
An Efficient Non-Profiled Side-Channel Attack on
the CRYSTALS-Dilithium Post-Quantum Signature

Zhaohui Chen
School of Computer Science

and Technology
University of Chinese Academy of Sciences

Beijing, China
chenzhaohui17@mails.ucas.ac.cn

Emre Karabulut
Department of Electrical

and Computer Engineering
North Carolina State University

NC, USA
ekarabu@ncsu.edu

Aydin Aysu
Department of Electrical

and Computer Engineering
North Carolina State University

NC, USA
aaysu@ncsu.edu

Yuan Ma†
State Key Laboratory of Information Security

Institute of Information Engineering, CAS
Beijing, China

mayuan@iie.ac.cn

Jiwu Jing
School of Cryptography

University of Chinese Academy of Sciences
Beijing, China

jwjing@ucas.ac.cn

Abstract—Post-quantum digital signature is a critical primitive
of computer security in the era of quantum hegemony. As a fi-
nalist of the post-quantum cryptography standardization process,
the theoretical security of the CRYSTALS-Dilithium (Dilithium)
signature scheme has been quantified to withstand classical and
quantum cryptanalysis. However, there is an inherent power side-
channel information leakage in its implementation instance due
to the physical characteristics of hardware.

This work proposes an efficient non-profiled Correlation Power
Analysis (CPA) strategy on Dilithium to recover the secret key
by targeting the underlying polynomial multiplication arithmetic.
We first develop a conservative scheme with a reduced key
guess space, which can extract a secret key coefficient with
a 99.99% confidence using 157 power traces of the reference
Dilithium implementation. However, this scheme suffers from the
computational overhead caused by the large modulus in Dilithium
signature. To further accelerate the CPA run-time, we propose a
fast two-stage scheme that selects a smaller search space and then
resolves false positives. We finally construct a hybrid scheme that
combines the advantages of both schemes. Real-world experiment
on the power measurement data shows that our hybrid scheme
improves the attack’s execution time by 7.77×.

Index Terms—Hardware Security, Post-quantum Cryptogra-
phy, Correlation Power Analysis, Digital Signature, Number
Theoretic Transform

I. INTRODUCTION

The digital signature (DS) algorithms are widely used in
protecting computer security regarding integrity and non-
repudiation. In many scenes such as authenticating Trusted
Platform Module (TPM) and firmware update, the DS is
used as a basic cryptography primitive. The traditional DS
algorithms are based on the difficulty of large integer factor-
ization [1] or the discrete logarithm problem [2]. However, the
quantum algorithm [3] can solve these problems exponentially

†This author is the corresponding author. He is also with School of Cyber
Security, University of Chinese Academy of Sciences, Beijing, China.

faster than the best currently-known algorithm running on a
classical computer.

In December 2016, the National Institute of Standards and
Technology of the United States announced the standardiza-
tion process of public-key cryptography algorithms against
quantum computer attacks, including public-key encryption
(PKE), key encapsulation mechanism (KEM), and DS algo-
rithms. After three rounds of competition, there remain three
finalists in the DS area. DS finalist CRYSTALS-Dilithium
(Dilithium) and a promising PKE/KEM finalist scheme named
CRYSTALS-Kyber (Kyber) consist of the CRYSTAL cipher
suite. Because the two algorithms have similar arithmetic
structures, CRYSTAL has advantages in module reuse and
technology diffusion.

The Dilithium post-quantum DS algorithm faces both
mathematical attacks and physical attacks. For the for-
mer aspect, the authors provide security analysis against
Block–Korkine–Zolotarev (BKZ) algorithm [4], algebraic at-
tacks [5], and dense sub-lattice attack [6], among others,
based on quantum or classical computers. Dilithium, moreover,
guarantees Strong Existential Unforgeability under Chosen
Message Attack (SUF-CMA). Physical attacks include se-
cret information extraction from side-channel leakage such
as execution time, power consumption, and electromagnetic
radiation. These attacks lead to existential forgery attacks
or key recovery attacks, both of which are disastrous for a
computer system.

The existing work has confirmed the side-channel leakage
risk of Dilithium. Migliore et al. [7] test several operations
with the classical Welch’s T-test. They claim a generic leakage
but did not provide a specific scheme to break Dilithium.
Existing profiled attacks on forward Number Theoretic Trans-
form (NTT) cannot extend to Dilithium [8] because these
operations could be pre-computed. Moreover, such profiled

attacks require the adversary to have access to an equivalent
device and reconfiguration capability to build templates [9],
[10]. By contrast, non-profiled attacks such as the Differential
Power Analysis (DPA) [11] and Correlation Power Analysis
(CPA) [12] do not have this limitation.

Fournaris et al. [13] argues that the straightforward DPA
attack on coefficient-wise multiplication is feasible, but they
again do not provide the attack implementation or any attack
results. There is also side-channel assisted mathematical at-
tack [14] where the randomness leakage in polynomial addi-
tion results in a security reduction, which allows polynomial-
time key recovery. However, this attack is limited to Fiat-
Shamir signatures that use a specific formula in signature
generation. Likewise, other attacks targeting schoolbook or ef-
ficient sparse polynomial multiplier [15]–[17] are not directly
applicable to Dilithium because it use NTT-based multiplica-
tion.

