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Abstract—Lattice-based cryptography has been growing in
demand due to their quantum attack resiliency. Polynomial
multiplication is a major computational bottleneck of lattice
cryptosystems. To address the challenge, lattice-based cryptosys-
tems use the Number Theoretic Transform (NTT). Although
NTT reduces complexity, it is still a well-known computational
bottleneck. At the same time, NTT arithmetic needs vary for
different algorithms, motivating flexible solutions.

Although there are prior hardware and software NTT designs,
they do not simultaneously offer flexibility and efficiency. This
work provides an efficient and flexible NTT solution through
domain-specific architectural support on RISC-V. Rather than
using instruction-set extensions with compiler modifications or
loosely coupling a RISC-V core with an NTT co-processor, our
proposal uses application-specific dynamic instruction scheduling,
memory dependence prediction, and datapath optimizations.
This allows achieving a direct translation of C code to opti-
mized NTT executions. We demonstrate the flexibility of our
approach by implementing the NTT used in several lattice-based
cryptography protocols: NewHope, qTESLA, CRYSTALS-Kyber,
CRYSTALS-Dilithium, and Falcon. The results on the FPGA
technology show that the proposed design is respectively 6×, 40×,
and 3× more efficient than the baseline solution, Berkeley Out-of-
Order Machine, and a prior HW/SW co-design, while providing
the needed flexibility.

Index Terms—Lattice-Based Cryptography, RISC-V, NTT

I. INTRODUCTION

Lattice-based cryptography is gaining traction as a successor
of public-key cryptosystems for quantum-secure key-exchange
and digital signature protocols [1]–[5]. In a lattice cryptosys-
tem, the Schoolbook polynomial multiplication accounts for up
to 98.8% percent of the overall computation time [6]. Number
Theoretic Transform (NTT) reduces this O(n2) complexity
of the polynomial multiplication to O(n · log n). Therefore,
NTT is a fundamental component of lattice cryptography
implementations. At the same time, NTT is still a well-known
bottleneck of many lattice-based cryptosystems [7].

NTT implementations include hardware [8]–[18], software
[19]–[24], and HW/SW co-design methods [25], [26]. Al-
though hardware solutions provide significant performance
over software or HW/SW co-design techniques, the implemen-
tations violate the flexibility needed for evolving lattice cryp-
tosystems such as the ones being reviewed for the ongoing US
post-quantum encryption standardization [27]. Indeed, flexibil-
ity is necessary to evaluate multiple candidates submitted to

the NIST standard—while the CRYSTALS-Dilithium [4]
algorithm operates with polynomials of degree 255 with 23-
bit coefficients, NewHope [1] uses polynomials of degree
1023 with 14-bit coefficients. Even the hardware specially
designed to cater to multiple algorithms [13] can fail in
flexibility: modulo prime number q update in NIST Round-
2 of CRYSTALS-Kyber [28] requires taping out a new chip
as it cannot be implemented with the earlier design [13].

Software NTT implementations for embedded systems in-
clude architecture-specific assembly optimizations (e.g. for
ARM [19], [20], [22], [24]) or software libraries like
NFLlib [21]. While such solutions have more flexibility than
hardware-based solutions, they have a lower performance.

HW/SW co-design techniques can combine the advantages
of pure hardware-based and software-based implementations.
Surprisingly, only a few HW/SW co-design implementations
have been demonstrated to accelerate the NTT. Those designs,
loosely couple a RISC-V core for I/O operations with a
fully-fledged lattice crypto accelerator [13], [25]. The only
exception is a recent white paper proposing custom instruction
extensions for RISC-V [26]. The custom instruction, in this
case, is still tailored for the specific use-cases and has to be
adapted to support multiple algorithms or to accommodate
changes in the arithmetic constructions (e.g. the updates in
CRYSTALS-Kyber [28]). Furthermore, even for the specific
use-cases, the custom instruction has to be hard-coded into
compilers and requires manual assembly coding.

