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Abstract—Efficient lattice-based cryptosystems operate with polyno-
mial rings with the Number Theoretic Transform (NTT) to reduce the
computational complexity of polynomial multiplication. NTT has there-
fore become a major arithmetic component (thus computational bottle-
neck) in various cryptographic constructions like hash functions, key-
encapsulation mechanisms, digital signatures, and homomorphic en-
cryption. Although there exist several hardware designs in prior work
for NTT, they all are isolated design instances fixed for specific NTT
parameters or parallelization level.

This paper provides an extensive study of flexible design methods
for NTT implementation. To that end, we evaluate three cases: (1) para-
metric hardware design, (2) high-level synthesis (HLS) design approach,
(3) and design for software implementation compiled on soft-core pro-
cessors, where all are targeted on reconfigurable hardware devices. We
evaluate the designs that implement multiple NTT parameters and/or
processing elements, demonstrate the design details for each case, and
provide a fair comparison with each other and prior work. On a Xilinx
Virtex-7 FPGA, compared to HLS and processor-based methods, the
results show that the parametric hardware design is on average 4.4×
and 73.9× smaller and 22.5× and 19.3× faster, respectively. Surpris-
ingly, HLS tools can yield less efficient solutions than processor-based
approaches in some cases.

Index Terms—NTT, Flexible, Hardware, HLS, RISC-V.

1 INTRODUCTION

F LEXIBILITY is a key requirement for digital systems to
reduce design costs [1], [2] and consolidate changing

standards, performance requirements, target platforms and
algorithmic alternatives [3]. There are three primary de-
sign methods to build design-time flexibility: a parametric
hardware generator with customized parameters, a software
compiled on a processor, or a software directly transformed
into hardware through a high-level synthesis (HLS) tool.
Among these options, software tends to be the most flexible
solution with the worst performance and the parametric
hardware is often the most efficient one with the worst
flexibility. HLS, by comparison, forms the middle ground,
resulting in medium performance and flexible solutions.

Flexibility is especially important for next-generation
cryptographic systems. The conventional cryptosystems
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such as the AES or RSA are established, widely-used so-
lutions with many hardware/software IPs built specifically
for their efficient implementations. Therefore, it is possible
to find highly-optimized realizations of such standardized
algorithms regardless of the target platform. But this is
definitely not the case for developing cryptosystems, such
as the lattice-based cryptography proposals.

Lattice-based cryptography offers interesting applica-
tions such as provably-secure hash functions [4], quantum-
resistant digital signature protocols [5], key-encapsulation
mechanisms [6] and homomorphic encryption [7]. Efficient
lattice-based cryptography operates with polynomial rings
and polynomial multiplication is a well-known computa-
tional bottleneck of lattice-based cryptosystems—indeed,
schoolbook multiplication corresponds to 95.7% and 98.8%
percent of the overall computation time for the encryp-
tion and decryption processes in a lattice-based public-key
encryption and decryption scheme, respectively [8]. The
Number Theoretic Transform (NTT) reduces theO(n2) com-
plexity of the schoolbook polynomial multiplication to the
quasi-linear complexity of O(n · log n). NTT is thus a major
building block of lattice cryptography implementations.

The impact of NTT for cryptography can be similar to
that of the Fast Fourier Transform for signal processing.
Lattice-based cryptography has already gained significant
attention over a decade and its popularity will increase
even further in the age of practical homomorphic en-
cryption schemes and quantum supremacy [9]. Indeed,
the problems in lattice-based cryptography are secure
against quantum computing attacks and enable fully
homomorphic encryption, which allows computation on
encrypted data. NTT will therefore be a critical component
since it accelerates the core arithmetic operation of lattice
cryptosystems.

There are two design-time flexibility requirements for
specialized NTT designs. The first one is due to varying
algorithmic parameters which are the degree of the poly-
nomial, n, and coefficient size, K = dlog2 qe, where q is the
coefficient modulus. For example, while NewHope algorithm
[6] uses polynomials of degree 1023 with 14-bit coefficients,
CryptoNets [7] operates with polynomials of degree 4095
with up to 60-bit coefficients. The second flexibility need
is due to a consequence of performance requirements of
the applications, even for a fixed algorithm. For instance,
while a cloud computing infrastructure demands a high-
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TABLE 1: Previous NTT Implementations
Method Work n K PE Target Platform

H
LS

[12]c 1024 14 10 Virtex-7
[13]c 1024 10 – Virtex-7
[14]c 512 17 – Zynq US+

So
ft

w
ar

e

[15]a,b 256 12 2 ARM Cortex-M4

[16] 256 13 4 Intel Core i7-4770K1024 14

[17]a,b 1024 14 1 ARM Cortex-M0
ARM Cortex-M4

[18],[19] 1024 27 – Intel Core i9-7900X

H
ar

dw
ar

e

[20]a 256 17 1 Spartan-6
[21]a,b 256 13 1 Virtex-6
[22]b 4096 30 2 Zynq US
[23]b 32768 32 256 Virtex-7

[24]
b

1024 32 1 Spartan-6
64 Virtex-7

[18]
b

1024 32 32 Virtex764
[25]c 256 13 1 Virtex-6

[11]c
256 13

1 40nm CMOS512 14
1024 14

[26]c 256 13 16 40nm CMOS
[27]c 256 13 1 UMC 65nm

[28]a,b 1024 14 4 Artix-7
[29]b 16384 32 1 Virtex-7
[30]b 65536 30 16 Virtex-6

a:Uses fixed q. b:Uses fixed n. c:Can work with multiple n and q.

throughput hardware, an IoT/embedded device would fa-
vor a low area/energy design. Therefore, throughput is
the second flexibility parameter, mainly determined by the
number of processing elements (PEs), which carry out the
fundamental arithmetic operations in the design.

Table 1 reports a summary of the previous works in the
literature, which lists the specific setting for parameters,
the design method, and the target platform thereof. The
prior NTT designs have so far been fixed in both aspects of
algorithm parameters and throughput. Naturally, proposing
an efficient multiplier architecture for a fixed polynomial
degree and a coefficient size with a fixed number of PEs
still merits a publication [10]. Notwithstanding, extending
the hardware from a specific setting to a more generic
and flexible design is non-trivial due to memory access
and control flow challenges. A recent work offers run-time
configurability with a flexible NTT hardware, but only sup-
ports a few algorithm parameters and is fixed for low area
implementations [11]. Thus, as various settings in Table 1
indicates, the quest for a flexible and efficient design that
supports a wide range of parameters is still outstanding.

This paper provides the first evaluation of design-time
flexible NTT designs and uses the FPGA devices as the
common demonstrator platform. To that end, we investigate
three different design approaches. In our first approach, we
propose an optimized, parametric hardware generator for
the NTT operation. This design offers flexibility for both
algorithm parameters and throughput, and supports a wide
range of cryptographic algorithms. First, it can cater dif-
ferent arithmetic structures for varying polynomial degrees
and coefficient sizes. Second, it can provide a trade-off in
area vs. performance by incorporating a different number
of PEs. The user of our generator simply enters polynomial
degree and coefficient size and a desired number of PEs, and
our tool automatically produces a corresponding efficient

Fig. 1: An overview of the design method’s results and
comparison for the NTT of NewHope-512. The hand-tuned
hardware designs lead to most efficient results while HLS
and processor-based methods yield similar solutions.

hardware 1. Prior works, by contrast, are either ad-hoc
efforts fixed for a specific setting [20], [21], [22], [23], [24],
[18], [28], [29], [30] or employ a fixed number of PEs [11],
[25], [26], [27]. We furthermore investigate two other flexi-
ble design approaches and provide implementation results:
software implementation compiled on a soft-core processors
and HLS. We finally analyze the resulting implementations
of all three design approaches and compare them with each
other and to prior fixed NTT designs in the literature.

This paper builds on our prior work, which is accepted
to DATE 2020 (see https://www.date-conference.com/).
While our prior work reports on a preliminary design of the
parametric hardware generator (Section 3), the contributions
of this paper are as follows:

• We implement the NTT designs with parame-
ters suitable for post quantum key-encapsulation
mechanisms (CRYSTALS-Kyber [31], NewHope [6]),
key signature schemes (CRYSTALS-Dilithium
[32], Falcon [33], qTESLA [5]) as well as ho-
momorphic encryption applications (SEAL [19],
CryptoNets [7]) using the parametric hardware
generator and quantify the area-cost and the latency
of the resulting designs.