An efficient CPA scheme can be destructive in the real-
world applications of post-quantum cryptosystems. However,
the direct non-profiled attack on Dilithium’s implementation
has not been explored in depth. Our analysis has revealed
several key challenges and found novel ways to address them.
The contributions of this work are listed as follows:

• We analyze the power leakage by targeting polynomial
point-wise multiplication and transfer the classical CPA
to this Point of Interest (PoI). We reveal that the large
modulus and implementation of Dilithium results in a
large side-channel search space of 227. By minimizing
the key guess space with an algebraic analysis of the
correct guesses, our conservative CPA scheme reduces
the computational overhead by 32×.

• We propose a fast two-stage scheme to further accelerate
the attack’s run-time. We find a PoI which only depends
on a segment of the secret key although generating
false positives. The first stage uses this imperfect PoI
to eliminate wrong key guesses while recording several
candidates of the key segment. The second stage uses an
ideal PoI to filter out those false positives and recover the
complete key coefficient.

• We develop a hybrid scheme that collocates both the
conservative scheme and the fast scheme to combine their
benefits. This attack gives priority to the fast scheme
if power traces are sufficient. The adversary can judge
whether the fast scheme hits or not by comparing the
peak value with a threshold. If it hits, the adversary can
directly output the correct key. Otherwise, the adversary
can use the conservative scheme as a backup.

• Our experiments on an off-the-shelf ARM Cortex-M4
processor show that the adversary can recover the key
coefficient with a 99.99% confidence. The proposed hy-
brid scheme achieves 7.77× acceleration, which saves
about 3403 compute hours over the conservative scheme
on recovering the key of Dilithium-II.

Algorithm 1: Framework of Dilithium signature (Key
Generation, Signing and Verification)

KeyGen
1 A← Rk×`q

2 (s1, s2)← S`η × Skη
3 t := As1 + s2
4 (t1, t0) := Power2Roundq(t, d)
5 return (pk = (A, t1), sk = (A, t0, s1, s2))

Sign(sk,M)
6 (z,h) :=⊥
7 while (z,h) =⊥ do
8 y← S`γ1
9 w := Ay

10 w1 := HighBits (w, 2γ2)
11 c ∈ Bτ := H (M‖w1)
12 z := y + cs1
13 if ‖z‖∞ ≥ γ1 − β or

‖LowBits (w − cs2, 2γ2) ‖∞ ≥ γ2 − β then
14 (z,h) :=⊥
15 end
16 else
17 h := MakeHintq (−ct0,w − cs2 + ct0, 2γ2)
18 if ‖ct0‖∞ ≥ γ2 or No. ’1’ inh ≥ w then
19 (z,h) :=⊥
20 end
21 end
22 end
23 return σ = (z,h, c)

Verify(pk,M, σ = (z,h, c))

24 w′1 := UseHintq
(
h,Az− ct1 · 2d, 2γ2

)
25 return J‖z‖∞ < γ1 − βK and Jc = H

(
M‖w′1

)
K

and JNo. ’1’ inh ≤ ωK

II. PRELIMINARIES

This section introduces the Dilithium DS and its parameter
settings. This part focuses on the operations involving the
secret key, which adversaries are interested in. This section
further introduces the capabilities of adversaries and the gen-
eral CPA methods to recover the secret keys.

A. Notations

The matrix is represented by bold capital letters, such
as a matrix A. Vectors are represented by bold lowercase
letters, such as a vector s. In the Dilithium DS, the entries
in the underlying matrix or vector belong to the polynomial
ring Rq = Zq[X]/ (Xn + 1) by default. Lowercase italics
represent polynomials or integer parameters. A polynomial
belonging to Rq is of order n − 1, with integer coefficients
modulo a prime number q.

Further, multiplication of two polynomial structures a, b ∈
Rq is denoted as ab ∈ Rq . Point-wise multiplication of two
polynomials a and b ∈ Rq is denoted as a ◦ b ∈ Rq . Integer
multiplication of a and b is denoted as a · b. For an element
w ∈ Zq , ‖z‖∞ means |z mod ±q|, while ‖z‖∞ represents
the maximum value of this operator among all coefficients
in the vector z. Formula s ← Skη means the k-dimensional
polynomial vector s has uniformly random coefficients in the
range [−η, η]. The symbol ⊥ means an invalid value.

TABLE I
PARAMETERS OF DILITHIUM NIST ROUND 3

NIST Security Level II III V

Param. Meanings Values

q Modulus 8380417 8380417 8380417
d Power2Round param. 13 13 13
τ Number of ’±1’ in c 39 49 60
γ1 y coefficient range 217 219 219

γ2 Rounding range 95232 261888 261888
(k, `) Dimensions (4, 4) (6, 5) (8, 7)
η Secret key range 2 4 2
β τ · β 78 196 160
w Number of ’1’ in h 80 55 75

B. The Dilithium Signature

The framework of Dilithium signature [18] is shown in
Alg. 1. The algorithm consists of three procedures, i.e. key
generation, signature generation, and signature verification. In
the Alg. 1, functions like Power2Round, HighBits, LowBits,
MakeHint and UseHint are used to reduce the size of sig-
nature or key by compressing or decompressing intermediate
data. Function H indicates a secure hash function. In line 11,
c ∈ Bτ means the polynomial c has τ coefficients that are
’±1’ and other coefficients are ’0’.