Given the prior work on NTT and the drawback of previous
HW, SW, and HW/SW co-designed techniques, there is a need
for efficient, flexible, and easy-to-develop solutions.

This paper proposes a novel, RISC-V based solution for
efficient and flexible NTT implementation. Rather than us-
ing compiler optimizations or assembly coding with custom
instruction extensions, our proposal uses architectural sup-
port/customization for the NTT. Specifically, the proposed
architecture applies memory dependence prediction to opti-
mize memory load-store operations, dynamically schedules
instructions with out-of-order execution to address data de-
pendence limitations, and combines the target algorithm’s
instructions with ALU cascading (a.k.a. collapsing) at run-time
to improve hardware efficiency. While the basic principles of
these techniques [29]–[31] and the idea of algorithm-specific



architectural improvements [32] are known, their adaptation
to lattice cryptography is novel.

The key contributions of this paper are:
• A tracker design that recognizes and analyzes NTT al-

gorithms’ character during run-time execution. This unit
identifies the control flow of NTT and caters to different
NTT algorithms and configurations for flexibility.

• An application-specific out-of-order execution support
that contains: (1) a predictive, NTT-specific memory load-
store functionality reducing the cost of memory opera-
tions, and (2) an efficient, dynamic scheduler of assembly
instructions resolving data dependency and maximizing
memory and ALU unit’s utilization.

• An ALU cascading scheme that enables efficient solu-
tions using RISC-V native ISA without any additional
instructions to perform the NTT and underlying field
arithmetic.

The results validate the efficiency and flexibility of our
approach. We implement the NTT of the latest NIST
Round-2 post-quantum standard candidates: NewHope [1],
qTESLA [2], CRYSTALS-Kyber [3] (and its Round-1 ver-
sion), CRYSTALS-Dilithium [4], and Falcon [5]. On
our proposed architecture, implementing actually becomes
an automatic compilation of the reference software from
the C language. The FPGA results show that our archi-
tecture enhancements improve the efficiency (in area-delay
product) by 6×, 40×, and 3×, compared to the base-
line design [33] Berkeley Out-of-Order Machine
(BOOM) [34], and prior HW/SW co-design [25]. Furthermore,
the proposed architecture ensures constant-time NTT opera-
tions for FPGA to prevent timing side-channels.

II. BACKGROUND AND PRIOR WORK

This section introduces the background on NTT with the
underlying field arithmetic, and it discusses the target archi-
tecture and software stack.

A. The NTT

Efficient lattice-based cryptosystems perform the multipli-
cation of two polynomials within the polynomials rings of
the form Zq[x]/φ(x). The polynomials in this ring have
coefficients modulo prime number q and φ(x) is a reduction
polynomial of (xn+1), which allows efficient polynomial
division. While the baseline schoolbook polynomial multi-
plication has the O(n2) complexity, the Number Theoretic
Transform converts polynomials in Zq[x]/φ(x) to a different
domain (with a conversion cost of O(n · log n)) where the
multiplication becomes a coefficient-wise polynomial multi-
plication. Thus, NTT reduces the computational complexity
of the multiplication.

The NTT is a version of Fast Fourier Transform (FFT)
operating over the ring Zq/φ(x). While FFT uses the twiddle
factor ω n-th root of unity of form e(2πj/n), NTT has ω ∈ Zq
satisfying ωn ≡ 1 (mod q) and ∀i < n, ωi 6= 1 (mod q),
where q ≡ 1 (mod n).