• We develop software-based NTT running on soft-
core RISC-V architectures and realize it on reconfig-
urable hardware. To conduct a thorough analysis, we
instantiate three such architectures and investigate
trade-offs between area-cost and throughput.

• We build HLS-based NTT implementations through
a commercial C/C++-to-FPGA framework. To ex-
plore the design space of possible solutions, we
evaluate the impact of different pragmas and HLS
parameters on the latency and area-cost metrics.

• We conduct a comprehensive analysis of all the re-
sulting designs and compare different design meth-
ods for implementing NTT architectures.

In particular, we demonstrate the genericness of our
work by tuning it to the NTT of two dissimilar appli-
cations: A homomorphically encrypted deep neural net-
work inference tool (CryptoNets) [7] and post-quantum
key-encapsulation mechanism (KEM) and digital signature

1. Code is available at https://github.com/acmert/parametric-ntt
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schemes (CRYSTALS-Kyber [31], CRYSTALS-Dilithium
[32], NewHope [6], qTESLA [5], Falcon [33]). While the
former application enables privacy-friendly neural network
classification on encrypted data, the latter secures critical
cyber-infrastructure against quantum computer attacks. Our
generator is profitably used to obtain the first NTT hardware
accelerator for the parameter sets of both applications on
FPGAs.

Fig. 1 shows the summary of our results for a particular
NTT with n=512 and K=14 used in NewHope-512. The
results, in log2 scale, quantifies the superiority of hand-
tuned hardware over HLS- and processor-based imple-
mentations. For a similar area (LUT) cost, the hardware
achieves a 11.6× and 336.6× faster design than HLS- and
processor-based design, respectively. Surprisingly, the im-
plementation results of HLS-based method is not clearly
better than the processor-based approach. This is significant
because while we developed an HLS-friendly algorithm
and rigorously explore the HLS directives for improving
results, processor-based implementation is a push-button
compilation of the reference software—note that up to a
factor of 8 improvements are further possible for the NTT
over the reference C code with assembly optimizations on
embedded processors [34]. Furthermore, the results show
that our hardware generator automates the design space
exploration of hardware—the results show a coverage of
61.9× in area and 32.5× in latency. Such a coverage is not
yet possible with HLS tools because they fail to generate a
hardware with more than 8 PEs.

The rest of the paper is as follows. Section 2 gives the
background on NTT and the related prior work. Section 3
introduces the parametric hardware design with novel opti-
mizations. Section 4 discusses the HLS-based design method
and tuning the HLS framework for efficient exploration of
the design space. Section 5 presents the software-based de-
sign method and the target RISC-V architectures. Section 6
compares the resulting implementations among themselves
and with prior work, and Section 7 concludes the paper.

2 BACKGROUND AND PRIOR WORK
In this section, we give a brief definition of arithmetic oper-
ations extensively utilized in the lattice-based cryptography.
For the rest of the paper, n, q, K = dlog2 qe and B will be
used to denote the degree of the polynomial ring, the coeffi-
cient modulus, the coefficient modulus size and the number
of PEs or the butterfly units used, respectively, where the
PEs or butterfly units are the fundamental building blocks
of NTT hardware.

2.1 The Number Theoretic Transform

The multiplication of two polynomials with large degrees
defined over the ring of polynomials Zq[x]/φ(x) is the fun-
damental and the most time-consuming operation utilized
in lattice-based cryptography applications, where Zq[x] and
φ(x) denote the polynomials with coefficients in Zq and
the reduction polynomial, respectively. The multiplication
operation in the ring basically takes the polynomials A(x)
and B(x), namely A(x)=

∑n−1
i=0 aix

i and B(x)=
∑n−1

i=0 bix
i,

as inputs, where coefficients ai and bi are in Zq which
denotes the numbers {0, 1, ..., q − 1}. The multiplication
operation returns the output polynomial C(x)=

∑n−1
i=0 cix

i.

Algorithm 1 NTT-based Polynomial Multiplication [35]
Input: A(x), B(x) ∈ Zq[x]/(xn + 1)
Input: primitive 2n-th root of unity Ψ ∈ Zq

Output: C(x) = A(x)×B(x), C(x) ∈ Zq[x]/(xn + 1)
1: A(x)← NTT(A(x)� (Ψ0,Ψ1, ... ,Ψn−1))
2: B(x)← NTT(B(x)� (Ψ0,Ψ1, ... ,Ψn−1))
3: C(x)← A(x)�B(x)
4: C(x)← INTT(C(x))� (Ψ0,Ψ−1, ... ,Ψ−(n−1)))
5: return C(x)

The classical schoolbook polynomial multiplication tech-
nique is far from providing a fast and practical polyno-
mial multiplication operation as it has a complexity of
O(n2). Besides, the resulting polynomial still needs to be
reduced with reduction polynomial, φ(x). Consequently,
the NTT-based polynomial multiplication technique, which
reduces the complexity to O(n log n), is generally utilized
in efficient lattice-based cryptography implementations.
The NTT-based polynomial multiplication technique em-
ploys NTT/INTT (inverse-NTT) operations to convert costly
polynomial multiplication operation into much cheaper
coefficient-wise multiplication operations.

When the reduction polynomial, φ(x), is selected as
(xn+1), the reduction operation after the polynomial multi-
plication can be avoided using a special technique, called
negative wrapped convolution, that directly renders the
resulting polynomial C(x) of degree n − 1. The technique
multiplies the coefficients of the input and output polyno-
mials with the powers of Ψ and Ψ−1, respectively, where Ψ
is a primitive 2n-th root of unity in Zq satisfying Ψ2n ≡ 1
(mod q) and ∀i < 2n, Ψi 6= 1 (mod q). It also requires
φ(x) = (xn+1) and q ≡ 1 (mod 2n). The NTT-based poly-
nomial multiplication with negative wrapped convolution
is described in Algorithm 1, where � denotes coefficient-
wise modular multiplication and NTT and INTT stands for
number theoretic transform and inverse number theoretic
transform, respectively.

NTT is a variant of Discrete Fourier Transform defined
over the ring Z[x]q/φ(x). The n-point (pt) NTT operation
takes an (n − 1) degree polynomial, A(x) =

∑n−1
i=0 aix

i,
in the polynomial domain as input and transforms it into
an (n − 1) degree polynomial, Ā(x) =

∑n−1
i=0 Aix

i, in the
NTT domain. Each coefficient in the NTT domain, Ai, is
defined as Ai =

∑n−1
j=0 ajω

ij in Zq . Similarly, n-pt INTT
operation produces coefficients in the polynomial domain
with ai = n−1

∑n−1
j=0 Ajω

−ij in Zq .

The NTT operation uses the constant called twiddle
factor, ω ∈ Zq , which is a primitive n-th root of unity in
Zq . The twiddle factor should satisfy the conditions ωn ≡ 1
(mod q) and ∀i < n, ωi 6= 1 (mod q), where q ≡ 1
(mod n). Similarly, the INTT operation uses the modular
inverse of twiddle factor, ω−1, in Zq .

There is a plethora of NTT algorithms proposed in the
literature [36], [37], [38], [18], which are implemented in
different works as shown in Table 1. In this work, we utilize
the iterative NTT algorithm, given in Algorithm 2 [36]. The
iterative NTT algorithm uses Gentleman-Sande butterfly
configuration, whereby input and output of the butterfly
unit are in normal and bit-reversed order, respectively. The
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Algorithm 2 Iterative NTT Algorithm [36]
Input: A(x) ∈ Zq[x]/(xn + 1)
Input: primitive n-th root of unity ω ∈ Zq , n = 2l

Output: A(x) = NTT(A) ∈ Zq[x]/(xn + 1)
1: for i from 1 by 1 to ` do
2: m = 2l−i

3: for j from 0 by 1 to 2i−1 − 1 do
4: for k from 0 by 1 to m− 1 do
5: ie ← 2 · j ·m+ k . index calculation
6: io ← 2 · j ·m+ k +m
7: iw ← (2i−1 · k)
8: U ← A[ie] . read data
9: V ← A[io]

10: W ← ωiw (mod q)
11: E ← (U + V ) (mod q) . execute butterfly
12: O ← (U − V ) ·W (mod q)
13: A[ie]← E . write data
14: A[io]← O
15: end for
16: end for
17: end for
18: return A

iterative INTT operation can be implemented with Algo-
rithm 2 by simply using ω−1 instead of ω and dividing the
coefficients of the output polynomial with n in Zq .