The key generation procedure allocates the secret key for
signature generation and the public key for verification. The
critical secret data in the secret key are s1, s2 and t0. Accord-
ing to line 4 and 5, s1, s2 and t are associated in an equation.
Therefore, as long as the adversary knows any two of the
triples, he can recover the secret key. The signature generation
procedure contains a reject evaluation, only the parameters
that meet the requirements can be output as the signature.
As the secret-related operations marked in red, s1, s2 and t
at least multiply with polynomial c for 1 time respectively in
the process of signature generation. The verification procedure
distinguishes the signature, it returns ’1’ if the signature
verifies correctly.

The security level of the Dilithium can be adjusted by
parameters provided in Tab. I. Security level II is equivalent
to SHA-256/SHA3-256 collision search. Security level III is
equivalent to AES-192 key search, and security level V is
equivalent to AES-256 key search.

C. Polynomial Multiplication

Polynomial vector multiplication is computed polynomial
by polynomial. As for the polynomial multiplication such
as cs1, cs2 and ct0, there are several common algorithms.
Such as the schoolbook algorithm, the efficient sparse vector
multiplication algorithm, and the NTT algorithm. Among
them, the NTT algorithm is the most widely used polynomial
multiplication algorithm in lattice-based cryptography. The pa-
rameters of Dilithium conform to the classical NTT, and NTT
has been dedicated embedded into the Dilithium algorithm.

NTT-based polynomial multiplication is shown in Alg. 2.
Firstly, the two input polynomials c and s are transferred to
the NTT domain ĉ and ŝ by the forward NTT algorithm. Then

Algorithm 2: NTT-based polynomial multiplication
Poly Mul(c, s)

1 ĉ := NTT (s)
2 ŝ := NTT (s)
3 t̂ = POLY PWM(ĉ, ŝ); /* Polynomial point-wise-multiply */
t := INTT

(
t̂
)

4 return t

the two polynomials execute multiplication in the NTT domain
point by point thus generating t̂. Finally, t̂ is transformed from
the NTT domain to the ordinary domain with the Inverse NTT
(INTT) algorithm.

D. The Adversary Model

For a legitimate signature device, the adversary can imper-
sonate a normal user to input messages and request signatures.
The generated signature is public to all verifiers.

The adversary aims to forge a digital signature or obtain
the secret key, while the latter is more difficult but destructive.
Forgery attacks only require partial knowledge of the secret
key, and the generated forgery signature may have a higher
decryption failure probability than a normal signature. Key
recovery attacks can make the adversary obtain the same
ability as a legitimate signature device.

In this work, the adversary tries to recover the secret key
without invading the device nor profiling the templates in
advance. To achieve this goal, CPA is executed. There are
five steps for the adversary to carry out a classical CPA.

1) Choose an appropriate intermediate value as the PoI,
which is a function of the key and a known variable.

2) Record the power traces. That is, run signing process for
n times, and store the m-length power samples captured
each time in a matrix Tn×m.

3) Calculate the intermediate value matrix Vn×k of the key
guesses. Then calculate the intermediate value of the PoI
according to the known values and the key in the overall
guess space.

4) The power model (such as Hamming weight) is used to
map Vn×k to Hn×k, and each term Hi×j of Hn×k is
the corresponding Hamming weight of Vi×j .

5) Calculate the correlation coefficients of each column in
Hn×k and Tn×m, and record them in Rk×m. Pearson
correlation of columns Hi and Tj is computed as Eq. 1,
in which H̄i and T̄j are the average of the column.

Ri,j =

∑n
x=1

(
Hx,i − H̄i

)
·
(
Tx,j − T̄j

)√∑n
x=1

(
Hx,i − H̄i

)2 ·∑n
x=1

(
Tx,j − T̄j

)2 (1)

The index corresponding to the maximum value in the
matrix R reveals the time corresponding to the target
operation and the key used by the device.

In the above steps, the computational overhead is linearly
related to the number of traces n, the number of samples m,
and the key guess space k.

pa31 0

c

31 0

QINV

×

pa63 031

031

63 031 31 0

Q

×

63 031
－

63 031

63 031

31 0

s

×
pa

void poly_pwm(poly *t, const poly *c, const poly *s)
{ // t= c*s s is the secret c is challenge
 unsigned int i;

 for(i = 0; i < N; ++i){
 int64_t a;

 a = (int64_t)c->coeffs[i] * s->coeffs[i]; // Point1
 t = (int32_t)p1*QINV;
 t->coeffs[i] = (a - (int64_t)t*Q) >> 32; // Point2
 }
}

Point1

Point2

1

2
3

4
5
6

p-131 0

c[i]

31 0

qinv

×

p-163 031

031

63 031 31 0

q

×

63 031
－

63 031

63 031

31 0

s[i]

×
p-1void POLY_PWM(t, c, s) {

/* c is the challenge, s is the secret */

 unsigned int i;

 for(i = 0; i < 256; ++i){

 int64_t a;

 /* point1 */

 a = (int64_t)c[i]·s[i];

 t = (int32_t)a·qinv;

 /* point2 */

 t[i] = (a - (int64_t)t·q) >> 32;

 }

}

Point1

Point2

1

2
3

4
5

6 p-1

Fig. 1. C code snippet and data flow of polynomial point-wise multiplication in Dilithium Signature

III. THE PROPOSED SIDE-CHANNEL ATTACKS

In this section, the vulnerability of NTT-based polynomial
multiplication is analyzed. A conservative CPA scheme is
introduced, and the parameter algebraic characteristics can be
utilized to minimize the key guess space. To further accelerate
the attack run-time, a fast two-stage CPA scheme is proposed.
Then the adversary can combine the two schemes to juggle
the attack’s execution time and success rate.

