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Reliable Vision-Based Grasping Target Recognition
for Upper-limb Prostheses: Appendix

This appendix includes additional experiment details and
results. Figure 1 shows the uncertainty measures in the syn-
thetic trajectory (SyTj) dataset for Bayesian GRU. Figure 2
contains the reliability diagrams for Bayesian GRU. Figure
3 and 4 show several example frames in our simulation
datasets. Section I contains the experiment details and the
results of incorporating an additional sensing modality into
our framework. The generalization experiment is in Section
II.

I. INCORPORATING SENSING MODALITIES

This experiment demonstrated our framework’s ability to
incorporate additional sensing modalities for prediction. We
calculated the velocity (in xyz directions) of the arm and
concatenated it with the features from the second last layer—
the last layer (the Softmax layer) generated predictions using
both the vision and velocity information. We evaluated our
framework on the Human Grasping Trajectory (GrTj) dataset
which contained realistic human grasping trajectories.

Figure 5 presents the results with different training data
sizes. Due to the high variability of arm motions, the frame-
work required more training data to learn meaningful velocity
patterns. As a result, velocity information lowered down the
performance of the framework using insufficient training data
(subplot (a)-(b)). When the training data size was increased
(subplot (c)), the performances of the framework with the
velocity information were similar to the ones without velocity
information. As shown in subplot (b)-(c), the velocity informa-
tion was beneficial for BMLP if a low NPC (e.g. NPC < 2)
was desired. This is a preliminary testing of the extension
of our vision framework, and deeper investigation of sensor
fusion is left as future work.

II. GENERALIZATION CAPABILITY

To demonstrate the generalization capability of our ap-
proach, we applied our framework to a grasp classification task
with the datasets published in [1]: the ImageNet dataset and
the HandCam dataset. The datasets contained object images
labeled with five types of appropriate grasps: power, three-
jaw chuck, tool, pinch and key. Figure 6 (a) presents several
example images in the datasets. The HandCam dataset was
collected with a camera on a prosthetic hand. We trained our
framework purely with the ImageNet dataset and evaluated it
on the HandCam dataset (unseen objects).

With the same datasets and tasks, DeGol et al. [1] achieved
93.2% grasp classification accuracy while our framework
(BMLP) achieved 91.2%. Our accuracy was slightly lower
because we utilized a less powerful but more efficient pre-
trained network MobileNetV2 [2] while DeGol et al. [1] used

VGG-VeryDeep-16 [3]. Figure 6 (b) shows the histograms
of the first principle component of the three uncertainty
measures, shown for both correctly classified and incorrectly
classified samples. The results indicate promising capability in
detecting potential mistaken predictions. We did not evaluate
the probability calibration because the datasets were too small
to perform a valid evaluation.
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Fig. 1. Uncertainty measures in synthetic trajectory (SyTj) dataset with different training data sizes: (a) 5 trials per target; and (b) 340 trials per target. The
six snapshots on the top are examples of what the camera saw during different segments. The first three rows of the scatter plots are the three measurements
of uncertainty. The forth row is the calibrated probability from the probability calibration network. The fifth row is the network’s target recognition result,
1 indicates the prediction was correct and 0 indicates an incorrect prediction. Since we assign labels to the entire trajectory, we do not expect the model to
make correct predictions for the trajectory segments that are ambiguous (i.e. Segments A,B,C,D,F). The last row is the distance from the camera to the target.
The lower this value is the closer the camera was to the target. The result is based on the Clean testing dataset with Bayesian GRU (BGRU) as the model.

Fig. 2. Confidence histograms (bottom) and reliability diagrams (top) for calibrated probability (left) and Softmax probability (right). The results are based
on the Bayesian GRU (BGRU) model with sufficient training data (340 trials per target).

Fig. 3. Example frames of challenging scenarios: (a) motion blur, (b) dim light, (c) occluded images, (d) undefined targets, (e) overexposure, (f) abnormal
camera orientation.
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Fig. 4. Example frames in the Human Grasping Trajectory Dataset. The target object is the vertical book in the first row and the spoon in the second row.

Fig. 5. The plot of Success Rate (SR) with respect to Number of Prediction Changes (NPC) for the Human Grasping Trajectory Dataset. The performance
with different training data sizes are compared: (a) 5 trials per target; (b) 10 trials per target; (c) 100 trials per target.

Fig. 6. (a) Example images in the grasp selection dataset. The top and bottom rows were used for training and testing respectively. (b) The histogram of the
first principle component of the three uncertainty measures, shown for both correctly classified and incorrectly classified samples. This shows the potential
for separability between the correct and incorrect distributions.
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