An n-pt NTT operation consists of log2 n stages, in each
of which (n/2) butterfly operations are performed (see Steps
5-14 of the Algorithm 2). Thus, an n-pt NTT performs
(log2 n) · (n/2) butterfly operations in total, whereby one
butterfly operation takes a, b, ωi as inputs and calculates
(a + b) (mod q) and (a − b) · ωi (mod q). A butterfly op-
eration in Steps 5-14 of the Algorithm 2 can be performed
mainly in four steps: i) index calculation, ii) load data, iii) ex-
ecute butterfly and iv) store data. In the index calculation and
load data steps, the read addresses for the input data of the
butterfly operation are generated and the input data are
read from the memory. In the butterfly and store data steps,
the butterfly operation is performed and the output data is
written into the memory using the read addresses generated
during the index calculation step.

An NTT operation can be parallelized by performing
multiple butterfly operations concurrently. The input of an
NTT stage is the output of the previous NTT stage. Thus,
an NTT operation has limited parallelism for a given input,
confined to the number of butterfly operations in one stage,
namely at most (n/2) butterfly operations can be performed
in parallel. On the other hand, memory operations become
more complicated due to concurrent accesses to inputs of
the multiple butterfly operations.

2.2 Prior Implementations of NTT
Different algorithms and architectures targeting various
platforms for NTT are proposed in the literature in order to
facilitate practical implementations of lattice-based cryptog-
raphy. There are many NTT architectures proposed in the
literature using different methods and targeting different
platforms: low-level hardware implementations ([20], [21],
[22], [23], [24], [18], [25], [11], [26], [27], [28], [29], [30]), HLS
implementations ([12], [13], [14]) and software implementa-
tions ([7], [19], [39], [40], [41], [15], [16]).

The works [23], [24] use the iterative NTT algorithm [36]
and propose balanced NTT implementations considering
I/O requirements of the CPU-FPGA system. In [18], two
different NTT architectures utilizing Iterative [36] and Four-
Step [41] NTT algorithms are presented. The NTT archi-
tectures are utilized to accelerate the encryption and de-
cryption operations implemented in SEAL library [19] on
the FPGA. In [22] and [30], the authors implement Iterative
NTT algorithm on FPGA; while the work in [22] implements
modular reduction operation using a sliding window method,
[30] uses Barrett modular reduction. The work in [29], which
targets both FPGA and ASIC platforms, proposes a method
eliminating the first stage of the NTT operation.

In [27], [11] and [26], the works target ASIC plat-
form. In [11], the authors propose a reconfigurable crypto-
processor supporting multiple lattice-based cryptosystems.
The work in [11] utilizes the constant-geometry NTT algo-
rithm [38], which features constant read/write pattern in
each stage of NTT operation and uses single-port RAM in
order to reduce hardware cost. Also, it proposes a config-
urable Barrett modular reduction implementation. In [27],
the authors focus on low-power NTT design for battery-
powered IoT devices with a discussion on countermeasures
for side-channel attacks. The method in [26] proposes an
accelerator for R-LWE based cryptosystems for multiple
parameter sets, which uses 16 butterfly units in its NTT core
and divides large NTT operations into smaller 64-pt NTTs.

The works in [12], [13], [14] use HLS to generate NTT
hardware targeting FPGA. These works use HLS-friendly
NTT algorithms and HLS directives to generate efficient
NTT hardware. In [12], the authors propose an NTT-based
polynomial multiplier implementing the memory efficient
NTT algorithm introduced in [20]. In [13], for loop struc-
ture of NTT algorithm is modified for efficiently applying
Vivado HLS directives. In [14], the authors propose an FFT-
based polynomial multiplier which uses an FFT algorithm
with ping-pong memory buffer utilizing 2D arrays in HLS.

Different software implementations for NTT were
also proposed in the literature. The software libraries
CryptoNets [7], SEAL [19], HElib [39] and NFLlib [40]
provide efficient software implementations of arithmetic
blocks for the lattice-based homomorphic encryption
schemes, which include efficient NTT implementations.
The work in [15] proposes a high-speed implementa-
tion of Crystals-KYBER [31] on ARM Cortex-M4 micro-
controller, where an NTT implementation for n=256 and
q=3329 was also introduced. The work in [16] proposes an
AVX2 optimized NTT implementation which utilizes a mod-
ified Montgomery modular reduction algorithm. In [17],
NewHope-1024 [6] is implemented on ARM Cortex-M0 and
Cortex-M4 micro-controllers with NTT/INTT implementa-
tion optimized for the parameter set of NewHope-1024.
Also, there are GPU accelerators for NTT and homomorphic
encryption applications such as cuHe [41].

3 DESIGN METHOD I: PARAMETRIC HARDWARE
GENERATOR DESIGN

NTT computations have three parts: loading related data
(Steps 5 and 6 in Algorithm 2), performing arithmetic com-
putations (Steps 11 and 12 in Algorithm 2) and storing the
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Algorithm 3 Word-Level Montgomery Reduction Algo-
rithm for NTT-friendly primes [18]

Input: C = A ·B (a 2K-bit positive integer)
Input: q (a K-bit modulus), q = qH · 2w + 1
Input: w = log2(2n) (word size)
Output: Res = C ·R−1 (mod q) where R = 2w·L

1: L← dKw e
2: T ← C
3: for i from 0 to L do
4: T1H ← T >> w
5: T1L ← T (mod 2w)
6: T2← two′s complement of T1L
7: Cin ← T2[w − 1] ∨ T1L[w − 1]
8: T ← T1H + (qH · T2[w − 1 : 0]) + Cin

9: end for
10: T4← T − q
11: if (T4 < 0) then Res = T else Res = T4

result (Steps 13 and 14 in Algorithm 2). Within each PE, the
so-called butterfly units execute arithmetic computations,
which are composed of modular addition, subtraction, and
multiplication. To achieve a higher throughput, it is possible
to unroll NTT loops and parallelize the butterfly operations
by using multiple PEs.

We will discuss the design in a bottom-up fashion,
starting with the design of efficient modular multiplication.
We will then describe the construction of the PE and finally
explain its parallelization along with the optimized memory
access structure and the organization.

The NTT hardware generator takes the polynomial de-
gree, the coefficient size and the number of PEs as input
parameters, and generates an NTT hardware unit optimized
for the given parameters. It is notable that the design
provides flexibility not only for polynomial degree and
coefficient size, but also the number of PEs, which improves
the throughput of the hardware. The same unit can also
execute the INTT.

3.1 Word-Level Montgomery Modular Multiplier

The modular multiplier is the key component of the NTT
arithmetic. This unit consists of two parts: an integer multi-
plier followed with a modular reduction. We developed the
parameterized version of both parts.

There are mainly two alternative methods for efficient
modular reduction: Montgomery [24] and Barrett algo-
rithms [11]. Their selection for a parametric hardware is a
non-trivial design decision. Banerjee et. al., for instance, uses
a Barrett modular reduction hardware [11], which includes
two different reduction units. The first one is a config-
urable Barrett reduction hardware which enables run-time
flexibility. The second one employs a separate, specialized
reduction hardware which is only compatible with a small
set of pre-determined special moduli.

We argue that for the design-time flexibility, Mont-
gomery reduction can offer a more efficient solution than the
Barrett algorithm. Nevertheless, the baseline Montgomery
has to be optimized for NTT primes and extended to sup-
port various polynomial degrees and coefficient sizes. To
that end, we propose a Montgomery reduction unit that
generalizes the word-level Montgomery modular reduction

algorithm for NTT-friendly primes [24], whereby the word
size is derived from the parameters. Compared to the con-
figurable Barrett reduction [11], our solution either reduces
the number of multipliers or results in smaller multiplier
units. The implementation results show an advantage in
cycle count when the hardware uses the same number of
PEs as shown in Table 6.

Algorithm 3 provides the details of our generalized al-
gorithm. The algorithm requires different number of integer
multipliers of varying bit lengths depending on q and n.
The algorithm utilizes the property of q ≡ 1 (mod 2n),
which should be satisfied by any NTT-friendly prime using
negative wrapped convolution technique. Thus, an NTT prime
q can be written as q = qH ·2log2 (2n) + 1. In order to exploit
that property, we can perform a word-level Montgomery
reduction with word size w = log2 (2n) and divide the
reduction operation into smaller parts instead of performing
it all at once. This will result in a flexible modular reduc-
tion structure. The modular reduction operation executes
L = dKw e times for a K-bit modulus. The Montgomery mod-
ular reduction variable µ = −q−1 (mod 2w) becomes −1,
simplifying the multiplication of (A ·B (mod 2w)) ·µ in the
Montgomery modular reduction to the two’s complement
(see Step 6 of Algorithm 3).