A. The PoI

The point-wise multiplication procedure is appropriate to
execute CPA. In this step, the secret key is multiplied by a
public challenge c. Even though the coefficients are operated
in the NTT domain, the obtained secret polynomial could be
easily transformed to normal domain with the INTT algo-
rithm. The polynomial point-wise multiplication algorithm, i.e.
POLY PWM, in the reference implementation is shown on the
left side of Fig. 1. Since the coefficients are operated sequen-
tially, the adversary could perform CPA on each coefficient in
turn. Line 4-6 in the inner loop is the Montgomery Modular
Multiplication (MMM). It provides a low-cost approach to
multiply two factors and then modular reduce it to the range
(−q, q).

The right side of Fig. 1 shows the data flow of MMM,
where c[i] and s[i] are the i-th coefficients of challenge and
secret key polynomials. Note that they have been converted to
NTT domain in this algorithm. q and qinv are fixed constants,
where qinv = q−1 mod 232. The squares represent 64-bit
or 32-bit integers, and the numbers below them indicate the
binary width. The data corresponding to the dotted box in
the figure is finally discarded. The operation process shown
in the figure involves three multiplication operations and one
subtraction operation.

In the figure, point1 and point2 are marked by red dotted
boxes. The point1 is the straightforward multiplication result
of c[i] and s[i]. As a common problem, this point may cause
false positives. For example, the s[i] is hex(0000FF00), then
the key guesses s[i] >> 1 = hex(00007F80) is hard to

poly_pwm:
@ args = 0, pretend = 0, frame = 0
@ frame_needed = 0, uses_anonymous_args = 0
@ link register save eliminated.
push {r4, r5, r6, r7}
ldr r7, .L6
subs r6, r1, #4
subs r0, r0, #4
subs r2, r2, #4
add r1, r1, #1020

.L2:
ldr r4, [r6, #4]!
ldr r3, [r2, #4]! /* Load*/*/
smull r4, r5, r4, r3 /* p1= {r5, r4} = (int64_t)a->coeffs[i] * b->coeffs[i]; */
rsb r3, r4, r4, lsl #3 /* r3 = (int32_t)p1 * bin(111) */
add r3, r4, r3, lsl #10 /* r3 = (int32_t)p1 * bin(1_1100_0000_0001) */
add r3, r4, r3, lsl #13 /* r3 = (int32_t)p1 * bin(11_1000_0000_0010_0000_0000_0001) i.e.(int32_t)p1*QINV */
smlal r4, r5, r7, r3 /* c->coeffs[i] = (p1 - (int64_t)t*Q) >> 32; */
cmp r1, r6 /* Loop boundary */
str r5, [r0, #4]! /* Store */
bne .L2
pop {r4, r5, r6, r7}
bx lr

.L7:
.align2

.L6:
.word -8380417

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18

19

20

poly_pwm:
@ args = 0, pretend = 0, frame = 0
@ frame_needed = 0, uses_anonymous_args = 0
@ link register save eliminated.
push {r4, r5, r6, r7}
ldr r7, .L6
subs r6, r1, #4
subs r0, r0, #4
subs r2, r2, #4
add r1, r1, #1020

.L2:
ldr r4, [r6, #4]!
ldr r3, [r2, #4]! /* Load*/
smull r4, r5, r4, r3 /* p1= {r5, r4} = a * b; */
rsb r3, r4, r4, lsl #3
add r3, r4, r3, lsl #10
add r3, r4, r3, lsl #13 /* r3 = (int32_t)p1*QINV */
smlal r4, r5, r7, r3 /* c = (p1 - t*Q) >> 32; */
cmp r1, r6 /* Loop boundary */
str r5, [r0, #4]! /* Store */
bne .L2
pop {r4, r5, r6, r7}
bx lr

.L7:
.align2

.L6:
.word -8380417

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18

19

20

POLY_PWM:

push {r4, r5, r6, r7}

ldr r7, .L6

subs r6, r1, #4

subs r0, r0, #4

subs r2, r2, #4

add r1, r1, #1020

.L2:

ldr r4, [r6, #4]!

ldr r3, [r2, #4]!

/* {r5, r4} = r3 · r4; */

smull r4, r5, r4, r3

rsb r3, r4, r4, lsl #3

add r3, r4, r3, lsl #10

add r3, r4, r3, lsl #13

/* {r5, r4} = ({r5, r4} - r3 · r7) */

smlal r4, r5, r7, r3

cmp r1, r6

/* Store r5 */

str r5, [r0, #4]!

bne .L2

pop {r4, r5, r6, r7}

bx lr

.L7:

.align 2

.L6:

.word -8380417 /* q = 8380417 */

1
2
3
4
5
6

7
8

9
10
11
12

13
14

15
16
17
18

19

20

POLY_PWM:

push {r4, r5, r6, r7}

ldr r7, .L6

subs r6, r1, #4

subs r0, r0, #4

subs r2, r2, #4

add r1, r1, #1020

.L2:

ldr r4, [r6, #4]!

ldr r3, [r2, #4]!

smull r4, r5, r4, r3 /* {r5, r4} = r3 · r4; */

rsb r3, r4, r4, lsl #3

add r3, r4, r3, lsl #10

add r3, r4, r3, lsl #13

smlal r4, r5, r7, r3 /* {r5, r4} = ({r5, r4} - r3 · r7) */

cmp r1, r6

str r5, [r0, #4]! /* Store r5 */

bne .L2

pop {r4, r5, r6, r7}

bx lr

.L7:

