clockwise counterparts, which would

generate two disjoint roadmaps. Hence, it is important that

we only consider one consistent orientation for the subpaths.

The process is illustrated in Fig. 2 (b) in which bridges are

marked as dark circular segments and the segments of the

subpaths connecting them are marked as gray segments.

A graphical representation of the roadmap is obtained

by representing each bridge z(ij) as a vertex and subpath

segments joining them as directed edges as shown in Fig. 2

(c). We note that bridges and subpaths that intersect obstacles

are omitted from the graph.

C. Adding Start and Goal Points

Next, we solve for a path connecting a start point pS

to a goal point pG. The basic approach is to add vertices

vS and vG to the graphical representation and connect to

bridges whenever possible. We also consider the case where

the orientation of the path at pS and pG are variables that can



be optimized. In this case, we sample circles passing through

pS and pG at different allowed orientations. Then, we add

the vertices vS and vG, and any resulting bridge from the

newly sampled circles. Alternatively, we can enforce a given

orientation from the entry point by sampling a single circle

at the appropriate position.

This process is illustrated in Fig. 3 in which circles

z(4) and z(5) are added, and a new roadmap and graph

representation are computed.

D. Computing an Optimal Solution

Our objective is to compute a path that minimizes the

cost function J . We can transform this optimal path planning
problem into a graph problem using the roadmap constructed

above. The weights for the vertices and edges in our graph-

ical representation would correspond to the function f or
g integrated over the arc-length of the associated circular
segment. The vertices vS and vG receive a weight of 0. Once
this graph has been constructed, we can apply standard graph

shortest path algorithms to find the path with the lowest cost.

A simple example is illustrated in Fig. 3 (c).

As the number of sampled circles increases, the prob-

ability that this method returns a feasible solution when

one exists approaches 1 assuming that there exists a path

with ǫ clearance away from the obstacles. We can argue
this probabilistic completeness in the following manner.

Let γ′ be a path connecting two locations pS and pG in

the environment which satisfies our kinematic constraints.

Path γ′ must be formed by segments of circles at given

locations with alternating orientations of the arc. Let {oi}
be the collection of the centers of the circles with clockwise

orientation. Perturbing the path by small amounts (which

assumes that we have at least an ǫ clearance around the path)
will slide the points oi creating small neighborhoods around

them. We can form a path joining the points pS and pG

by sampling circles from these neighborhoods, which will

occur with increasing probability as the number of samples

increases due to our uniform sampling of the space.

V. MULTI-GOAL PLANNING

In this section we extend the result of the previous section

to search for paths starting at location pS and reaching

multiple goal points {pGk
}NG

k=1, where NG is the number

of goals.

The formulation of the problem for multiple goals is

similar to the single-goal case. A weighted graph can be

constructed in the same way as before. Our objective in this

case is to find a path rooted at vS such that the path visits

all of the goals and minimizes the sum of the costs of the

arcs visited.

The solution to this problem is the same as the solution

for the Steiner directed tree problem, which is defined as

finding the minimum cost directed tree rooted at vS and

spanning all of the goal vertices. Unfortunately, it is known

that the Steiner tree problem is NP-complete and several

approximation techniques are available in the literature [3].

Algorithm 1 Complete Algorithm

Require: A distance matrix D, a root vertex vS , a set of

goal vertices V = {v1, v2, · · · vN}.
1: Set the list of edges forming the tree T = ∅, and set the
length of the tree d = ∞.

2: if |V | = 1 then add (vS , v1) to T , set d = D(vS , v1)
and go to Step 11.

3: for all partitions of V into sets Va and Vb do

4: for all vertices v0 in the graph do

5: Get Ta and da from a recursive call to the algorithm

using D, v0 and Va as inputs.

6: Get Tb and db from a recursive call to the algorithm

using D, v0 and Vb as inputs.

7: Let d′ = da + db + D(vS , v0).
8: if d′ < d then set d = d′ and set T to be

{(vS , v0)} ∪ Ta ∪ Tb.

9: end for

10: end for

11: return T and d.

Algorithm 2 Shortest 1st Heuristic Algorithm

Require: A weighted graph W , a root vertex vS , a set of

goal vertices V = {v1, v2, · · · vN}.
1: Set the list of edges forming the tree T = ∅, and set the
length of the tree d = 0.

2: while |V | > 0 do
3: Choose the goal in V with the smallest cost from vS

using W . Let it be v0 with path P .
4: Add the cost of P to d.
5: Set T = T ∪ P and remove v0 from V .
6: Set the weight in W of every edge in P to 0.
7: end while

8: return T and d.

A complete solution to this problem can be obtained by

exploiting the fact that the solution has to be a tree. We

note that the solution must start from vertex vS as a single

path and then split into two paths (we account for a single

path splitting into n paths at a vertex by having n − 1 two-
way splits at the same vertex). Each split path will reach a

subset of the goals. These subsets form a partition. Each path

then splits again, and the process is repeated until there is a

single goal per path. The process is illustrated in Algorithm

1 in which we assume that D is a matrix storing the distance
between any pair of points in the graph. The tree is specified

by a collection of edges in D, where each edge represents
the shortest path between the corresponding vertices.