The Montgomery reduction algorithm takes C = A·B as
input and calculates the output A ·B ·R−1 (mod q), where
R = 2w·L is defined as Montgomery reduction residual. The
residual has to be corrected using an extra multiplication
with R to obtain A · B (mod q). This extra multiplication
can be moved to the input by multiplying one of the inputs
by R. Since one of the inputs in NTT is the constant twiddle
factor, ω, we can fuse the multiplication by pre-computing
it (ω ·R (mod q)) and loading it into the related memory at
design-time to save one multiplication at run-time.

The proposed word-level Montgomery modular reduc-
tion algorithm divides reduction operation into a set of
multiply and accumulate (MAC) operations. Namely, it
performs X · Y + Z + Cin operation (see Step 8 of Algo-
rithm 3), which can be implemented using DSP blocks in
FPGAs, for different number of times for different arithmetic
configurations. Therefore, the algorithm itself is amenable to
generating flexible designs. Our hardware generator makes
use of this to automatically generate the reduction hardware
for the given polynomial degree and coefficient size.

Fig. 2 illustrates two examples of modular reduction
hardware units for (a) polynomial degree of 1024 with 32-
bit modulus and (b) polynomial degree of 256 with 16-
bit modulus, where the rectangular boxes represent the
functional units to perform X · Y + Z + Cin. Both designs
offer advantage over the Barret method [11]—while the
first design uses smaller multiplier units, the second one
saves one multiplication. The first implementation requires
3 MAC operations while the second implementation uses
only 2 MAC operations. The proposed reduction hardware
is fully pipelined, and it produces one output each clock cy-
cle after filling the pipeline. The generated modular reduc-
tion hardware runs in constant time for a given arithmetic
configuration.

The other part of the modular multiplication, integer
multiplier hardware, uses the coefficient size as a parameter.
Each input of the multiplier is divided into 16-bit pieces and
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(a) For n=1024 and K=32

(b) For n=256 and K=16
Fig. 2: Word-Level Montgomery Modular Reduction Hardware

Fig. 3: Integer Multiplier for 32-bit Inputs

one DSP block is used for each 16-bit×16-bit multiplication
operation. The resulting intermediate values are then added
up to calculate multiplication result using carry save adders.
The proposed integer multiplier is also fully pipelined and
it can produce one multiplication result per clock cycle.
Fig. 3 shows the hardware of 32-bit multiplication as an
example, which requires 4 DSP blocks. The number and
configuration of the DSP blocks along with the adder tree
are automatically synthesized based on the input parame-
ters. Although it may be possible to partition input integers
more efficiently, we divide all inputs into 16-bit (power-of-2)
pieces to preserve regularity and reduce the complexity of
the control unit.

3.2 PEs and Butterfly Units
As we already obtain the efficient hardware for the core
modular arithmetic, it is now time to discuss the design of
the butterfly units that use modular operations and the PEs
that contain butterfly units.

Each PE implements the Gentleman-Sande butterfly con-
figuration [36] corresponding to Steps 8–12 of Algorithm 2.
Fig. 4 illustrates one PE. PEs take two coefficients and one
twiddle factor as inputs, perform the butterfly operation,
and output two resulting coefficients, namely even (E) and
odd (O) coefficients. A PE consists of one modular adder,
one modular subtractor, and one modular multiplier for im-
plementing the butterfly operation. Each PE also uses three
dual-port BRAMs, where two data BRAMs store input and
intermediate coefficients while the other, twiddle factor TW
BRAM, stores the twiddle factors (with Montgomery cor-
rection), which are the design-time constants pre-computed
based on input parameters.

Fig. 4 depicts that the even coefficient is the output of
the modular addition operation (Step 11 in Algorithm 2)

Fig. 4: PE and the Butterfly Unit

and odd output coefficient is the output of the modular
subtraction and multiplication (Step 12 in Algorithm 2). To
synchronize the output generation of even and odd coeffi-
cients, the proposed design inserts a parametric number of
registers, shown in green, on the even path based on the
input parameters (namely, the polynomial degree and the
coefficient size). The number of PEs can only be a power-of-
2 and their maximum is (n/2) for an n-pt NTT.

3.3 Flexible Memory Access and Overall Design

A significant challenge for the NTT hardware design is man-
aging the complex memory access schedule. This problem
becomes more challenging for us because our hardware
aims to provide flexibility in the number of core PEs. We
need our parametric hardware generator to synthesize the
address generation logic that will control the 2 BRAMs in
each PE without adding any stalls to the NTT pipeline.

The proposed design uses the Iterative NTT scheme of
Algorithm 2, which consists of log2 n stages and performs
(n/2) butterfly operations at each stage. Fig. 5 (a) demon-
strates an example of the memory read access pattern of
coefficients for n=8. Each yellow dot represents a butterfly
operation, which consumes and produces two coefficients
mapping to the same degree. For example, 0th and 4th

coefficients in the first stage will correspond to the 0th and
4th coefficients of the second stage.

The irregular access pattern of the NTT enforces storing
each coefficient to a unique address. Fig. 5 (b) demonstrates
the one PE case, where coefficients in the same butterfly
operation are stored in two distinct memory blocks. For ex-
ample, at the first stage of the 8-pt NTT, four coefficient pairs
(0, 4), (1, 5), (2, 6), (3, 7) go into butterfly operation. These
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Fig. 5: (a) Coefficient Access Pattern; (b) Memory Access
Pattern for n=8

Fig. 6: Memory Access for the 8-pt NTT with (a) One PE, (b)
Two PEs

pairs need to be read at the same clock cycle. Therefore,
coefficients 0, 1, 2, 3 and 4, 5, 6, 7 should be stored in separate
memory blocks and accessed in parallel.

Unfortunately, the pairings of the coefficients change at
each stage. The output of the stage, therefore, has to be
stored back into the memory blocks based on the pairing of
the next stage. Fig. 5 (b) shows the example for n=8 where
the coefficient pairings for the first and second stages are
respectively (0, 4), (1, 5), (2, 6), (3, 7) and (0, 2), (1, 3), (4,
6), (5, 7). Hence, both outputs of the pairs (0, 4) and (1, 5)
should be written into the first memory block. Likewise, (2,
6) and (3, 7) output will be placed in the second memory.
This guarantees that all coefficient pairs at the second stage
can be read in a cycle.

Our parametric hardware design automatically gener-
ates the required access pattern to handle memory access
operations for different number of PEs. This pattern, how-
ever, requires coefficient pairs to be written into the same
memory block. For example, for n=8, the coefficient pair (0,
4) should be written into the first memory block after the
first stage to improve coalescing. This is enabled by adding
one extra register to the output of the modular multiplier
unit in the PE, shown as orange register in Fig. 4. This extra
latency allows storing coefficients into the same memory in
2 cycles. Since the PEs are pipelined, this extra register does
not affect the throughput.

The proposed design uses an alternating memory read
pattern because the first and second half of coefficient

Fig. 7: NTT Hardware (a) with one PE; (b) with two PEs

pairs should be written into the first and second memories,
respectively. For example, as shown in Fig. 5, only the
coefficients (0, 1), (4, 5) are written into the first memory
while (2, 3), (6, 7) are written into the second memory.
Therefore, the memory read pattern for 8-pt NTT should
be in the order (0, 4), (2, 6), (1, 5), (3, 7) instead of (0, 4), (1,
5), (2, 6), (3, 7).

Fig. 6 gives the memory access examples for 8-pt NTT
with one and two PEs. Green and blue boxes represent
the read and write operations, respectively, and the letters
in red represent coefficients written into the memory. For
the 8-pt NTT with one PE, coefficients (0, 4) and (1, 5)
need to be stored in the same memory block. The proposed
addressing scheme thus first reads coefficients (0, 4) and
(2, 6), which should be written into the first and second
memories, respectively. Therefore, operation can continue
without any stall. For the 8-pt NTT with two PEs (see
Fig. 6 (b)), the PEs perform the butterfly operation for the
first half of the coefficient pairs first. In this case, the first and
second PEs can read coefficients (0,4) and (1,5) at the same
time because coefficients 0, 1 and 4, 5 will be written into
different memory blocks. Since we have two PEs instead of
one, latency of each NTT stage is reduced.