Algorithm 1 presents an NTT algorithm [5]. The NTT
takes a polynomial A(x) ∈ Zq , whose coefficients are

Algorithm 1 In-Place NTT Algorithm Based on Cooley-Tukey
Butterfly [5]
Input: A(x) ∈ Zq[x]/(xn + 1)
Input: primitive n-th root of unity ω ∈ Zq , n = 2l

Output: Ā(x) = NTT(A) ∈ Zq[x]/(xn + 1)
1: for i from 1 by 1 to ` do . The third branch
2: m = 2l−i

3: for j from 0 by 1 to 2i−1− 1 do. The second branch
4: iw ← (l + j)
5: W ← ωiw . load-operation
6: for k from 0 by 1 to m− 1 do. The first branch
7: U ← A[2 · j ·m+ k]
8: V ← A[2 · j ·m+ k +m]
9: P ← V ·W (mod q). modular multiplication

10: O ← U − P . butterfly
11: E ← U + P
12: A[ie]← E . store-operation
13: A[io]← O
14: end for
15: end for
16: end for
17: return Ā(x) ∈ Zq[x]

Fig. 1. Butterfly Configurations

a0, a1, . . . , an−1, as an input and transforms the polynomial
to Ā(x) with Āi =

∑n−1
j=0 ajω

ij in Zq . The NTT has O log n
steps and each step performs n/2 butterfly computations
consisting of modular multiplication, addition, subtraction,
and related load and store operations. Algorithm 1 shows the
Cooley-Tukey butterfly [5] whereas some NTT algorithms use
Gentleman-Sande [1], Fig. 4 shows the differences in their core
operations. Iterative NTT algorithm applies modular reduction
after each arithmetic operation in NTT [15], while some NTT
algorithms load a new twiddle factor in the second loop rather
than in the innermost loop [28]. Our architecture supports all
such variations.

B. Modular Arithmetic

To perform fast modular reductions, efficient lattice cryp-
tosystems avoid modular divisions. Instead, they use two tech-
niques: Montgomery [15] and Barrett reduction [13]. It is not
necessary to support both reduction algorithms because they
are functionally equivalent. We choose Montgomery due to
its feasibility to ALU cascading—while Barret [14] performs
two subsequent subtractions, which cannot be collapsed with
the single subtractor of our target core, Montogomery applies
different types of subsequent operations (e.g. multiplication,
addition, shift) as shown in Algorithm 2. This reduction
technique eliminates the lower bits of the input product by



Algorithm 2 Modular Multiplication with Montgomery Re-
duction
Input: C = A ·B (a 2K-bit positive integer)
Input: q modulus prime number
Input: qinv = −(q−1) (mod R) where R = 2K

Output: C̄ = C ·R−1 (mod q)
1: T ← C · qinv
2: X ← T (mod R)
3: Y ← X · q
4: U ← (Y + C) >> K
5: V ← U − q
6: if (V < 0) then C̄ = U else C̄ = V
7: return C̄ ∈ Zq[x]

adding multiple q primes and shifting the result rather than
subtracting multiple q primes.
C. The Target RISC-V Architecture

As our core, we chose an area-optimized, in-order RISC-
V micro-processor PicoRV32 [33] architecture that supports
32-bit integer base and multiplication-division instructions
(RV32IM). The main reason of the choice is that RISC-V ISA
is open source and suitable for embedded development, pro-
moting energy-efficiency with reasonably high performance.
Although we embedded our architectural support inside, the
RISC-V core still fully supports RV32IM. Our architecture
extension serves simply as an observer with no effect in the
core unless an NTT algorithm is detected.

D. Software Stack
Our hardware implementation detects and analyzes NTT

algorithm instructions among other instructions. To aid in NTT
detection, we define specific address locations—five ranges
for coefficient input, twiddle factor, prime, and inverse prime
numbers—in the memory with volatile variable declarations
in C language. A software developer needs to simply assign
the NTT algorithm inputs to the predefined memory locations.
Our solution requires no changes in the compiler infrastructure
as the compiler cannot eliminate the volatile declarations to
optimize code. We define the memory declarations with 32-
bit values to standardize and simplify hardware structure even
though the input is typically smaller than 32 bits.