Given that there is a total of NG goals and Nv vertices in

the graph, there are 2NG−1−1 possible partitions of the goals
which yields a total of Nv(2NG−1 − 1) recursive iterations
in the first level. Since for every new level k of recursion the
algorithm will need less than Nv(2NG−k − 1) iterations, an
upper bound to the number of iterations for the algorithm is

(Nv(2NG−1 − 1))NG−1. Note that the complexity increases

dramatically with the number of goals.
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. The process can then be repeated to get to pG3
.

Due to the complexity of searching for the optimal solution

to our problem, we will consider several heuristics. In Algo-

rithm 2, we introduce the Shortest 1st heuristic that selects

paths to the goals by choosing the paths with the smallest

distance first. We also define the Longest 1st heuristic that

selects the longest distance path first. Note that both of these

approaches only require NG computations of the shortest

path in the graph, which yields a computational complexity

of O(NG |E|+NG |V | log |V |). We also introduce the Com-
binatorial heuristic in which we try all possible orderings

(instead of selecting the shortest or longest) and select the

ordering with the shortest length. Note that this approach

requires NG ! times more computations.

Since our solutions will be a directed tree rooted at vS ,

it is straightforward to determine how to execute a plan for

visiting the goal vertices. All that is required is to label all

vertices in the directed tree using a depth-first approach and

visit the goals in the order in which they appear by first

moving the robot to the first goal and then retracting until

the robot gets to the vertex from which it can branch off to

the next goal. The process is illustrated in Fig. 4. Using a

depth-search approach the goals are labeled from pG1
to pG3

.

After visiting the first goal, the robot retracts to the position

of vertex v2 and then moves to goal pG2
. The process is

repeated one more time by retracting to v1 and then moving

to goal pG3
.

VI. RESULTS

We analyze the performance of our approach to multi-goal

planning using the environments shown in Fig. 1 and Fig. 4.

We model the environment as a unit square. The minimum

permissible radius of curvature is set to 0.1 units. We add 4
tangential circles at the start point and each goal (as described

in Section IV).

In order to experimentally analyze the probabilistic com-

pleteness of our algorithm, we study the effect of the density

of the subpaths on the connectivity of the roadmap for the

environment in Fig. 4. To experimentally consider the effect

of different situations, we independently select points in each

experiment for the start and goal locations using a uniform

random distribution. Fig. 5 (left) illustrates the proportion

of times in which the algorithm was able to find a path

between arbitrary entry points and goals. Each point in the

plot is computed using 500 iterations of random sampling.
As observed in the plot, the probability of finding a path

using this approach quickly increases with the number of

sampled subpaths.

Fig. 5 (middle) and (right) show the dependence of the

number of bridges (vertices in the graph) and connections

between bridges (edges in the graph) on the number of

subpaths.

For the multi-goal planning problem, we compare the

performance of the Complete Algorithm 1 against the Short-

est 1st, Longest 1st, and Combinatorial heuristics. We also

compare against the Approximation algorithm proposed by

C. Chekuri et al. [3] by setting their approximation parameter

i = 3 (the higher the number the better the approximation
and the cost is proportional to nO(i) where n is the number
of vertices in the graph). Fig. 6 summaries our findings for

solving the multi-goal problem for 3 goals using the environ-
ment in Fig. 4. Here we also compare the methods against

computing plans independently for each goal and summing

their distances (labeled Independent). The comparison was

done by sampling 200 different configurations of initial and

goal locations. We stored the ratios of the total cost for

the different multi-goal plans to the cost of the solution

obtained from the Complete algorithm. Box plots of these

ratios are presented in Fig. 6 using a roadmap generated

from 50 subpaths. The Combinatorial approach yields the
best results followed by the Shortest 1st heuristic.

We also compared the cost of plans computed using

our approach to those obtained by constructing multi-goal,

curvature-constrained paths using the rapidly-exploring ran-

dom tree (RRT) algorithm [14]. In particular, we use a 2D
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variant of the algorithm proposed by Patil et al. [19] to

efficiently compute curvature-constrained paths on a plane.

The RRT algorithm has been successfully applied to solving

motion planning problems for systems with complex differ-

ential constraints, but the method offers no guarantees on

optimality. For the test case shown in Fig. 4, the average cost

of plans computed using the RRT algorithm across multiple

runs was 1.5 times greater than the cost of plans computed
using our approach.

Finally, we evaluate the overall optimal performance of

the method for single and multi-goal planning using the

environment and set of start and goal locations in Fig. 1.

As shown in Fig. 7 (left), the cost of an optimal path found

by the method decreases toward the optimal solution as

the number of sampled subpaths increases. Similarly, Fig.