Fig. 7 outlines the high-level block diagram of the gen-
erated NTT hardware with (a) one and (b) two PEs. The
outputs of one PE are connected to all PEs in the design
to broadcast the coefficients needed due to the memory
dependency of the NTT. Before the NTT starts, the hardware
first takes twiddle factors followed with the input coefficient
as inputs and writes them to their related BRAMs within
each PE. The data BRAMs also keep the resulting output
coefficients, which are read via output multiplexers.

4 DESIGN METHOD II: HLS-BASED DESIGN

We aim synthesizing our design-time flexible NTT hardware
using the popular Xilinx Vivado HLS tool. Vivado HLS
takes C or C++ codes as input and generates synthesizable
Verilog or VHDL codes. It also provides specific directives
(pragmas) for users to intervene the C/C++-to-RTL synthesis
process and optimize the generated RTL design. The Vivado
HLS tool offers several optimization parameters such as
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Algorithm 4 HLS-Friendly NTT Algorithm
Input: A[n] (n element input array)
Input: ω[n/2] where ω[i] = ωi (mod q)
Input: B (number of butterfly operations in parallel)
Output: A[n] = NTT(A[n])

1: l = log2 n
2: v = n/2
3: STAGE_LOOP:
4: for i from 0 by 1 to (l − 1) do . outer loop
5: BUTTERFLY_LOOP:
6: for s from 0 by B to (v − 1) do . middle loop
7: IDX_CALC_LOOP: . index calculation
8: for b from 0 by 1 to (B − 1) do . inner loop#1
9: j[b]← (s+ b) >> (l − 1− i)

10: k[b]← (s+ b) & ((v >> 1)− 1)
11: ie[b]← j[b] · (1 << (l − i)) + k[b]
12: io[b]← ie[b] · (1 << (l − i− 1))
13: iw[b]← (1 << i) · k[b]
14: end for
15: MEM_READ_LOOP: . read data
16: for b from 0 by 1 to (B − 1) do . inner loop#2
17: U [b]← A[ie[b]]
18: V [b]← A[io[b]]
19: W [b]← ω[iw[b]]
20: end for
21: OP_LOOP: . butterfly operation
22: for b from 0 by 1 to (B − 1) do . inner loop#3
23: E[b]← (U [b] + V [b]) (mod q)
24: O[b]← (U [b]− V [b]) ·W [b] (mod q)
25: end for
26: MEM_WRITE_LOOP: . write data
27: for b from 0 by 1 to (B − 1) do . inner loop#4
28: A[ie[b]]← E[b]
29: A[io[b]]← O[b]
30: end for
31: end for
32: end for
33: return A

loop unrolling, loop merging, pipeline and array
partitioning, among others [42].

In order to generate an efficient hardware from C/C++
code, the code should include appropriate HLS directives.
This may require re-writing or changing the structure of the
code [13], in addition to the exploration of optimization pa-
rameters. Indeed, we first observe that the straightforward
transition of the software leads to inefficient results or may
not even produce a synthesizable code. Specifically, in the
original algorithm (Algorithm 2), the NTT operation has
3 loops where indices of middle and inner loops depend
on the index of the outer loop. This loop structure makes
applying HLS directives complicated and causes the HLS
tool to improperly handle the synthesis process.

Algorithm 4 shows our proposed HLS-friendly Iterative
NTT algorithm. In order to overcome HLS problems and
make the C++ code more HLS-friendly, we modified the
loop structure of the NTT algorithm such that dependencies
between indices of the loops are removed and the trip count
of each loop structure is fixed. In Algorithm 4, the trip count
of the outer loop is the number of stages in the n-pt NTT
operation, log2 n, as in Algorithm 2. In the middle loop,

TABLE 2: Vivado HLS pragmas used in our work
Code pragma
array A[n] #pragma HLS ARRAY_PARTITION
array ω[n/2] #pragma HLS ARRAY_PARTITION
STAGE_LOOP –
BUTTERFLY_LOOP #pragma HLS PIPELINE
IDX_CALC_LOOP

#pragma HLS UNROLL
MEM_READ_LOOP
OP_LOOP
MEM_WRITE_LOOP

we modified trip count to (n/2), which is the number of
butterfly operations in one stage of an n-pt NTT. Finally,
we set the trip count of the innermost loop as the number
of butterfly operations to be performed in parallel, which
can be at most (n/2) for an n-pt NTT operation. Then, we
divided butterfly operation into 4 separate loops with the
same trip count, whereby four loops perform four steps of a
butterfly operation as explained in Section 2.1.

Based on the implemented algorithm and the code sec-
tion where the directives are used, different combinations
of directives can have different impacts on the architecture.
Therefore, we applied a set of different directives to the
C++ implementation of NTT operation and selected loop
unrolling, pipeline and array partitioning direc-
tives at different code parts as shown in Table 2.

The loop unrolling directive (UNROLL) converts a
single operation performed by a loop into multiple inde-
pendent copies of the operation performed in the loop body
and runs these operations concurrently. It can unroll a loop
fully or partially, and it increases the parallelism and the
performance of the operation. This directive is applied to
the innermost four loops in our design where it generates B
butterfly units running concurrently. The pipeline direc-
tive (PIPELINE) allows concurrent execution of operations
and reduces the interval required to start processing a new
input, e.g., it allows an operation to take a new input every
clock cycle. We use PIPELINE directive at the middle loop
to pipeline the four steps of butterfly operations.

Memory control is one of the most challenging part of the
NTT design as it requires many read/write operations with
an irregular pattern. The addressing becomes even more
complex with the increasing number of parallel butterfly
operations. For instance, an NTT operation with n = 256
and B = 8 requires to read 16 coefficients and 8 coefficients
from the arrays A[n] and ω[n], respectively, at the same
time. This enforces a structure with data stored on multiple
small memory blocks or a large memory with multiple
read/write ports (i.e., a register file). The straightforward
software implementation cannot realize this structure—it
generates a single block RAM with insufficient bandwidth.
But the array partitioning (ARRAY PARTITION) di-
rective can automate the partition of an array into smaller
memories or individual registers instead of instantiating
a single large memory block. Therefore, it can effectively
increase the read/write ports of a memory, and hence, the
throughput, at the expense of more hardware resources.

In the proposed design, we applied the AR-
RAY PARTITION directive to the array, A[n], storing the in-
put polynomial, and the array, ω[n], storing twiddle factors.
Here, we used two different approaches: i) we partitioned
each array into a register file using the complete option
of the ARRAY PARTITION directive, where any data can

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on December 25,2020 at 20:34:38 UTC from IEEE Xplore.  Restrictions apply. 



0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3017930, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS SPECIAL ISSUE ON HARDWARE SECURITY 9

Fig. 8: Vivado HLS Flow

Fig. 9: NTT hardware generated by Vivado HLS tool

be read/written at any time, ii) we partitioned each array
into a number of BRAMs using the block option of the
ARRAY PARTITION directive so that the algorithm can
access multiple data at the same time. Although the former
approach generates faster design, it uses high hardware
resources due to large multiplexers generated for read-
ing/writing multiple data. We also used the ap_int.h
library provided by Vivado HLS tool that contains bit ac-
curate models for the C++ code. This helps us to set K and
bit-lengths of intermediate calculation steps.

Fig. 8 shows the design flow of the proposed NTT
architecture in Vivado HLS. The flow starts with the C++
implementation of the NTT operation and its verification.
Then, Vivado HLS directives are applied to the code, the
synthesis is performed and the Verilog code is generated.
Finally, the generated Verilog code is verified with a Verilog
testbench. The proposed HLS-based design uses conven-
tional Montgomery algorithm for the modular reduction
operation as specified in Algorithm 5. Although our para-
metric hardware generator uses word-level Montgomery
algorithm, our HLS-based design with word-level Mont-
gomery algorithm leads to inefficient architectures due to
loop-based structure of the word-level Montgomery algo-
rithm. Also, as the number of PEs is increased, the HLS
tool shows significant increase in hardware resources and
synthesis time because the HLS tool cannot resolve un-
rolling efficiently although it shows similar performance
results with the conventional Montgomery algorithm.
Therefore, we utilize conventional Montgomery algorithm
for modular reduction operation in our HLS-based design.
The proposed work implements constant-time modular ad-
dition and subtraction operations [24]. Fig. 9 illustrates the
architecture of the NTT hardware generated by the Vivado
HLS tool.