III. THE INEFFICIENCIES IN THE BASELINE DESIGN

This section motivates our design choices by demonstrating
the inefficiencies in a baseline design and by identifying ways
to improve them.

Fig. 2 shows the resulting code and the cycle count of the in-
nermost NTT loop of CRYSTALS-Kyber when the reference
C code [3] is compiled with -03 (performance-optimized)
flag. This loop executes n/2 · log n times for a single NTT,
e.g., 11264 times for the NTT of qTesla. We categorize
the NTT’s innermost loop operations into four tasks: memory
load operations, butterfly operations, modular (Montgomery)
reduction operations, and memory store operations. Our goal
is to optimize the innermost loop’s execution of the NTT
algorithm.

Fig. 2. Cycle Count and Operation Breakdown of the Baseline NTT Innermost
Loop Execution for CRYSTALS-Kyber

It takes 122 clock cycles for the baseline code to execute
the innermost loop a single time. There are four major
inefficiencies in the code. First, the data dependency, read-
after-write (RAW), causes the processor to wait for the current
instruction to finish (i.e., to be fetched, decoded, executed (or
memory accessed) and written back before proceeding to the
next one. This increases latency due to inefficient usage of
the pipeline stages, e.g., between cycles 51 and 66. Second,
there are independent instructions placed in sequence, e.g.,
between cycles 25 to 35 performing load and multiplication.
Out-of-order execution can address these two inefficiencies.
Third, there are redundant load-store address calculations and
load-store executions. For instance, the load at cycle 96 uses
the same address with the last store in cycle 122. Memory
dependence prediction can reduce these inefficiencies. Fourth,
due to the ring structure, the NTT algorithm often requires a
logical shift following an arithmetic operation, causing RAW
stalls, e.g., between cycles 31 and 43. The shifts can be
cascaded to the prior instruction to improve performance.

Our proposed architecture enhancements reduce the cycle
count of this loop from 122 to 6 (see Fig. 5).

IV. THE PROPOSED RISC-V ARCHITECTURE EXTENSIONS

The proposed architectural extension has three key features
to address the inefficiencies and to provide flexibility:

1) The architecture supports different NTT algorithms and
different configurations. To that purpose, we designed
a tracker that recognizes and analyzes the NTT al-
gorithm’s character. This indicates the control flow of
operations and aids our implementation on scheduling
the target NTT algorithm’s instructions.

2) Our implementation shares but re-purposes ALU re-
sources of the RISC-V core with ALU cascading to
increase efficiency. We designed a controller to super-
vise this process. The controller also prevents undesir-
able memory load-store operations during this process
and warrants to preserve instruction execution order by
controlling program counter (PC) register of the RISC-V
core.

3) Our implementation includes a butterfly optimizer to
remove redundant instructions, manage memory depen-
dencies, and out-of-order execute NTT butterfly and
Montgomery reduction operations.



Fig. 3. The Block Diagram of the RISC-V Pipeline and Proposed Extensions

Fig. 3 shows the proposed architecture extensions with the
three building blocks integrated into the RISC-V pipeline. The
next three subsections elaborate on these contributions.

A. The Tracker Design for the NTT Recognition and Analysis

Fig. 4 depicts the generic structure of the NTT, which has
three branches (in assembly) and where the innermost branch
loads U , V , and ω, executes the butterfly and the modular
reduction, and finally stores the resulting O and E. When the
RISC-V core starts executing the instruction group between
PC1 and PC2, the tracker analyzes the target NTT algorithm
by observing arithmetic instructions and memory load-store
operations’ orders on the predefined memory locations. This
indeed enables distinguishing the characteristics of different
NTT algorithms such as Cooley-Tukey vs. Gentleman-Sande,
iterative vs. in-place, and differences in twiddle factor access
patterns. The algorithm analysis occurs at run-time; hence, the
proposed optimizations do not need to be hard-coded for each
distinct NTT specification.

