Intelligent Network-Based Control
Dr. Mo-Yuen Chow, Bulent Ayhan, Danny Wai Lun Leung, Le Xu, Rangsarit Vanijjirattikhan, Tyler Richards, Zheng Li


full
Fig. 1 Intelligent Space via Network-Based Control.

Project Description:

The main objective of the Intelligent Network-Based Control Project is to develope a wireless unmanned vehicle to find its way through a platform with obstacles. It should arrive at the destination specified by a user in a remote location using the shortest amount of time, and avoiding any collisions.

Main Focuses:

  • How to recognize the vehicle and obstacles.
  • How to generate a path around the obstacles in the shortest amount of time.
  • How network delays contribute to control errors.

The vision of the vehicle is established by a wireless network camera placed on top of the platform. The vehicle is battery operated and completely controlled by wireless communication via IP network. Image processing technology, as well as hardware and software implementations are utilized to demonstrate the path generation and path tracking algorithms. Gain Scheduler Control algorithm may also be implemented in this project to compensate for any network delay disturbance.

path
Fig. 2 Path generation algorithm.
Publications:

Y. Tipsuwan, M.-Y Chow, “Neural Network Middleware for Model Predictive Path Tracking of Networked Mobile Robot over IP Network,” IEEE IECon’03, Roanoke, VA, Nov 2 – Nov 6, 2003.

Y. Tipsuwan, M.-Y. Chow, “An Implementation of a Networked PI Controller over IP Network,” IEEE IECon’03, Roanoke, VA, Nov 2 – Nov 6, 2003.

Y. Tipsuwan, M.-Y. Chow, “On the Gain Scheduling for Networked PI Controller Over IP Network,” 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Port Island, Kobe, Japan, July 20-24, 2003.

Y. Tipsuwan, M.-Y. Chow, “Gain adaptation of mobile robot for compensating QoS deterioration,” Proceedings of IECon’02, Sevilla, Spain, November 5 – 8, 2002.

Y. Tipsuwan, M.-Y. Chow, “Network-Based Controller Adaptation Based On QoS Negotiation and Deterioration,” IECon01, Denver, CO, Nov.28-Dec.02, 2001, pp. 1794 -1799.

Y. Tipsuwan, M.-Y. Chow, “Network-based control adaptation for network QoS variation,” MILCOM 2001, October 28-31, 2001, McLean, VA, pp. 257-261.

M.-Y. Chow, Y. Tipsuwan, “Gain Adaptation of Networked Dc Motor Controllers on QoS Variations,” IEEE Transactions on Industrial Electronics, Vol. 50, no. 5, October, 2003.

Y. Tipsuwan and M.-Y. Chow, “Control Methodologies in Networked Control Systems,” Control Engineering Practice, vol. 11, 2003, pp.1099-1111.

M.-Y. Chow, “Methodologies in Time Sensitive Network-Based Control Systems,” 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Port Island, Kobe, Japan, July 20-24, 2003.

M.-Y. Chow, Y. Tipsuwan, “Real Time Network-Based Control System,” IEEE IECon 2002 Tutorial, Sevilla, Spain, November 5, 2002.

M.-Y. Chow, Y. Tipsuwan, “Network-Based Control Systems: A Tutorial,” Proceedings of IEEE IECon 2001 Tutorial, November 28 – December 2, Denver, CO, pp. 1593 -1602.