White light Sagnac interferometer for snapshot linear polarimetric imaging

Abstract: The theoretical and experimental demonstration of a dispersion-compensated polarization Sagnac interferometer (DCPSI) is presented. An application of the system is demonstrated by substituting the uniaxial crystal-based Savart plate (SP) in K. Oka’s original snapshot polarimeter implementation with a DCPSI. The DCPSI enables the generation of an achromatic fringe field in white-light, yielding significantly more radiative throughput than the original quasi-monochromatic SP polarimeter. Additionally, this interferometric approach offers an alternative to the crystal SP, enabling the use of standard reflective or transmissive materials. Advantages are anticipated to be greatest in the thermal infrared, where uniaxial crystals are rare and the at-sensor radiance is often low when compared to the visible spectrum. First, the theoretical operating principles of the Savart plate polarimeter and a standard polarization Sagnac interferometer polarimeter are provided. This is followed by the theoretical and experimental development of the DCPSI, created through the use of two blazed diffraction gratings. Outdoor testing of the DCPSI is also performed, demonstrating the ability to detect either the S2 and S3, or the S1 and S2 Stokes parameters in white-light.

M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White light Sagnac interferometer for snapshot linear polarimetric imaging,” Opt. Express 17, 22520–22534 (2009).