7 (right) shows how the multi-goal heuristic methods also

converge.

VII. EXTENSION TO 3D ENVIRONMENTS

Our results can be extended to 3D by sampling circles

with arbitrary orientation, and then connecting them using a

bridge. It is not possible to find a single circular arc that is

tangent to two circles in general configuration in 3D. Hence,

we will consider using two arcs.

First, we need to model the problem using its forward

kinematics. We refer the reader to the text by R. M. Murray

et al. [17] for a thorough treatment of reference frames

and the use of homogeneous coordinates to represent affine

transformations as matrix multiplications. We can model the

transformations between two circles tangent to each other by

considering two coordinate transformations: one going from

the initial circle to an intermediate perpendicular circle, that

has its center in the original one; and a similar transformation

Fig. 8. Connecting two circles with arbitrary location and orientation
in 3D using two tangent circles. (a) Base configuration with θi = 0. (b)
Configuration with arbitrary θi values.

Fig. 9. Results of our multi-goal algorithm applied to an environment with
3 spherical obstacles and 3 goal configurations (point locations and desired
orientation). Multiple views of the same plan are shown.

from the intermediate circle to a third circle. This procedure

guarantees that the third circle is tangential to the original

circle. Hence, we will have a total of 6 transformations if
we consider 4 circles. The transformation between adjacent
coordinate frames can be expressed as:

gi−1,i =









cos(θi) 0 − sin(θi) r cos(θi)
sin(θi) 0 cos(θi) r sin(θi)

0 −1 0 0
0 0 0 1









(2)

where θi is the angle that specifies the position between

circles i − 1 and i, gj,i := g−1
i,j for i < j, and gi,j :=

gi,i+1 · · · gj−1,j . We associate with circle C1 the coordinate

frame Ψ0 and with circle C2 the frame Ψ6. Each reference

frame is located at the center of the circle with the z-axis

perpendular to it. Fig. 8 illustrates the configuration of circles

C1 and C2 (both in black), the connecting circles (in blue),

and the intermediate circles (dotted lines).

For the inverse kinematics problem we are given coordi-

nate frames Ψ0 and Ψ6 and would like to compute the angles

θi. Let us define g as the given transformation from frame
Ψ0 to Ψ6. Hence, the following equation must be true:

g0,3v = g · g6,3v, (3)

for v = v1 := [0, 0, 0, 1]⊤ and v = v2 := [0, 0, 1, 0]⊤. Using
the value of v1 ensures that the origin of the frame Ψ3 is

the same when expressed using coordinate frames Ψ0 and

Ψ6. Using v2 ensures that the z-axis (which specifies the
orientation of the circle) also agrees. We do not check for

g0,3 = g · g6,3 since we are only interested in matching the

orientation of the circle and not the exact coordinate frame

used to represent it.

The solution of the previous equation is equivalent to

finding the minimum to the function:

F (Θ) = ||(I−g3,0·g·g6,3)v1||
2+||(I−g3,0·g·g6,3)v2||

2, (4)

where I is the 4 by 4 identity matrix. This leads to a
straightforward optimization problem.

An example of this approach for 3D configurations is

illustrated in Fig. 9, where 1000 circles of radius 0.5 units
were sampled over a unit cube with three spherical obstacles



in the interior. The goal configurations qGk
are specified

using position and desired orientation.

VIII. CONCLUSION

We present a new path planning method for robots with

curvature constraints on their motion to visit multiple goals

in any order. We first introduce a subpath-based roadmap that

facilitates computation of curvature-constrained paths that

optimize an application-specific metric. This roadmap, which

generalizes to both 2D and 3D workspaces, is constructed

by sampling circles of bounded curvature and generating

feasible transitions between these sampled circles. We then

formulate the path planning problem to multiple goals as

a Steiner directed tree problem over this roadmap. Since

optimally solving the multi-goal planning problem requires

exponential time, we propose greedy heuristics to efficiently

compute a path that visits multiple goals. We apply the

planner in the context of medical needle steering where the

needle tip must reach multiple goals in soft tissue, a common

requirement for clinical procedures such as biopsies, drug de-

livery, and brachytherapy cancer treatment. We demonstrate

that the proposed heuristics converge to within 5% of the

complete, optimal approach and that considering the multi-

goal planning problem significantly decreases tissue damage

compared to sequential execution of single goal plans.

In future work, we plan to examine formal approximation

bounds on the greedy algorithms. For the needle steering

application, we plan to investigate the impact of uncertainty

in the needle’s motion on the optimality of multi-goal plans.

We also plan to investigate reducing the risk of needle

buckling [21] by removing edges from the roadmap that

result in the needle tip moving toward the start location.

Finally, we plan to evaluate the performance of our multi-

goal planner using both mobile robots as well as steerable

needles in artificial phantoms and ex vivo tissues.
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