The tracker takes the program counter (PC) register and the
memory ports as inputs. The tracker is a finite state machine
(FSM) whose states change with the PC jump actions and load-
store operations during the first three iterations of the inner-
most branch—nega-cyclic NTT (e.g., in CRYSTALS-Kyber)
requires three iterations to be distinguished. The tracker gen-
erates two PC values, one memory address, and the detected
NTT configuration as the output. PC1 and PC2 (Fig. 4)
shows the boundaries of the innermost loop, and hence, the
optimization target.

The tracker determines the ring size by observing the
memory load addresses at the first iteration because one of
them corresponds to the (

n

2
-1)th address. Thus, our hardware

implementation can configure itself for the ring size, n, at run-
time. The tracker transmits the detected NTT configuration

Fig. 4. The Innermost For-Loop and Branch Instructions

to the controller in 4-bit encoded format: the first bit of the
frame shows whether the butterfly operation is Cooley–Tukey
or Gentleman-Sande, while the second bit of the frame shows
whether the n-th root of unity ω is updated in the second
loop or in the innermost loop. The third bit represents if the
NTT algorithm is nega-cyclic, while the fourth one indicates
whether the q primer number is bigger than 32 bits or not.

B. The Controller Design for RISC-V Resource Sharing

Our architecture extension shares the resources of the RISC-
V core but re-purposes them for optimized NTT execution.
The objective of the controller is therefore to enable our
memory dependency reduction, out-of-order execution, and
ALU cascading optimizations, which are all tuned for the
NTT. The controller achieves this functionality by switching
the authorization owner from the RISC-V core to our butterfly
optimizer through the select signals of MUXes (Fig. 3). After
the target instructions (between PC1 and PC2) execute, the
controller sets the NPC to PC2 before returning the control
back to the RISC-V core. While the RISC-V core decides if the
PC2 branch is taken or not taken, the controller predicatively
loads the value at the next address of ω.

The details of the controller’s operation are as follows.
The controller keeps the next PC (NPC) assignment at the
current PC value to prevent the RISC-V core to proceed to the
next instruction. The RISC-V core bypasses all instructions
between the two PC values because the butterfly optimizer
handles the instructions that belong to the NTT butterfly and
modular reduction operations. When the butterfly optimizer
completes, the controller releases the control to RISC-V by
assigning PC2 value to the NPC. Thus, after releasing the
control, the RISC-V core gives a decision on whether the
corresponding branch is taken or not taken. If the branch is
taken, the PC value jumps from PC2 to PC1, which means that
the controller can get the authorization back. The controller
repeats the sequence until the NTT algorithm execution is
done. Our architecture does not have its own handler routine
for interrupt or multi-threaded processing, it obeys the existing
RISC-V core’s interrupt or multi-threaded routines. Although



Fig. 5. Scheduling of Optimized NTT Operations

our implementation does not formally guarantee that there
will never be any mispredictions, it has built-in capabilities
to detect errors and raise a trap signal for a software trap
handler.

The controller also loads twiddle factor, ω, from memory
and sends to the butterfly optimizer while the RISC-V core
executes the branch instruction and memory is available.

C. The Butterfly Optimizer Design

The butterfly optimizer performs the optimization tech-
niques including out-of-order executions, memory dependence
prediction, and ALU cascading [29]–[31]. Fig. 5 shows the
resulting, optimized schedule of the NTT innermost loop,
which reduces from the baseline cycle count of 122 to 6.
The figure shows the case for CRYSTALS-Kyber, which has
the Cooley-Tukey butterfly configuration with Montgomery
reduction—the NTT of other algorithms can result in different
schedules.

The key decision in optimizing the NTT innermost loop
is to keep the memory always busy. At each execution,
there are four memory loads (for U ,V , q and qinv) and two
stores (for E and O), which take 6 cycles to complete (in
a pipelined manner). Another important aspect is to combine
ALU instructions and to interleave them with the execution of
memory load-store instructions. Fig. 5 shows that NTT ALU
function can be combined and completed in 5 cycles.

