Research

ICaSL works at the intersection of electromagnetics and integrated circuits.  Our research interests are in high frequency integrated circuits, reconfigurable metamaterials/metasurfaces, electromagnetics & antenna design, and computational sensing/imaging.  We are interested in advancing end-to-end communication and sensor systems spanning from microwaves to terahertz frequencies. Our research has broad-range of applications in the areas of communications, imaging, biomedical sensing, machine-learning, and edge/node computing.

Google Research Page of Prof. Suresh Venkatesh


Selected Publications

1. Active Reconfigurable Surfaces & Metasurfaces

  1. S.Venkatesh, X. Lu, H.Saeidi, K.Sengupta, A High-Speed Programmable and Scalable Terahertz Holographic Metasurface based on Tiled CMOS Chips“, Nature Electronics, 2020. Cover Feature Article
  2. S. Venkatesh*,H. Saeidi*, X. Lu, K. Sengupta, Active Tunable Millimeter-wave Reflective Surface across 57-64 GHz for Blockage Mitigation and Physical Layer Securit, RFIC 2022.
  3. C. Wu, Y. Ma, S. Venkateshet al., “A Monolithically Integrable Reconfigurable Antenna Based on Large-Area Electronics,” in IEEE Journal of Solid-State Circuits, 2024. 
  4. S. Venkatesh, D. Shrekenhamer, W. Xu, S. Sonkusale, W. J. Padilla, and D. Schurig, “Interferometric direction finding with a metamaterial detector,” Applied Physics Letters, vol.103, no.25, 2013.
  5. D.Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys.Rev.Lett., vol.109, p.177401, Oct.2012.

2. Millimeter-Wave and Terahertz Chip Scale Systems

3. Computational Imaging and Sensing Systems

  1. S. Venkatesh, et al. “Origami Microwave Imaging Array: Metasurface Tiles on a Shape‐Morphing Surface for Reconfigurable Computational Imaging” Advanced Science 9.28 (2022), Cover Feature Article.
  2. H. Tang, S. Venkatesh,et al., “High Sensitivity and High Throughput Magnetic Flow CMOS Cytometers with 2D Oscillator Array and Inter-Sensor Spectrogram Cross-correlation,” in IEEE Transactions on Biomedical Circuits and Systems, 2024
  3. S. Venkatesh, N. Viswanathan, and D. Schurig, “W-band sparse synthetic aperture for computational imaging,” Opt.Express, vol.24, no.8, pp.8317–8331, 2016. 
  4. N. Viswanathan, S. Venkatesh, D. Schurig, “Optimization of a Sparse Aperture Configuration for Millimeter wave Computational Imaging,” in IEEE Trans. Antenna and Propagation, 2020.
  5. S. Venkatesh, D. Schurig, “Transformation Optics Design of a Planar Near Field Magnifier for Sub-wavelength Imaging,” Optics Express, 27, 4694-4713, Feb 2019
  6. S. Venkatesh and D. Schurig, “Computationally fast EM field propagation through axi-symmetric media using cylindrical harmonic decomposition,” Opt.Express, vol.24, no.25, pp.29246–29268, Dec2016.
  7. H. M. Bernety, S. Venkatesh, D. Schurig, “Fast ,Analytical Calculation of the Far-field for Arbitrarily-Oriented Antenna Arrays,” IEEE Transactions on Antennas and Propagation, 2018, 66 (6), 2911-2922 .
*Equal Contribution