Algorithm 5 Montgomery Modular Reduction Algo-
rithm
Input: C = A ·B (a 2K-bit positive integer)
Input: q (a K-bit modulus)
Input: µ = −(q−1) (mod R) where R = 2K

Output: Res = C ·R−1 (mod q)
1: T = C · µ
2: X = T (mod R)
3: Y = C +X · q
4: U = Y >> K
5: V = U − q
6: if (V < 0) then Res = U else Res = V
7: return Res

The NTT operation in [12] is implemented using a loop
structure with 3 nested loops, where trip counts of the inner
loops are not fixed. This complicates applying HLS direc-
tives efficiently and setting the amount of parallelism in the
generated hardware architecture. Our work is superior to
the work in [12] because our modified loop structure uses
fixed trip counts which ease applying HLS directives and
we can change the parallelism easily by tuning a single
parameter. In [14] and [13], the authors modify the NTT
loop structure such that it uses two nested loops with fixed
trip counts. However, both works lack flexibility for setting
the level of parallelism. The method in [14] manually unrolls
its inner loop with a factor of 2 which limits the parallelism
and throughput flexibility. Although it shows better perfor-
mance for a single parameter set, hardware resource usage
details are not provided (as shown in Section 6). Similarly,
the method in [13] uses manual unrolling and provides only
partial flexibility by changing the structure of the code. In
our work, the code structure is fixed and only parameter
sets are changed for yielding different architectures.

A key takeaway of our HLS experience on NTT was
that, in order to generate an efficient hardware, the de-
signer needs an in-depth understanding of the resulting
hardware designs and the effect of tool’s parameters on the
synthesized hardware, which arguably contradicts the goal
of enabling easy solutions for software developers. Section 6
discusses the design complexity of the HLS method with
respect to the others and compares the efficiency of resulting
hardware.

5 DESIGN METHOD III: PROCESSOR-BASED DE-
SIGN

Processor-based designs typically have the best flexibility
but the worst performance. We choose the RISC-V based
ISA to carry out this design method because RISC-V is open
source and is especially well suited for embedded domains,
providing energy-efficient solutions with a reasonably high
performance. The recent study claims that RISC-V is the best
and safest choice for a free, open RISC ISA [43].

We build our software environment on two RISC-V
cores to quantify the trade-offs between performance and
area: PicoRV32 [44] and the Berkeley Out-of-Order
Machine (BOOM) [45].

PicoRV32. PicoRV32 core targets embedded applica-
tions with limited resources. It therefore has a simple,
area-optimized architecture with a single-issue, in-order
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core. We configure the PicoRV32 core for both the
RV32I, which supports 32-bit base integer instructions,
and the RV32IM [46], which further supports 32-bit integer
multiplication-division instructions.

BOOM. BOOM core targets applications with high-perfor-
mance needs. It therefore has a complex architecture em-
ploying out-of-order processing, hardware branch predic-
tion, and speculative execution, among other performance-
optimization methods. BOOM works with RV64GC ISA (also
known as the 64-bit IMAFDC), which supports 64-bit
base integer instructions, integer multiplication and divi-
sion instructions, atomic instructions, single- and double-
precision floating-point instructions and compressed in-
structions.

We isolate the NTT algorithms from NIST Round 2
submissions’ reference implementation of NewHope,
CRYSTALS-Dilithium, Falcon, qTESLA and NIST
Round 1 submission’s reference implementation of
CRYSTALS-Kyber. We define the pre-computed twiddle
factors as global arrays in our isolated NTT source C files.
This procedure has resulted in 9 different NTT C files before
starting the compilation.

We compile our source files with riscv-gnu
tool-chains which are referenced in the corresponding
git repositories [44], [45]. Fig. 10 outlines the source code
compiling flow. The RISC-V gcc compiler compiles the
reference software from C source language code to object
file. Based on target architecture, either the PicoRV32 or
BOOM linker links the object files and generates the exe-
cutable output. The PicoRV32 design requires dumping the
resulting hex files to memory. Therefore, we use objcopy
command and a Python script to format the output of .tmp
file into a .hex file, which is then dumped to the memory
of PicoRV32. For the BOOM design, the executable directly
drives the core. For both designs, the final step of the
compiling flow is using objdump command to get the
assembly output and program counter values needed to
time the NTT execution.

To provide a fair comparison with respect to hardware
and HLS-based methods, we only record the cycle count of
the NTT operation, isolated from other instructions such as
creating NTT inputs, organizing twiddle factor values, and
other instructions under the labels: putchar, setStats, tohost-
exit, callexitprocs, impuredata, memcpy, globalimpureptr, im-
pureptr, bssstart, abort, printstr, printhex, memset, -init, strcmp,
GMb, register-exitproc, do-global-dtors-aux, atol. We employ the
assembly dump file to identify the program counter value
and use those to achieve this isolation.

Fig. 11 illustrates the implementation flow. The input to
this flow is the .hex file obtained from the software flow.
The correctness of the behavioral simulation is verified with
ModelSim and Verilator simulators. While ModelSim
simulates the PicoRV32, Verilator simulates for the BOOM.
The simulator records provide the count cycles for the
different NTT algorithms’ executions. To obtain pure cores’
hardware utilization result, we followed the Synthesis and
Place & Route flow only with the RISC-V cores. Finally,
we combine the core utilization results and the algorithms’
memory footprint in area calculation.

Fig. 10: NTT source code compiling flow for RISC-V

Fig. 11: RISC-V Implementation Flow

6 IMPLEMENTATION RESULTS AND COMPARISONS

To provide a fair comparison of the design methods, we
use a common set of EDA tools and we target the same
FPGA. We also compare our work with previous results in
the literature and comment on the design complexity.

6.1 Experimental Setup

The parametric hardware generator code is written in Ver-
ilog RTL and the generated NTT hardware are synthe-
sized, placed, and routed using Xilinx Vivado tools on
the Xilinx Virtex-7 FPGA xc7vx690tffg1761-2. The proposed
HLS-friendly software code is written in C++ and is en-
hanced with Xilinx HLS pragmas. The NTT software for the
processor-based designs are obtained from the reference C
source code of NIST submissions [31], [6], [32], [33], [5] and
CryptoNets [7]. The details of processor implementation
flows are discussed in Section 5.

6.2 Implementation Results of the Design Methods and
Comparison to Prior Work

We first provide the results and comparison of the three
design method we propose in this work.

• For our parametric hardware generator, the area-cost,
number of clock cycles (CC) needed to finish one
NTT, and LUT/latency improvements for 7 different
(n,K) sets with 1, 8 and 32 PEs are shown in Table 3.
As the number of PEs increases from 1 to 32, the
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latency improves up to 25.4× at the expense of
more hardware resources. The increase in the num-
ber of PEs (which can be as much as (n/2)) further
improves the performance for larger n values. As
expected, the parametric hardware generator yields
(at least an order-of-magnitude) better results than
other methods in latency and/or area.

• For HLS implementations, the area-cost, number of
CC to finish one NTT and latency improvements for
7 different (n,K) sets with 1 and 8 PEs are shown
in Table 4. We obtained two different synthesis re-
sults, register memory and BRAM memory, for each
parameter set as explained in Section 4. In Table 4,
the first and the second rows reflect the results for
the implementation with register and BRAM mem-
ories, respectively, for a given parameter set. The
implementations with register memory show slightly
better performance at the expense of more hardware
resources. The first 4 columns of Table 4 highlight the
impact of Montgomery modular reduction algorithm
and the proposed HLS-friendly NTT algorithm. The
Montgomery modular reduction algorithm improves
the performance up to 5× and the HLS-friendly NTT
algorithm further improves the performance up to
767× compared to the baseline design (iterative NTT
algorithm without Montgomery modular reduction
algorithm) with similar hardware resources. Com-
pared to the parametric hardware generator, the in-
crease in the number of PEs has a weaker effect—the
performance increases only by 2× as the number of
PEs is increased by 8×, which reveals the inefficien-
cies in the HLS tools. Vivado HLS cannot synthesize
the hardware with register memory for (2048, 30)
and (4096, 60) because the array partitioning
pragma is limited to arrays with length up to 1024.
The number of PEs is limited to 8 because no signif-
icant performance improvement is observed with 16
or more PEs.

• For RISC-V implementations, the area-cost, number
of CC to finish one NTT, and latency improvements
for 6 different (n,K) sets and 3 different RISC-V
configurations are shown in Table 5. The second
implementation , RV32IM, improves the latency up
to 40× over RV32I at the expense of 4 extra DSPs.
The third implementation, BOOM-RV64GC, improves
the latency up to 400× at the expense of 220×
increase in LUT count. HLS does not clearly out-
perform RISC-V but instead provides a trade-off:
e.g., for (n,K)=(512,14), it reduces the CC by 57×
at the expense of 11× increase in area-cost. The
aim of this work is to evaluate flexible solutions
for the NTT implementation. Therefore, we pick the
NIST reference submission NTT source codes written
in C and compile them to the RISC-V ISA. Some
NIST submissions or related follow-up works in
the literature include assembly optimizations, which
may achieve a performance improvement on NTT by
8.3× [34]. RISC-V designs thus will arguably be more
competitive compared to HLS solutions.