.align 2

.L6:

.word -8380417 /* q = 8380417 */

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18

19

20

Fig. 2. Register usage in the assembly code snippet of polynomial point-wise
multiplication

distinguish with the power model because they always show a
bit-shifting relationship and have similar Hamming weight
after multiplicating the same c[i]. So there are always many
key guesses that show correlation peaks. The adversary cannot
judge which peak corresponds to the correct key. Similarly,
the second and third multiplication results also show false
positives. The point2 in Fig. 1 is the modular reduction output,
this point is the result of subtraction. Since the bit-shifting
relationship is eliminated, the issue of the false positive in
point1 is solved. According to the characteristics of constant
q and qinv, the gray 32 bits of point1 and multiplication
intermediate value in line 6 will be the same. So the least
significant 32 bits of point2 should all be ’0’, and they do not
affect the Hamming weight.

To analyze the register usage of the POLY PWM function,
the C code is compiled with the arm-none-eabi-gcc compiler

for a 32-bit ARM Cortex-M4 core. The corresponding assem-
bly code is shown in Fig. 2. Lines 9 to 13 in Fig. 2 show the
assembly code snippet of Montgomery modular multipliers.
The ’smull’ instruction performs signed multiplication of c[i]
and s[i]. The second multiplication is replaced by shifts and
additions. ’smlal’ instruction performs signed multiplication
and accumulation. The final result in the 32-bit register r5 is
stored in line 15. The data registering and storage operation
in line 13 and line 15 confirm the power leakage of point2.

B. A Conservative Scheme

The point2 is an ideal PoI for CPA so that a straightforward
CPA scheme is feasible. Further, the time spent in executing
CPA is also an important factor to illustrate the threat. For the
Dilithium algorithm, the modulus q is 8380417, which is 23
bits in binary. According to the description in Alg. 2, a secret
polynomial is transformed to NTT domain before the point-
wise multiplication process. In the reference implementation,
the forward NTT algorithm omits the modular reduction in
the modular addition and subtraction operation to reduce
computation load. After the 8-stage recursion for the 256-
dimension polynomial, coefficients in the NTT domain are
in the range of [−η − 8(q − 1), η + 8(q − 1)]. Because the
word length is 32 bits which is enough to avoid overflow,
only the modular reduction after multiplication is necessary
to ensure correctness. However, the omitted modular reduction
increases the range of polynomial coefficients. That is to say,
the size of the key guessing table is close to 227 in NTT
domain. This makes CPA on Dilithium more difficult than that
of symmetric cryptography such as the Advanced Encryption
Standard (AES), which could be analyzed byte by byte (28).

As described in section II-D, there is a linear relationship
between operation load and the key guess space. The large
key guessing table will make the execution of CPA time-
consuming. For the correct key ck, there exists ck ± xq ∈
[−η−8(q−1), η+8(q−1)], with x ∈ Z. Since the INTT works
in Zq , coefficients with redundant q in the NTT domain maps
to the same polynomial in the normal domain. Thus, ck± xq
would be equivalent to ck for the adversary. Moreover, the
modular reduction results of ck± xq and ck are the same, so
that the values registered in r5 are the same and they would
both show peaks on the correlation plot. Thus, the adversary
can focus on the range [0, q − 1].

The value in the register r5 is a signed 32-bit integer. The
complement of a negative number is obtained by inverting
all bits in it, i.e., transferring the ’0’/’1’ bit to ’1’/’0’ and
then adding 1 on the number. Since the Hamming weight
of a negative number is approximately opposite to the cor-
responding positive number, −ck ± xq also show correlation
peaks. However, the peak polarity of the negative numbers
would be the opposite. Thus the adversary can distinguish
−ck±xq according to whether the peak is positive or negative.
Therefore, a wise adversary could reduce the key guess space
to [0, q/2]. Firstly, there must be a correlation peak in this
interval, either corresponding to ck±xq or −ck±xq. Secondly,
the adversary can infer ck± xq from the peak polarity. If the

peak polarity is matched, the peak column index keypeak is
ck ± xq. If the polarity is opposite, the −keypeak is ck ± xq.
After analyzing all the 256 coefficients in the polynomial, the
adversary could recover the normal domain polynomial with
INTT. In this way, this conservative scheme can reduce the
key guess space to less than 222, which would accelerate the
CPA computation process by 32 times.

C. A Fast Two-Stage Scheme

The proposed conservative scheme can be realized on gen-
eral computers with a reasonable delay. However, considering
that each polynomial has 256 coefficients and each polynomial
vector has k or ` polynomials, it is still time-consuming to
recover the whole key. This part focuses on further reducing
the execution time of CPA to make the attack efficient to
implement.

