Publications

Google Scholar Page

Journal Articles

  • X. Lu†, S. Venkatesh†, B. Tang, and K. Sengupta, “Physical Layer Security through Directional Modulation with Spatio-temporal Millimeter-Wave Transmitter Arrays,” IEEE Journal of Solid State Circuits, Under Review, † Equal Contribution.
  • H. Tang, S. Venkatesh, Z. Lin, X. Lu, H. Saeeidi, M. Javanmard, and K. Sengupta, “High Sensitivity and High Throughput Magnetic Flow CMOS Cytometers with 2D Oscillator Array and Inter-Sensor Spectrogram Cross-correlation,” IEEE Transactions on Biomedical Circuits and Systems, pp. 1–15, 2024.
  • C. Wu, Y. Ma, S. Venkatesh, Y. Mehlman, M. Ozatay, S. Wagner, J. C. Sturm, and N. Verma, “A Monolithically Integrable Reconfigurable Antenna Based on Large-Area Electronics,” IEEE Journal of Solid-State Circuits, pp. 1–11, 2023.
  • S. Venkatesh, D. B. Sturm, X. Lu, R. J. Lang, and K. Sengupta, “Origami Microwave Imaging Array: Active Metasurface Tiles on a Shape-morphing Surface for Reconfigurable Computational Imaging,” Advanced Science, Wiley, 2022 Cover Feature Article.
  • S. Venkatesh, X. Lu, B. Tang, and K. Sengupta, “Secure space-time-modulated millimetre-wave wireless links that are resilient to distributed eavesdropper attacks,” Nature Electronics, pp. 827–836, 2021.
  • S. Venkatesh, X. Lu, H. Saeidi, and K. Sengupta, “A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips,” Nature Electronics, pp. 785–793, 2020 Cover Feature Article.
  • S. Venkatesh, X. Lu, H. Saeidi, and K. Sengupta, “A Programmable Terahertz Metasurface With Circuit-Coupled Meta-Elements in Silicon Chips: Creating Low-Cost, Large-Scale, Reconfigurable Terahertz Metasurfaces,” IEEE APS Magazine, 2022.
  • H. Saeidi†, S. Venkatesh†, X. Lu, and K. Sengupta, “THz Prism: One Shot Simultaneous Localization of Multiple Wireless Nodes with Leaky-wave THz Antennas and Transceivers in CMOS,” IEEE Journal of Solid State Circuits, vol. 56, no. 12, pp. 3840–3854, 2021, †Equal Contribution, Invited Paper.
  • H. Saeidi†, S. Venkatesh†, T. Sharma, C. Chappidi, C. Zhu, and K. Sengupta, “A 4×4 Steerable 14-dBm EIRP Array on CMOS at 0.41 THz With a 2-D Distributed Oscillator Network„” IEEE Journal of Solid StateCircuits, 2022, † Equal Contribution.
  • X. Lu, S. Venkatesh, and H. Saeidi, “A review on applications of integrated terahertz systems,” China Communications, vol. 18, no. 5, pp. 175–201, 2021.
  • X. Lu, S. Venkatesh, H. Saeidi, and K. Sengupta, “Integrated Intelligent Electromagnetic Radiator Design for Future THz Communication: A Review,” Chinese Journal of Electronics, vol. 31, no. 3, pp. 1–17, 2022.
  • A. M. .Watson, M. Ford, E. Markvicka, W. Fong, S. Venkatesh, K. Sengupta, C. Majidi, and C. Tabor, “Stretchable microwave transmission lines using liquid-metal embedded elastomers,” Advanced Engineering Materials, 2022, Collaboration with Air Force Research Lab, Carnegie Mellon University.
  • E. Karahan, A. Gupta, S. Venkatesh, Z. Liu, U. Khankhoje, and K. Sengupta, “Deep Learning Enabled Inverse Antenna Design,” IEEE Transactions on Antennas and Propagation, 2022, Under Review.
  • Z. Yu, X. Lu, C. Gu, S. Venkatesh, and J. Mao, “mmWave Spatial-Temporal Single Harmonic Switching Transmitter Arrays for High back-off Beamforming Efficiency,” IEEE Trans. Antenna and Propagation, Under Review.
  • S. Venkatesh and D. Schurig, “Transformation optics design of a planar near field magnifier for sub-diffraction imaging,” Opt. Express, vol. 27, no. 4, pp. 4694–4713, Feb 2019.
  • S. Venkatesh, N. Viswanathan, and D. Schurig, “W-band sparse synthetic aperture for computational imaging,” Opt. Express, vol. 24, no. 8, pp. 8317–8331, 2016.
  • S. Venkatesh and D. Schurig, “Computationally fast EM field propagation through axi-symmetric media using cylindrical harmonic decomposition,” Opt. Express, vol. 24, no. 25, pp. 29 246–29 268, Dec 2016.
  • N. Viswanathan, S. Venkatesh, and D. Schurig, “Optimization of a Sparse Aperture Configuration for Millimeter-Wave Computational Imaging,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 1107–1117, 2021.
  • S. Venkatesh, D. Shrekenhamer, W. Xu, S. Sonkusale, W. J.Padilla, and D. Schurig, “Interferometric direction finding with a metamaterial detector,” Applied Physics Letters, vol. 103, no. 25, 2013.
  • D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Physical Review Letters, vol. 109, p. 177401, Oct.2012.
  • H. M. Bernety, S. Venkatesh, and D. Schurig, “Analytical Phasing of Arbitrarily Oriented Arrays Using a Fast, Analytical Far-Field Calculation Method,” IEEE Trans. on Antennas and Prop., pp. 2911–2922, 2018.
  • H. Bernety, S. Venkatesh, and D. Schurig, “Performance Analysis of a Helmet-Based Radar System for Impact Prediction,” IEEE Access, pp. 75 124–75 131, 2018.
  • Z. Liu, T. Sharma, C. Chappidi, S. Venkatesh, and K.Sengupta, “A 42-62 GHz Transformer-based Broadband mm-Wave InP PA with Second Harmonic Waveform Engineering and Enhanced Linearity,” IEEE Microwave Theory & Techniques, vol. 69, no. 1, pp. 756–773, 2021.
  • R. Abbasi et al., “First upper limits on the radar cross section of cosmic-ray induced extensive air showers,” Astroparticle Physics, vol. 87, pp. 1 – 17, 2017.
  • G. Joshi et al., “Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators,” Appl. Phys. Lett., vol. 109, p. 103303, Sep. 2016.
  • S. Venkatesh, L. G. Llamazares, and S. Al Mansoori, “Young Professionals in Space: Transformation Through Democratization [Around the Globe],” IEEE Microwave Magazine, vol. 21, no. 4, pp. 104–107, 2020.