We then compare our results with the prior work. The

TABLE 3: Our Hardware Implementation Results

PE (n, K) LUTs/DSPs/BRAMs # of LUT-Lat.
CC Impr.

1
(256, 13)

489 / 3 / 2.5 1056 −
8 2371 / 24 / 12 160 ×0.20,×6.60
32 15888 / 96 / 48 64 ×0.03,×16.5
1

(256, 23)
888 / 7 / 5 1096 −

8 5071 / 56 / 12 200 ×0.15,×5.48
32 30847 / 224 / 48 104 ×0.02,×10.5
1

(512, 14)
537 / 3 / 5.5 2340 −

8 2514 / 24 / 12 324 ×0.21,×7.20
32 16983 / 96 / 48 108 ×0.03,×21.6
1

(1024, 14)
575 / 3 / 11 5160 −

8 2584 / 24 / 16 680 ×0.22,×7.58
32 17188 / 96 / 48 200 ×0.03,×25.8
1

(1024, 29)
966 / 7 / 21.5 5210 −

8 6788 / 56 / 24 730 ×0.14,×7.13
32 38093 / 224 / 48 250 ×0.02,×20.8
1

(2048, 30)
991 / 7 / 45 11363 −

8 6821 / 56 / 44 1507 ×0.15,×7.54
32 38598 / 224 / 64 451 ×0.02,×25.2
1

(4096, 60)
2720 / 31 / 180 24708 −

8 23215 / 248 / 176 3276 ×0.11,×7.54
32 99384 / 992 / 176 972 ×0.02,×25.4

TABLE 4: Our HLS-Based Implementation Results

PE (n, K) LUTs/FFs/DSPs/BRAMs # of Lat.
CC Impr.

1(1)

(256, 13)

12336 / 6639 / 1 / – 3934226 −
1045 / – / 1 / 2 4065298 −

1(2) 12185 / 6390 / 3 / – 788498 ×5.0
893 / – / 3 / 2 919570 ×4.4

1(3) 12255 / 10197 / 3 / – 5124 ×767.8
979 / – / 3 / 2 6147 ×661.3

8(4) 61297 / 11187 / 24 / – 2436 ×1615
10487 / – / 24 / 16 3075 ×1322

1
(256, 23)

12553 / 18763 / 6 / – 4100 −
1213 / – / 6 / 6 5123 −

8 63241 / 19387 / 48 / – 2308 ×1.8
12565 / – / 48 / 32 3075 ×1.7

1
(512, 14)

23757 / 21727 / 3 / – 11524 −
1010 / – / 3 / 4 13827 −

8 118804 / 22841 / 24 / – 6050 ×1.9
11020 / – / 24 / 16 6915 ×2.0

1
(1024, 14)

36061 / 43239 / 3 / – 25604 −
1045 / – / 3 / 4 30723 −

8 167018 / 44373 / 24 / – 13442 ×1.9
11305 / – / 24 / 16 15363 ×2.0

1
(1024, 29)

36405 / 89454 / 12 / – 25604 −
1445 / – / 12 / 6 30723 −

8 169560 / 91578 / 96 / – 13442 ×1.9
13975 / – / 96 / 32 15363 ×2.0

1
(2048, 30)

– – −
1479 / – / 12 / 6 67587 −

8 – – −
13886 / – / 96 / 64 33795 ×2.0

1
(4096, 60)

– – −
2145 / – / 45 / 22 147459 −

8 – – −
17768 / – /360 / 128 73731 ×2.0

(1): Iterative NTT algorithm (no Mont. Mod. Red.). (2): Iterative NTT
algorithm (with Mont. Mod. Red.). (3): HLS-friendly NTT algorithm
(with Mont. Mod. Red.). (4): HLS-friendly NTT algorithm (with Mont.
Mod. Red. and 8 PE).

key takeaways are:

• The target devices are implemented under different
FPGA technology or even ASIC, hence, the compari-
son should serve as a first-order estimate rather than
an idealized method. Also, note that only the NTT
implementations of the same polynomial degree (n)
and coefficient size (K) make a meaningful compar-
ison. In Table 6, a subset of our implementations for
selected parameter sets are compared with the prior
works.
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TABLE 5: Our RISC-V ISA Based Implementation Results

Design (n, K) Slice/LUTs/DSPs # of Lat.
CC Impr.

(1)

(256, 13)

349 / 870 / –

1338795 –
(256, 23) 1617001 –

(512, 14)a 1372930 –
(1024, 14)a 3101102 –
(512, 14)b 1338783 –
(1024, 14)b 30170940 –
(1024, 29) 10738094 –
(2048, 30) 23236893 –

(2)

(256, 13)

448 / 1053 / 4

481096 ×2.7
(256, 23) 122600 ×13.2

(512, 14)a 399931 ×3.4
(1024, 14)a 885530 ×3.5
(512, 14)b 481096 ×2.8
(1024, 14)b 1063310 ×28.3
(1024, 29) 274549 ×39.1
(2048, 30) 575117 ×40.4

(3)

(256, 13)

– / 191K / 36

41725 ×32
(256, 23) 17419 ×92.8

(512, 14)a 21456 ×63.9
(1024, 14)a 49786 ×62.3
(512, 14)b 68456 ×19.6
(1024, 14)b 97563 ×309.2
(1024, 29) 27337 ×392.8
(2048, 30) 58082 ×400

(1): PicoRV32-RV32I, (2): PicoRV32-RV32IM, (3): BOOM-RV64GC
a: NewHope, b: Falcon

• Albeit target device and technology differences, the
results in Table 6 show that our parametric NTT
hardware generator can outperform most of the ex-
isting hardware, software and high-level synthesis
designs respectively by up to 30.7×, 200× and 47.5×
in terms of number of cycle count. Our parametric
generator can produce a hardware that is comparable
to fixed setting hardware units and can even be better
in some cases. Our designs can achieve either a lower
area or a faster design (in cycle) compared to prior
FPGA solutions. For example, our one PE design
outperforms the work in [11] in terms of latency
(cycle count) due to our proposed word-level Mont-
gomery reduction unit. Some implementations, by
contrast, show better performance results than our
parametric generator since these implementations
are optimized for fixed parameters. For example,
the works in [18] and [24] show better performance
than our work since they utilize 64 PEs. However,
our parametric hardware generator can outperform
these implementations by simply increasing the
number of PEs. Our HLS implementations with 1
and 8 PEs show similar area×latency performance
with the works in [12] and [13], respectively. Al-
though RISC-V BOOM implementation uses the non-
optimized code of NewHope-1024, it shows better
performance than the implementation in [17].

• Using our parametric hardware generator, we in-
stantiate the hardware implementations of NTT for
the parameters of CryptoNets [7] and qTESLA [5],
which outperform the reference software by up to
25.3× and 5.5× on Intel Xeon processor, and 95.7×
and 76.5× compared to HLS-based design, respec-
tively.

We finally highlight the fast design-space exploration
that can be achieved by our parametric hardware generator.
To test this aspect, we sweep the parameter that controls the

number of PEs used in NewHope-512 hardware and report
the implementation results in Fig. 1. Our generator is able
to cover a space of 61.9× in area cost for a tradeoff of 32.5×
in performance by simply tuning a parameter knob. By
contrast, 5× in area and 1.9× in performance is achievable in
HLS since it cannot parallelize the hardware beyond 8 PEs.
By contrast, our parametric generator can parallelize up to
(n/2) as long as the resulting hardware fits in the FPGA.

6.3 Design Effort and Complexity

Memory control of the NTT operation is complex. It may
take many man-hours to design and implement an NTT
architecture with a fixed number of PEs. Besides, polyno-
mial degree and the coefficient size (fixed or not) also has
impact on the design-time of the NTT architecture. The
design process gets more challenging as the number of PEs
changes. For example, if the number of PEs is doubled in a
design, it requires re-design of the memory structure and the
control unit of the NTT architecture. Considering all param-
eters affecting the design-time, it requires a significant effort
to design a flexible NTT hardware generator supporting
different polynomial degree, coefficient size and the number
of PEs. It takes approximately 450 man-hours to build entire
system. Once we have the flexible NTT generator design, it
only takes minutes to tune parameters and synthesize the
design with desired parameter set.