Generally speaking, points with inherent false positives are
not ideal for CPA. For point1, even if the adversary executes
CPA with lots of traces, it is difficult to eliminate the false
positive key guesses. Inspired by [19], CPA on large number
multiplication can also be attacked bit-slice-wise separately.
As shown on the right side of Fig. 1, the Least Significant
p-Bit (LSB-p) of several intermediate values are marked as
red squares. In the process of calculating the multiplication of
point1, the LSB-p bits of point1 is only associated with the
LSB-p bits of both c[i] and s[i]. Because the key guess space
of LSB-p of s[i] (denoted by s[i]LSBp) is significantly smaller
than the whole key space, the CPA process on point1LSBp could
be fast. The adversary can combine the two PoIs to accelerate
attack run-time. The fast two-stage CPA scheme is proposed
as follows.
• Stage1. In this stage, the adversary executes CPA by tar-

geting the LSB-p of point1. This stage aims to eliminate
wrong key guesses by selecting several LSB-p candidates
with high correlations. Different from the ideal CPA, due
to the false positives and the noise from other high-order
bits of point1, there are more than one peaks appears and
the highest peak may not be the correct s[i]LSBp. Even
though the adversary cannot recognize the false positives
in this stage, he can record these candidates since the
correct LSB-p quite probably ranks in the top ones. If
the correct LSB-p is included in the range of LSB-p
candidates, stage 1 hits. The adversary needs a high hit
rate to let this stage make sense.

• Stage2. In this stage, the adversary first constructs a
key guess list using the candidates of s[i]LSBp obtained in
stage 1. Then he can execute the CPA by targeting point2
to recover the complete secret coefficient. If stage 1 hits,
the correlation plot shows an obvious peak, otherwise
there is no peak. Since stage 1 narrows the key guess
table, CPA in this stage costs a relatively low computation
load.

On the computational overhead, variable p is a critical pa-
rameter to optimize algorithm complexity. For a fixed number
of sampling points m, the computational load of stage 1 is
related to (nstage1 · 2p) · m. In the stage 2, the load is related

Fast CPA

Begin

Input power

traces and

challenges

Enough traces?

Conservative

CPA

End

Output

key result

Peak > Threshold?

End

Output

key result

Y

Y

N

N

Fig. 3. Flow chart of the hybrid scheme

to (ncdd · nstage2 · 2(27−p)) · m, in which ncdd is the number
of candidates in stage 1. The overall goal is to keep a high
hit rate and minimize the sum of the overhead of stage 1
and stage 2. This can be achieved by tuning parameters like
nstage1, nstage2 and p. Related analysis and the test result will
be described in Section IV.

D. A Hybrid Scheme

The Fast two-stage CPA scheme can reduce the computa-
tion delay, but it is a probabilistic approach to recover the
coefficient. It may fail when stage 1 does not hit. Therefore,
if the adversary uses this scheme standalone, he bears the loss
of success rate. In practice, the adversaries can combine the
conservative and fast schemes to optimize the run-time and
also maintain a high success rate.

As shown in Fig. 3, the adversary first collects a series of
power traces of polynomial point-wise multiplication opera-
tion. Since stage 1 of the fast scheme needs a relatively large
number of traces to ensure a high hit rate, the adversary should
judge whether it is feasible to execute the fast scheme. If the
number of power traces is insufficient, he can directly execute
the conservative CPA. Otherwise, the adversary can use the
fast two-stage scheme and further judge whether it hits by
comparing the peak value with a threshold. Since there is no
false positive for point2, the correct s[i]LSBp is missed if there
is no obvious peak in stage 2. If so, the adversary can analyze
this coefficient again with the conservative scheme.

IV. EXPERIMENT RESULTS

This section constructs the experimental environment and
analyzes the effect of the attack. The results verify that the
conservative scheme can achieve 99.99% confidence with 157
power traces, and the hybrid scheme can further improve the
efficiency of CPA.

Power

analysis

(sk,M)n

(z,h,c)n
Digital

Signature

core

Victim device

Power supply

Oscilloscope

Adversary

Computer

Data Triggers

Traces

Secret key

Fig. 4. Schematic diagram of the CPA experimental environment

A. Experimental Setup

The experiment imitates the adversary’s ability as shown in
Fig. 4. The victim device, CW308T, is powered by an ordinary
power supply. The board is equipped with an STM32F405 chip
that adopts ARM Cortex-M4 core. The chip runs the round
3 reference Dilithium code on 168MHz. The arm-none-eabi-
gcc compiles the target programs with -O3 level optimization.
A PicoScope 6402C oscilloscope is deployed to capture the
power traces. It captures 1.25G samples per second with
250MHz bandwidth. Three probes connect to the pins of the
victim device, one of them is used to capture the sampled data,
and the other two are used as triggers. The captured data is
transferred to a computer with a USB cable. The CPA process
is done on a computer with an Intel i7-10750H processor and
64GB DDR4 memory. The CPA programs are implemented
with MATLAB R2016a.

The Dilithium signature includes the abort process in lines
14 and 19 of Alg. 1. This means if the parameters do not
meet requirements, the signature will be discarded. The sig-
nature generation process keeps trying, and only the signature
(z,h, c) that meets the requirements will be output. Therefore,
to capture trace corresponding to the final signature, trigger A
is synchronized with the completion of signature generation,
and trigger B is synchronized with the target operation.

Fig. 5 presents a single trace of the Dilithium signature.
The adversary first locates the end of the trace according
to trigger B in the top sub-graph, and then the high level
of the trigger A next to it corresponds to the last loop, as
the middle sub-graph in Fig. 5 shows. Finally, for the 256-
dimensional point-wise multiplication, the waveform can be
distinguished to obtain 256 cycles of MMM. The bottom sub-
graph in Fig. 5 presents a piece of the waveform. With these
traces, the adversary can analyze each coefficient s[i] in turn.
Then the entire polynomial can be obtained. Similarly, the
secret key polynomial vectors s1, s2 and t0 can be recovered.