The details of the schedule in Fig. 5 are as follows.
The butterfly optimizer sends the higher coefficient address
to the memory at the first cycle. The butterfly optimizer
sends qinv address to the memory at the second cycle and
overlaps the load operation with the multiplication and shift

TABLE I
COMPARISON OF OUR PROPOSAL WITH RISC-V ISA BASED SOFTWARE

IMPLEMENTATIONS

Design (n, K) LUTs/DSPs # of Lat. Eff.CC Impr.

PicoRV32-RV32IM

Kyber

1053 / 4

161681 – 0.40
Dilithium 122600 – 0.53
NewHopea,d 189515 – 0.34
NewHopeb,d 442623 – 0.15
Falcona 481096 – 0.14
Falconb 1063310 – 0.06
qTESLAb 274549 – 0.24
qTESLAc 575117 – 0.11

This Work

Kyber

417 / 0

43756 ×3.7 1.21

+

Dilithium

+

43756 ×2.8 1.21

PicoRV32-RV32IM

NewHopea,d

1053 / 4

81064 ×2.4 0.65
NewHopeb,d 180187 ×2.5 0.29
Falcona 81114 ×6 0.65
Falconb 180237 ×6 0.29
qTESLAb 225225 ×1.5 0.23
qTESLAc 491215 ×1.5 0.11

BOOM-RV64GC

Kyber

191K / 36

41725 ×9 0.01
Dilithium 17419 ×7 0.03
NewHopea,d 21456 ×8.9 0.02
NewHopeb,d 49786 ×9 0.01
Falcona 68456 ×7 0.01
Falconb 97563 ×10.9 0.01
qTESLAb 27337 ×10 0.02
qTESLAc 58082 ×9.9 0.01

a: n=512, b: n=1024, c: n=2048,
d: We slightly adjusted the reference NewHope code by replacing the
modular division operation (%) with the Montgomery subroutine; this favors
the baseline and the BOOM, not our proposal.

operations for ω, V . During the next three cycles, it per-
forms Montgomery reduction, which consecutively performs
the logical shift operations after multiplication, addition, and
subtraction. We exploited this opportunity to perform ALU
cascading—we augmented the RISC-V ALU by cascading
the logical shift unit after the multiplier and adder/subtractor
data path, to combine multiple instruction into a single one.
The butterfly optimizer automatically routes such detected
group of instructions into the cascaded ALU. This optimization
approach results in reducing the 72 cycles of the reference
ALU operations of Montgomery to 4 cycles. The new longer
data path is not the critical path of the RISC-V core; hence,
it does not cause to reduce the operating clock frequency.

The butterfly overlaps the last step of reduction and load op-
eration for the lower coefficient address. The unit executes the
Cooley-Tukey butterfly operation with load-store operations in
parallel. The butterfly optimizer controls the operation order
and ALU data path with an FSM that is initialized by the
controller unit.

The butterfly optimizer also avoids redundant address gen-
erations for loading U ,V and storing E and O (see Fig. 5).
The address generations for these load operation are the same
with store operations. Thus, the butterfly reuses the address
location instead of re-calculating them.

V. IMPLEMENTATION RESULTS

We used the Verilog HDL and RTL coding to implement
the proposed hardware. We synthesized, placed, and routed
the code on the Xilinx VIRTEX-7 FPGA (xc7vx690tffg1761-
2) with the 2018.3 version of the Xilinx Vivado tool.