Design effort for the flexible design in HLS is easier
compared to the hardware. It takes about 60 man-hours
to explore different optimizations and finalize the design.
The most challenging part is the HLS tool. Vivado HLS tool
has synthesis limitations. Even though the tool significantly
reduces the design-time cost compared to the parametric
hardware generator, its capabilities are limited. For example,
when the number of PEs is more than 8, the synthesis
time of the tool significantly increases and no remarkable
improvement is observed. Similarly, when the polynomial
degree is larger than 1024, memory partitioning directives
may not work properly and manual memory partitioning
may be required. We note that we report the HLS experience
of hardware design experts, this process will be significantly
harder for software developers.

The challenge in the RISC-V based design method is to
build the RISC-V tool-chains and its environment. It takes
approximately 290 man-hours to setup the RISC-V tool-
chains and simulation environment. Although PicoRV32
environment setup process takes reasonable time, the time
duration of building the BOOM environment depends on
the capabilities of the host Linux machine because executing
one script (e.g. ./scripts/build-toolchains.sh) may take more
than 4 hours and each setup fatal error causes to start over
the setup spec. The BOOM environment building stages
require dozens of libraries and the platform occupies more
than 40 GB area on solid storage. Once this non-recurring
engineering effort is completed, RISC-V flow becomes able
to support a flexible environment to execute different al-
gorithms on one platform. After building the tool-chains,
there is only one easy task: compiling the target source
file, running the resulting executable and generating the
benchmark results, all of which can be automated with an
end-to-end wall-clock time of a few minutes.
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TABLE 6: A Summary of Our Implementation Results and its Comparison to Prior Work

Met. Work Platform n K LUT / REG / DSP / BRAM Clock Latency
(MHz) CC µs

H
LS

[12] Virtex-7 1024 14 4737 / 3243 / 8 / 2 – 16569 76

[13] Virtex-7
1024

10
38984 / 30498 / 19 / 21.5

100
5291 53

2048 46738 / 38224 / 21 / 24.5 10731 107
4096 58082 / 44767 / 22 / 41.5 22072 221

[14] Zynq US+ 512 17 – / – / – / – 250 1202 –
TW-1 PE Virtex-7 1024 14 1045 / – / 3 / 4 100 30723 307
TW-8 PE Virtex-7 1024 14 11305/ – / 24 / 16 100 15363 153

So
ft

w
ar

e

[15]a,b ARM Cortex-M4 256 12 – / – / – / – – 7725 –

[16] Intel Core i7-4770K 256 13 – / – / – / – – 460 –
1024 14 – / – / – / – – 2784 –

[17] ARM Cortex-M0 1024 14 – / – / – / – – 148517 –
ARM Cortex-M4 – / – / – / – – 86769 –

[18],[19] Intel Core i9-7900X 1024 27 – / – / – / – – – 14
CryptoNets [7]a Intel Xeon CE5-1650 4096 60 – / – / – / – – – 195
qTESLA [5]a,d Intel Xeon CE5-1650 1024 28 – / – / – / – – – 11
TW(1)-Falcon Virtex-7 1024 14 870 / – / – / – 50 30170940 6.106

TW(3)-Falcon Virtex-7 1024 14 191K / 73K / 36 / 180 50 97563 1951
TW(2)-NewHope Virtex-7 1024 14 1053 / – / 4 / – 50 885530 17710
TW(3)-NewHope Virtex-7 1024 14 191K / 73K / 36 / 180 50 49786 995

H
ar

dw
ar

e

[20]a Spartan-6
256

17
250 / – / 3 / 2

–
– 25

512 240 / – / 3 / 2 – 50
1024 250 / – / 3 / 2 – 100

[21]a,b Virtex-6 256 13 4549 / 3624 / 1 / 12 262 – 8
[22]b Zynq US 4096 30 64K / – / 200 / 400 225 – 73
[23]b Virtex-7 32768 32 219K / – / 768 / 193 250 7709 51

[24]
b Spartan-6 1024 32 1208 / – / 14 / 14 212 – 12

Virtex-7 34K / 16K / 476 / 228 200 80 0.4

[18]b Virtex-7 1024 32 67K / – / 599 / 129 200 140 0.7
77K / – / 952 / 325.5 80 0.4

[25]c Virtex-6 256 13 1349 / 860 / 1 / 2 313 1691 5.4
512 14 1536 / 953 / 1 / 3 278 3443 12.3

[11]c 40nm CMOS
256 13

106K / – / – / – 72
1289 17

512 14 2826 32
1024 14 6155 81

[26]c 40nm CMOS 256 13 – / – / – / – 300 160 0.5
512 14 – / – / – / – 492 1.6

[27]c UMC 65nm
256 13

14K / – / – / – 25
2056 82

512 14 4616 184
1024 14 10248 409

[28]a,b Artix-7 1024 14 4823 / 2901 / 8 / – 153 1280 –

[29]b Virtex-7 16384 32 2.81K / 1.25K / 39 / 80 168 28672 –
32768 32 2.86K / 1.27K / 39 / 160 166 61440 –

[30]b Virtex-6 65536 30 72K / 63K / 250 / 84 100 47795 –

TW-1 PE Virtex-7 1024 14 575 / – / 3 / 11 125 5160 41.2
4096 60 2720 / – / 31 / 180 24708 197.6

TW-8 PE Virtex-7 1024 14 2584 / – / 24 / 16 125 680 5.4
4096 60 23215 / – / 248 / 176 3276 26.2

TW-32 PE Virtex-7 1024 14 17188 / – / 96 / 48 125 200 1.6
4096 60 99384 / – / 992 / 176 972 7.7

TW:This Work. a:Uses fixed q. b:Uses fixed n. c:Works with multiple n and q.
(1): PicoRV32-RV32I. (2): PicoRV32-RV32IM. (3): BOOM-RV64GC.

7 CONCLUSIONS AND FUTURE WORK

Designing an efficient hardware accelerator is a delicate
process. Indeed, proposing an optimized NTT hardware for
one arithmetic setting and for one performance goal has
been sufficient to publish in cryptography and hardware
design conferences. But as the lattice-based cryptosystems
mature and gear towards massive deployment, there will
be a heavier emphasis on flexible design methods for
faster adoption and design space exploration, which enforce
scalable and configurable solutions. This paper conducts
an extensive study of flexible design methods for NTT,
proposes a flexible yet efficient hardware generator, and
compares its efficiency against HLS- and processor-based
design approaches. The results show the superiority of
hand-tuned, parameterized hardware designs over other
techniques (which is expected) and the inefficiencies of HLS
tools over conventional, processor-based methods (which is
unexpected). Therefore, this work calls for better HLS tools

that can close the order(s)-of-magnitude gap compared to
RTL-based designs or at least provide significantly better
solutions compared to push-button, processor-based ap-
proaches. Although implementation attacks/defenses such
as the fault and side-channel analysis on lattice-based
cryptography [47], [48], [49], [50] are out of our scope,
future extensions of this work can cover those aspects.
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[35] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic
for lattice-based cryptography on reconfigurable hardware,” in
Progress in Cryptology – LATINCRYPT 2012, 2012, pp. 139–158.

[36] P. Longa and M. Naehrig, “Speeding up the number theoretic
transform for faster ideal lattice-based cryptography,” in Cryptol-
ogy and Network Security, Milan, Italy, Nov. 2016, pp. 124–139.

[37] X. Feng, S. Li, and S. Xu, “Rlwe-oriented high-speed polyno-
mial multiplier utilizing multi-lane stockham ntt algorithm,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2019.

[38] J. M. Pollard, “The fast fourier transform in a finite field,” Mathe-
matics of computation, vol. 25, no. 114, pp. 365–374, 1971.

[39] S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in
Cryptology – CRYPTO 2014, Santa Barbara, CA, USA, Aug. 2014,
pp. 554–571.

[40] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killi-
jian, and T. Lepoint, “Nfllib: Ntt-based fast lattice library,” in Topics
in Cryptology - CT-RSA 2016, San Francisco, CA, USA, pp. 341–356.

[41] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelera-
tor library,” in Cryptography and Information Security in the Balkans,
Koper, Slovenia, Sep. 2016, pp. 169–186.

[42] V.-H. Xilinx, “Vivado design suite user guide-high-level synthe-
sis,” 2014.
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