B. Results of the Conservative Scheme

We first execute the conservative CPA scheme on the secret
polynomial coefficient. The reference [20] uses the parameter
ρ(ck, ct) to estimate how many traces the adversary needs

Overview of Dilithium trace

Overview of the final loop

Overview of Dilithium trace

Overview of the final loop

Overview of final polynomial point-wise multiplication

MMM

256 coefficients

per polynomial

256 coefficients

per polynomial

Overview of final polynomial point-wise multiplication

MMM

Overview of Dilithium trace

Overview of the final loop

256 coefficients

per polynomial

Overview of final polynomial point-wise multiplication

MMM

Fig. 5. Power traces of the reference implementation of Dilithium on
STM32F405

to recover the secret key. The parameter ρ(ck, ct) means the
Pearson correlation of the power trace and power model with
the correct key (ck) at the correct time (ct), while the Pearson
correlation coefficient of other key guesses should converge
to 0. We estimate the ρ(ck, ct) with 100k traces, and find
ρ(ck, ct) can reach at least 0.4. According to the hypothesis
testing principle, 157 power traces are sufficient to recover the
correct key with 99.99% confidence [20].

For our experimental device, the maximum correlation
peak value of the correct key is always positive. As shown
in Fig. 6(a), the correct key shows obvious peaks and the
largest absolute value of the peak is positive. Because of
the complement property of negative numbers, the Hamming
weight of −ck±xq is opposite to that of ck±xq. Therefore, the
correlation coefficient curve of−ck±xq will also have obvious
peaks, but the maximum value of the peaks is negative, as
shown in Fig. 6(b). When the adversary reduces the range of
key guessing to [0, q/2], He can find the correlation coefficient
with the largest absolute value, and then recover the coefficient
according to the positive or negative of the peak value. If the
peak value is positive, then the correct key is the key guess
corresponding to the peak, otherwise, the correct key is the
opposite number of the key guess modulus q corresponding
to the peak. As shown in Fig. 6(c), the correct key and the
wrong key guess can be clearly distinguished with 157 traces.
The correlation of the correct key coefficient is over 0.60, and
the correlation of other key guesses is below 0.45.

C. Results of the Hybrid Scheme

As explained in Section III-D, if the adversary can capture
enough traces, the hybrid scheme gives high priority to the

(a) Attacking result with peaks regarding to ck ± xq

(b) Attacking result with peaks regarding to −ck ± xq

157

Threshold range

157

Threshold range

(c) Evaluating number of traces requirement

Fig. 6. Result of the conservative scheme.

fast scheme. Thus the run-time acceleration makes sense. The
benefits of our hybrid scheme mainly depend on the following
two aspects. The first is the hit rate of fast scheme. The second
is the run-time acceleration of the fast scheme. According to
the calculation process of fast scheme in III-C, we estimate
a simplified computational complexity model as the formula
(nstage1·2p+ncdd·nstage2·2(27−p)) ·m , where nstage1, ncdd, p
and (27 − p) are positive integers. Parameter nstage2 can be
fixed as 157, m is also a constant. In the formula, nstage1 and
ncdd have positive influence on hit rate, while p has a negative
influence. On the other hand, increasing nstage1 and ncdd have
negative effects on speed. By the way, nstage1 also depends
on the adversary’s capability to collect traces. For a specific
total number of traces nstage1, appropriate ncdd and p can be
selected to minimize the load.

As shown in Tab. II, we test a series of nstage1, ncdd and
p to balance the computational load and hit rate. For each
parameter setting, we analyze 256 coefficients to estimate the
hit rate and overall acceleration with the hybrid scheme. As
for the threshold setting, according to Fig. 6, the threshold
can be set as 0.47 as an example. We first try to find a
appropriate nstage1 with a constrained time for the fast scheme
phase. Among the test cases, the hybrid a, b, c, e, g, h are
set as similar time cost on the fast scheme phase in hybrid
scheme. As a result, the parameter set {nstage1, ncdd, p} =
{10000, 12, 12} shows the best acceleration effect. We further
tune the ncdd with fixed 10000 traces as the test cases hybrid
d and f . As we analyzed, the hit rate improves with more

TABLE II
EFFICIENCY COMPARISON OF KEY RECOVERY ATTACKS WITH

DIFFERENT PARAMETER SETS

Scheme No. Traces ncdd p Hit Rate1 Acceleration

Conservative 157 NA NA NA 1.0
Hybrid a 1500 80 15 77.73% 3.19
Hybrid b 3000 40 14 93.75% 6.56
Hybrid c 5000 24 13 92.97% 6.34

Hybrid d
10000

8
12

91.02% 6.63
Hybrid e 12 96.10% 7.77
Hybrid f 16 96.48% 6.83

Hybrid g 15000 8 12 94.53% 7.20
Hybrid h 20000 6 11 94.53% 7.06

1 The hit rate is the probability that the key can be recovered successfully
by using only fast scheme.

candidates. However, the acceleration rate decreases because
the time consumption of the fast scheme phase itself increases.
All in all, our best parameter set achieves 7.77× acceleration
compared with the conservative scheme standalone as the
first entry. As a baseline, the conservative scheme takes 6572
seconds to break one coefficient. As for breaking the secret
polynomial vector s1, s2 for Dilithium-II, our hybrid scheme
can save 3403 hours compared with the baseline. Note that the
efficiency of our scheme could be better if it adopts a more
precise parameter adjustment, but this is not the focus of this
work.