TABLE II
NTT IMPLEMENTATION RESULTS AND COMPARISON TO PRIOR WORK

Method Work # of Supported Platform n LUTs / REG / DSP / BRAM Estimated LUTs Cycle Count Max EfficiencyPQ Algorithms Counta [35]
HW/SW [25] 1 Zynq-7000 1024 886 / 618 / 26 / 1 4006 24609 0.101

HWb [17] – VIRTEX-7 1024 21K / 16K / 10 / 12 22K 7597 0.0592048 25K / 20K / 11 / 192 26K 15852
HWb [16] 2 VIRTEX-7 1024 4737 / 3243 / 8 / 2 5697 16569 0.106

HW [8] – SPARTAN-6
256 250 / – / 3 / 2 610 3840

0.593512 240 / – / 3 / 2 600 11264
1024 250 / – / 3 / 2 610 27648

HW [15] 1 VIRTEX-7 1024 34K / 16K / 476 / 228 91K 80 1.371

HW [18] 2 VIRTEX-6 256 1349 / 860 / 1 / 2 1469 1691 1.753512 1536 / 953 / 1 / 3 1656 3443

HW [14] 2 Zynq-7000
256

980 / 395 / 26 / 2 4100
2056

0.528512 4616
1024 10248

HW/SW This Work 6 VIRTEX-7
256

417 / 462 / 0 / 0 417
43756

0.2958512 81064
1024 180237
2048 491215

a:To normalize the area estimation, we converted 1 Xilinx DSP48 to 120 LUTs following earlier work [35]. b:HLS design.

We also implemented the Berkeley Out-of-Order
Machine (BOOM) RISC-V core for comparison. BOOM
has a high-performance architecture, which supports com-
plex out-of-order execution, branch-prediction and specula-
tive execution and uses 64-bit base integer, integer mul-
tiplication and division, atomic, and single- and double-
precision floating-point instructions [34]. We compiled the
reference C codes submitted to the NIST post-quantum
standardization using NTT—NewHope [1], qTESLA [2],
CRYSTALS-Kyber [3], CRYSTALS-Dilithium [4], and
Falcon [5]—with riscv-gnu tool-chains referenced
in the corresponding git repository for picoRV32 with our
extensions [33] and for BOOM [34].

We first compare our results with different RISC-V cores:
the baseline PicoRV32-32IM, the extended PicoRV32
with our proposed techniques, and the BOOM-RV64GC. Table I
shows that, as expected, BOOM achieves the fastest solutions
and reduces the baseline latency by up to 10.9×, while our
proposed solution achieves a relatively lower speedup of up to
6×. But our proposed extension occupies far fewer resources

Fig. 6. Implementation Methods and Efficiency Comparison

compared to BOOM. Therefore, our solution is up to 40×
more efficient (in area×delay−1 metric) compared to baseline
and BOOM. This validates the efficiency of domain-specific
architectures.

Next, we compare our solution with prior hardware, soft-
ware, and HW/SW co-design methods. Our solution arguably
falls under the category of HW/SW co-design. Note that these
implementations target different technologies, consider differ-
ent paramteters (n and q), and use different EDA tools; hence,
the results present a first-order comparison. Fig. 6 shows
the summary of our comparison and Table II provides the
details—note that the table does not include ASIC or software
microcontroller implementations. The figure reflects different
implementation methods and compares their efficiency based
on the inverse of area-delay product. The proposed design
is superior to the existing HW/SW co-design work (by 3×)
and even outperforms some of the pure hardware solutions
(by up to 5×). The table shows that, unlike earlier pure
hardware designs, our solution can flexibly support all 5
NIST proposals using NTT including the recent updates of
CRYSTALS-Kyber.

VI. CONCLUSIONS

This paper proposes a domain-specific architecture support
and optimization to accelerate the NTT on the FPGA technol-
ogy. Through dynamic instruction scheduling and optimized
ALU, the proposed RISC-V core can achieve up to 6×
speedup over the baseline solution, is more efficient than
a prior HW/SW co-design by 3×, and even reaches the
efficiency of pure hardware accelerators. The proposed design
can also identify the NTT execution and automatically map
a C code into optimized executions without any change of
compiler or manual assembly coding.
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