We also try to use the result of lines 10, 11, and 12 in Alg. 2
as point1, but the peaks are less obvious, it probably due to
the successive add instructions execute in a compact pipeline
which increases the noise.

V. CONCLUSION

In this work, a conservative scheme and a fast two-stage
attack strategy are proposed. Adversaries can combine these
two schemes to achieve an efficient hybrid CPA attack.
Experiments show that it can achieve 99.99% confidence
with a reasonable amount of power traces. Benefit from our
strategy, the adversary can recover the secret key with 7.77×
acceleration. This work points out that unprotected NTT-based
polynomial multiplication is fragile. The idea proposed in this
paper can be easily applied to other NTT-based cryptography
implementations, such as Kyber and NewHope. Since they
have a compact range of coefficients, the computational over-
head for the CPA of PKE/KEM is lower.

This work only analyzes the side-channel leakage of the
reference implementation. As common measurements, mask-
ing and shuffling countermeasures are still effective to avoid
this attack, although these techniques cost additional time and
resources. We will also continue to improve our CPA technique
and try to analyze the side-channel resistance implementations.

ACKNOWLEDGMENT

This work was partially supported by National Key R&D
Program of China (Grant No.2020YFB1806205), National
Natural Science Foundation of China (No. 61872357 and No.

61802396), and Research Program of BJCA (BJCA2020-YF-
0300). Emre Karabulut’s and Aydin Aysu’s contributions are
not supported by any agencies or companies.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[2] C. Schnorr, “Efficient identification and signatures for smart cards,” in
Proc. CRYPTO 1989, Santa Barbara, USA, Aug. 1989, pp. 239–252.

[3] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in 35th Annual Symp. on Foundations of Computer
Science, Santa Fe, New Mexico, USA, Nov. 1994, pp. 124–134.

[4] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems,” Math. Program., vol. 66,
pp. 181–199, 1994.

[5] R. Cramer, L. Ducas, and B. Wesolowski, “Short stickelberger class
relations and application to ideal-svp,” in Proc. EUROCRYPT 2017,
Paris, France, Apr. 2017, pp. 324–348.

[6] P. Kirchner and P. Fouque, “Revisiting lattice attacks on overstretched
NTRU parameters,” in Proc. EUROCRYPT 2017, Paris, France, Apr.
2017, pp. 3–26.

[7] V. Migliore, B. Gérard, M. Tibouchi, and P. Fouque, “Masking dilithium
- efficient implementation and side-channel evaluation,” in Proc. ACNS
2019, Bogota, Colombia, Jun. 2019, pp. 344–362.

[8] I. Kim, T. Lee, J. Han, B. Sim, and D. Han, “Novel single-trace ML
profiling attacks on NIST 3 round candidate dilithium,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 1383, 2020.

[9] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks
on masked lattice-based encryption,” in Proc. Cryptographic Hardware
and Embedded Systems CHES 2017, Taipei, Taiwan, Sep. 2017, pp. 513–
533.

[10] P. Pessl and R. Primas, “More practical single-trace attacks on the
number theoretic transform,” in Proc. LATINCRYPT 2019, America,
Santiago de Chile, Chile, Oct. 2019, pp. 130–149.

[11] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
CRYPTO 1999, Santa Barbara, USA, Aug. 1999, pp. 388–397.

[12] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with
a leakage model,” in Proc. Cryptographic Hardware and Embedded
Systems CHES 2004, Cambridge, MA, USA, Aug. 2004., pp. 16–29.

[13] A. P. Fournaris, C. Dimopoulos, and O. G. Koufopavlou, “Profiling
dilithium digital signature traces for correlation differential side channel
attacks,” in Proc. Embedded Computer Systems: Architectures, Model-
ing, and Simulation SAMOS 2020, Greece, Jul. 2020, pp. 281–294.

[14] Y. Liu, Y. Zhou, S. Sun, T. Wang, R. Zhang, and J. Ming, “On
the security of lattice-based fiat-shamir signatures in the presence of
randomness leakage,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
1868–1879, 2021.

[15] A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky,
“Horizontal side-channel vulnerabilities of post-quantum key exchange
protocols,” in 2018 IEEE International Symp. on Hardware Oriented
Security and Trust, HOST 2018, Washington, DC, USA, Apr. 2018, pp.
81–88.

[16] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel assisted existential forgery attack on dilithium - A NIST
PQC candidate,” IACR Cryptol. ePrint Arch., vol. 2018, p. 821, 2018.
[Online]. Available: https://eprint.iacr.org/2018/821

[17] F. Aydin, P. Kashyap, S. Potluri, P. Franzon, and A. Aysu, “Deepar-
sca: Breaking parallel architectures of lattice cryptography via learning
based side-channel attacks,” in Proc. Embedded Computer Systems:
Architectures, Modeling, and Simulation SAMOS 2020, Greece, Jul.
2020, pp. 262–280.

[18] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehléy. (2021, Feb.) Crystals-dilithium algorithm
specifications and supporting documentation (version 3.1). [Online].
Available: https://pq-crystals.org/dilithium/data/dilithium-specification-
round3-20210208.pdf

[19] M. Tunstall, N. Hanley, R. McEvoy, C. Whelan, C. Murphy, and
W. Marnane, “Correlation power analysis of large word sizes,” in IET
Irish Signals and Systems Conf. (ISSC), 2007, pp. 145–150.

[20] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Berlin, Heidelberg: Springer-Verlag, 2007.

